pcbnew: made zone filling algorithm thread-safe.

- moved zone filling algo outside ZONE_CONTAINER class
- const'ified methods that don't need to modify zone's properties
- cleanup: m_FillMode -> enum
This commit is contained in:
Tomasz Włostowski 2017-12-04 19:06:47 +01:00
parent 8df299a6bc
commit f34b86d39e
19 changed files with 920 additions and 1038 deletions

View File

@ -284,7 +284,6 @@ set( PCBNEW_CLASS_SRCS
zones_convert_to_polygons_aux_functions.cpp zones_convert_to_polygons_aux_functions.cpp
zones_by_polygon.cpp zones_by_polygon.cpp
zones_by_polygon_fill_functions.cpp zones_by_polygon_fill_functions.cpp
zone_filling_algorithm.cpp
zones_functions_for_undo_redo.cpp zones_functions_for_undo_redo.cpp
zones_test_and_combine_areas.cpp zones_test_and_combine_areas.cpp
class_footprint_wizard.cpp class_footprint_wizard.cpp

View File

@ -826,7 +826,7 @@ bool D_PAD::BuildPadDrillShapePolygon( SHAPE_POLY_SET& aCornerBuffer,
* change the shape by creating stubs and destroy their properties. * change the shape by creating stubs and destroy their properties.
*/ */
void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer, void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer,
D_PAD& aPad, const D_PAD& aPad,
int aThermalGap, int aThermalGap,
int aCopperThickness, int aCopperThickness,
int aMinThicknessValue, int aMinThicknessValue,

View File

@ -55,9 +55,8 @@ ZONE_CONTAINER::ZONE_CONTAINER( BOARD* aBoard ) :
{ {
m_CornerSelection = nullptr; // no corner is selected m_CornerSelection = nullptr; // no corner is selected
m_IsFilled = false; // fill status : true when the zone is filled m_IsFilled = false; // fill status : true when the zone is filled
m_FillMode = 0; // How to fill areas: 0 = use filled polygons, != 0 fill with segments m_FillMode = ZFM_POLYGONS;
m_priority = 0; m_priority = 0;
m_smoothedPoly = NULL;
m_cornerSmoothingType = ZONE_SETTINGS::SMOOTHING_NONE; m_cornerSmoothingType = ZONE_SETTINGS::SMOOTHING_NONE;
SetIsKeepout( false ); SetIsKeepout( false );
SetDoNotAllowCopperPour( false ); // has meaning only if m_isKeepout == true SetDoNotAllowCopperPour( false ); // has meaning only if m_isKeepout == true
@ -73,8 +72,6 @@ ZONE_CONTAINER::ZONE_CONTAINER( BOARD* aBoard ) :
ZONE_CONTAINER::ZONE_CONTAINER( const ZONE_CONTAINER& aZone ) : ZONE_CONTAINER::ZONE_CONTAINER( const ZONE_CONTAINER& aZone ) :
BOARD_CONNECTED_ITEM( aZone ) BOARD_CONNECTED_ITEM( aZone )
{ {
m_smoothedPoly = NULL;
// Should the copy be on the same net? // Should the copy be on the same net?
SetNetCode( aZone.GetNetCode() ); SetNetCode( aZone.GetNetCode() );
m_Poly = new SHAPE_POLY_SET( *aZone.m_Poly ); m_Poly = new SHAPE_POLY_SET( *aZone.m_Poly );
@ -143,7 +140,6 @@ ZONE_CONTAINER& ZONE_CONTAINER::operator=( const ZONE_CONTAINER& aOther )
ZONE_CONTAINER::~ZONE_CONTAINER() ZONE_CONTAINER::~ZONE_CONTAINER()
{ {
delete m_Poly; delete m_Poly;
delete m_smoothedPoly;
delete m_CornerSelection; delete m_CornerSelection;
} }
@ -499,7 +495,7 @@ void ZONE_CONTAINER::DrawFilledArea( EDA_DRAW_PANEL* panel,
} }
// Draw areas: // Draw areas:
if( m_FillMode == 0 && !outline_mode ) if( m_FillMode == ZFM_POLYGONS && !outline_mode )
GRPoly( panel->GetClipBox(), DC, CornersBuffer.size(), &CornersBuffer[0], GRPoly( panel->GetClipBox(), DC, CornersBuffer.size(), &CornersBuffer[0],
true, 0, color, color ); true, 0, color, color );
} }
@ -508,8 +504,8 @@ void ZONE_CONTAINER::DrawFilledArea( EDA_DRAW_PANEL* panel,
{ {
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ ) for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
{ {
wxPoint start = m_FillSegmList[ic].m_Start + offset; wxPoint start = (wxPoint) ( m_FillSegmList[ic].A + VECTOR2I(offset) );
wxPoint end = m_FillSegmList[ic].m_End + offset; wxPoint end = (wxPoint) ( m_FillSegmList[ic].B + VECTOR2I(offset) );
if( !displ_opts->m_DisplayPcbTrackFill || GetState( FORCE_SKETCH ) ) if( !displ_opts->m_DisplayPcbTrackFill || GetState( FORCE_SKETCH ) )
GRCSegm( panel->GetClipBox(), DC, start.x, start.y, end.x, end.y, GRCSegm( panel->GetClipBox(), DC, start.x, start.y, end.x, end.y,
@ -912,8 +908,8 @@ void ZONE_CONTAINER::Move( const wxPoint& offset )
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ ) for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
{ {
m_FillSegmList[ic].m_Start += offset; m_FillSegmList[ic].A += VECTOR2I(offset);
m_FillSegmList[ic].m_End += offset; m_FillSegmList[ic].B += VECTOR2I(offset);
} }
} }
@ -951,8 +947,12 @@ void ZONE_CONTAINER::Rotate( const wxPoint& centre, double angle )
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ ) for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
{ {
RotatePoint( &m_FillSegmList[ic].m_Start, centre, angle ); wxPoint a ( m_FillSegmList[ic].A );
RotatePoint( &m_FillSegmList[ic].m_End, centre, angle ); RotatePoint( &a, centre, angle );
m_FillSegmList[ic].A = a;
wxPoint b ( m_FillSegmList[ic].B );
RotatePoint( &b, centre, angle );
m_FillSegmList[ic].B = a;
} }
} }
@ -991,8 +991,8 @@ void ZONE_CONTAINER::Mirror( const wxPoint& mirror_ref )
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ ) for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
{ {
MIRROR( m_FillSegmList[ic].m_Start.y, mirror_ref.y ); MIRROR( m_FillSegmList[ic].A.y, mirror_ref.y );
MIRROR( m_FillSegmList[ic].m_End.y, mirror_ref.y ); MIRROR( m_FillSegmList[ic].B.y, mirror_ref.y );
} }
} }
@ -1317,3 +1317,32 @@ void ZONE_CONTAINER::CacheTriangulation()
{ {
m_FilledPolysList.CacheTriangulation(); m_FilledPolysList.CacheTriangulation();
} }
bool ZONE_CONTAINER::BuildSmoothedPoly( SHAPE_POLY_SET& aSmoothedPoly ) const
{
if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations do not like it ...
return false;
// Make a smoothed polygon out of the user-drawn polygon if required
switch( m_cornerSmoothingType )
{
case ZONE_SETTINGS::SMOOTHING_CHAMFER:
aSmoothedPoly = m_Poly->Chamfer( m_cornerRadius );
break;
case ZONE_SETTINGS::SMOOTHING_FILLET:
aSmoothedPoly = m_Poly->Fillet( m_cornerRadius, m_ArcToSegmentsCount );
break;
default:
// Acute angles between adjacent edges can create issues in calculations,
// in inflate/deflate outlines transforms, especially when the angle is very small.
// We can avoid issues by creating a very small chamfer which remove acute angles,
// or left it without chamfer and use only CPOLYGONS_LIST::InflateOutline to create
// clearance areas
aSmoothedPoly = m_Poly->Chamfer( Millimeter2iu( 0.0 ) );
break;
}
return true;
};

