parent
6361995412
commit
e4a0b9c7ed
|
@ -68,8 +68,6 @@ public:
|
|||
bool TesselatePolygon( const SHAPE_LINE_CHAIN& aPoly )
|
||||
{
|
||||
m_bbox = aPoly.BBox();
|
||||
m_prefactor_x = 32767.0 / m_bbox.GetWidth();
|
||||
m_prefactor_y = 32767.0 / m_bbox.GetHeight();
|
||||
m_result.Clear();
|
||||
|
||||
if( !m_bbox.GetWidth() || !m_bbox.GetHeight() )
|
||||
|
@ -275,8 +273,8 @@ private:
|
|||
*/
|
||||
int32_t zOrder( const double aX, const double aY ) const
|
||||
{
|
||||
int32_t x = static_cast<int32_t>( m_prefactor_x * ( aX - m_bbox.GetX() ) );
|
||||
int32_t y = static_cast<int32_t>( m_prefactor_y * ( aY - m_bbox.GetY() ) );
|
||||
int32_t x = static_cast<int32_t>( 32767.0 * ( aX - m_bbox.GetX() ) / m_bbox.GetWidth() );
|
||||
int32_t y = static_cast<int32_t>( 32767.0 * ( aY - m_bbox.GetY() ) / m_bbox.GetHeight() );
|
||||
|
||||
x = ( x | ( x << 8 ) ) & 0x00FF00FF;
|
||||
x = ( x | ( x << 4 ) ) & 0x0F0F0F0F;
|
||||
|
@ -305,7 +303,7 @@ private:
|
|||
|
||||
while( p != aStart )
|
||||
{
|
||||
if( *p == *( p->next ) || area( p->prev, p, p->next ) == 0.0 )
|
||||
if( area( p->prev, p, p->next ) == 0.0 )
|
||||
{
|
||||
p = p->prev;
|
||||
p->next->remove();
|
||||
|
@ -314,7 +312,6 @@ private:
|
|||
if( p == p->next )
|
||||
break;
|
||||
}
|
||||
|
||||
p = p->next;
|
||||
};
|
||||
|
||||
|
@ -441,38 +438,26 @@ private:
|
|||
continue;
|
||||
}
|
||||
|
||||
Vertex* p = next;
|
||||
bool removed = false;
|
||||
Vertex* nextNext = next->next;
|
||||
|
||||
do
|
||||
if( *prev != *nextNext && intersects( prev, aPoint, next, nextNext ) &&
|
||||
locallyInside( prev, nextNext ) &&
|
||||
locallyInside( nextNext, prev ) )
|
||||
{
|
||||
Vertex* nextNext = p->next->next;
|
||||
prev = p->prev;
|
||||
m_result.AddTriangle( prev->i, aPoint->i, nextNext->i );
|
||||
|
||||
if( *prev != *nextNext && intersects( prev, p, p->next, nextNext ) &&
|
||||
locallyInside( prev, nextNext ) &&
|
||||
locallyInside( nextNext, prev ) )
|
||||
{
|
||||
m_result.AddTriangle( prev->i, p->i, nextNext->i );
|
||||
// remove two nodes involved
|
||||
next->remove();
|
||||
aPoint->remove();
|
||||
|
||||
// remove two nodes involved
|
||||
p->next->remove();
|
||||
p->remove();
|
||||
aPoint = nextNext;
|
||||
stop = nextNext;
|
||||
|
||||
next = nextNext;
|
||||
p = nextNext;
|
||||
removed = true;
|
||||
}
|
||||
|
||||
p = p->next;
|
||||
|
||||
} while ( p != next );
|
||||
continue;
|
||||
}
|
||||
|
||||
aPoint = next;
|
||||
|
||||
if( removed )
|
||||
continue;
|
||||
|
||||
/*
|
||||
* We've searched the entire polygon for available ears and there are still
|
||||
* un-sliced nodes remaining.
|
||||
|
@ -489,9 +474,7 @@ private:
|
|||
}
|
||||
|
||||
// If we don't have any NULL triangles left, cut the polygon in two and try again
|
||||
if ( !splitPolygon( aPoint ) )
|
||||
return false;
|
||||
|
||||
splitPolygon( aPoint );
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -576,7 +559,7 @@ private:
|
|||
* independently. This is assured to generate at least one new ear if the
|
||||
* split is successful
|
||||
*/
|
||||
bool splitPolygon( Vertex* start )
|
||||
void splitPolygon( Vertex* start )
|
||||
{
|
||||
Vertex* origPoly = start;
|
||||
|
||||
|
@ -584,29 +567,19 @@ private:
|
|||
{
|
||||
Vertex* marker = origPoly->next->next;
|
||||
|
||||
if( m_splits.count( origPoly ) )
|
||||
{
|
||||
origPoly = origPoly->next;
|
||||
continue;
|
||||
}
|
||||
|
||||
while( marker != origPoly->prev )
|
||||
{
|
||||
if( m_splits.count( marker ) )
|
||||
{
|
||||
marker = marker->next;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Find a diagonal line that is wholly enclosed by the polygon interior
|
||||
if( origPoly->i != marker->i && goodSplit( origPoly, marker ) )
|
||||
{
|
||||
Vertex* newPoly = origPoly->split( marker );
|
||||
|
||||
m_splits.insert( origPoly );
|
||||
m_splits.insert( marker );
|
||||
origPoly->updateList();
|
||||
newPoly->updateList();
|
||||
|
||||
return ( earcutList( origPoly ) && earcutList( newPoly ) );
|
||||
earcutList( origPoly );
|
||||
earcutList( newPoly );
|
||||
return;
|
||||
}
|
||||
|
||||
marker = marker->next;
|
||||
|
@ -614,8 +587,6 @@ private:
|
|||
|
||||
origPoly = origPoly->next;
|
||||
} while( origPoly != start );
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -628,15 +599,10 @@ private:
|
|||
*/
|
||||
bool goodSplit( const Vertex* a, const Vertex* b ) const
|
||||
{
|
||||
bool a_on_edge = ( a->nextZ && *a == *a->nextZ ) || ( a->prevZ && *a == *a->prevZ );
|
||||
bool b_on_edge = ( b->nextZ && *b == *b->nextZ ) || ( b->prevZ && *b == *b->prevZ );
|
||||
bool no_intersect = a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon( a, b );
|
||||
bool local_split = locallyInside( a, b ) && locallyInside( b, a ) && middleInside( a, b );
|
||||
bool same_dir = area( a->prev, a, b->prev ) != 0.0 || area( a, b->prev, b ) != 0.0;
|
||||
bool has_len = ( *a == *b ) && area( a->prev, a, a->next ) > 0 && area( b->prev, b, b->next ) > 0;
|
||||
|
||||
|
||||
return no_intersect && local_split && ( same_dir || has_len ) && !a_on_edge && !b_on_edge;
|
||||
return a->next->i != b->i &&
|
||||
a->prev->i != b->i &&
|
||||
!intersectsPolygon( a, b ) &&
|
||||
locallyInside( a, b );
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -647,22 +613,6 @@ private:
|
|||
return ( q->y - p->y ) * ( r->x - q->x ) - ( q->x - p->x ) * ( r->y - q->y );
|
||||
}
|
||||
|
||||
constexpr int sign( double aVal ) const
|
||||
{
|
||||
return ( aVal > 0 ) - ( aVal < 0 );
|
||||
}
|
||||
|
||||
/**
|
||||
* If p, q, and r are collinear and r lies between p and q, then return true.
|
||||
*/
|
||||
constexpr bool overlapping( const Vertex* p, const Vertex* q, const Vertex* r ) const
|
||||
{
|
||||
return q->x <= std::max( p->x, r->x ) &&
|
||||
q->x >= std::min( p->x, r->x ) &&
|
||||
q->y <= std::max( p->y, r->y ) &&
|
||||
q->y >= std::min( p->y, r->y );
|
||||
}
|
||||
|
||||
/**
|
||||
* Check for intersection between two segments, end points included.
|
||||
*
|
||||
|
@ -673,28 +623,8 @@ private:
|
|||
if( ( *p1 == *q1 && *p2 == *q2 ) || ( *p1 == *q2 && *p2 == *q1 ) )
|
||||
return true;
|
||||
|
||||
int sign1 = sign( area( p1, q1, p2 ) );
|
||||
int sign2 = sign( area( p1, q1, q2 ) );
|
||||
int sign3 = sign( area( p2, q2, p1 ) );
|
||||
int sign4 = sign( area( p2, q2, q1 ) );
|
||||
|
||||
if( sign1 != sign2 && sign3 != sign4 )
|
||||
return true;
|
||||
|
||||
if( sign1 == 0 && overlapping( p1, p2, q1 ) )
|
||||
return true;
|
||||
|
||||
if( sign2 == 0 && overlapping( p1, q2, q1 ) )
|
||||
return true;
|
||||
|
||||
if( sign3 == 0 && overlapping( p2, p1, q2 ) )
|
||||
return true;
|
||||
|
||||
if( sign4 == 0 && overlapping( p2, q1, q2 ) )
|
||||
return true;
|
||||
|
||||
|
||||
return false;
|
||||
return ( area( p1, q1, p2 ) > 0 ) != ( area( p1, q1, q2 ) > 0 )
|
||||
&& ( area( p2, q2, p1 ) > 0 ) != ( area( p2, q2, q1 ) > 0 );
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -738,28 +668,6 @@ private:
|
|||
return area( a, b, a->prev ) < 0 || area( a, a->next, b ) < 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check to see if the segment halfway point between a and b is inside the polygon
|
||||
*/
|
||||
bool middleInside( const Vertex* a, const Vertex* b ) const
|
||||
{
|
||||
const Vertex* p = a;
|
||||
bool inside = false;
|
||||
double px = ( a->x + b->x ) / 2;
|
||||
double py = ( a->y + b->y ) / 2;
|
||||
|
||||
do
|
||||
{
|
||||
if( ( ( p->y > py ) != ( p->next->y > py ) )
|
||||
&& ( px < ( p->next->x - p->x ) * ( py - p->y ) / ( p->next->y - p->y ) + p->x ) )
|
||||
inside = !inside;
|
||||
|
||||
p = p->next;
|
||||
} while( p != a );
|
||||
|
||||
return inside;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create an entry in the vertices lookup and optionally inserts the newly created vertex
|
||||
* into an existing linked list.
|
||||
|
@ -790,10 +698,7 @@ private:
|
|||
|
||||
private:
|
||||
BOX2I m_bbox;
|
||||
double m_prefactor_x;
|
||||
double m_prefactor_y;
|
||||
std::deque<Vertex> m_vertices;
|
||||
std::set<Vertex*> m_splits;
|
||||
SHAPE_POLY_SET::TRIANGULATED_POLYGON& m_result;
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in New Issue