View File

@ -49,25 +49,7 @@ class BOARD;
class ZONE_CONTAINER; class ZONE_CONTAINER;
class MSG_PANEL_ITEM; class MSG_PANEL_ITEM;
typedef std::vector<SEG> ZONE_SEGMENT_FILL;
/**
* Struct SEGMENT
* is a simple container used when filling areas with segments
*/
struct SEGMENT
{
wxPoint m_Start; // starting point of a segment
wxPoint m_End; // ending point of a segment
SEGMENT() {}
SEGMENT( const wxPoint& aStart, const wxPoint& aEnd )
{
m_Start = aStart;
m_End = aEnd;
}
};
/** /**
* Class ZONE_CONTAINER * Class ZONE_CONTAINER
@ -196,9 +178,8 @@ public:
virtual void ViewGetLayers( int aLayers[], int& aCount ) const override; virtual void ViewGetLayers( int aLayers[], int& aCount ) const override;
/// How to fill areas: 0 = use filled polygons, 1 => fill with segments. void SetFillMode( ZONE_FILL_MODE aFillMode ) { m_FillMode = aFillMode; }
void SetFillMode( int aFillMode ) { m_FillMode = aFillMode; } ZONE_FILL_MODE GetFillMode() const { return m_FillMode; }
int GetFillMode() const { return m_FillMode; }
void SetThermalReliefGap( int aThermalReliefGap ) { m_ThermalReliefGap = aThermalReliefGap; } void SetThermalReliefGap( int aThermalReliefGap ) { m_ThermalReliefGap = aThermalReliefGap; }
int GetThermalReliefGap( D_PAD* aPad = NULL ) const; int GetThermalReliefGap( D_PAD* aPad = NULL ) const;
@ -256,8 +237,8 @@ public:
int GetLocalFlags() const { return m_localFlgs; } int GetLocalFlags() const { return m_localFlgs; }
void SetLocalFlags( int aFlags ) { m_localFlgs = aFlags; } void SetLocalFlags( int aFlags ) { m_localFlgs = aFlags; }
std::vector <SEGMENT>& FillSegments() { return m_FillSegmList; } ZONE_SEGMENT_FILL& FillSegments() { return m_FillSegmList; }
const std::vector <SEGMENT>& FillSegments() const { return m_FillSegmList; } const ZONE_SEGMENT_FILL& FillSegments() const { return m_FillSegmList; }
SHAPE_POLY_SET* Outline() { return m_Poly; } SHAPE_POLY_SET* Outline() { return m_Poly; }
const SHAPE_POLY_SET* Outline() const { return const_cast< SHAPE_POLY_SET* >( m_Poly ); } const SHAPE_POLY_SET* Outline() const { return const_cast< SHAPE_POLY_SET* >( m_Poly ); }
@ -306,42 +287,6 @@ public:
void TransformSolidAreasShapesToPolygonSet( SHAPE_POLY_SET& aCornerBuffer, void TransformSolidAreasShapesToPolygonSet( SHAPE_POLY_SET& aCornerBuffer,
int aCircleToSegmentsCount, int aCircleToSegmentsCount,
double aCorrectionFactor ) const; double aCorrectionFactor ) const;
/**
* Build the filled solid areas polygons from zone outlines (stored in m_Poly)
* The solid areas can be more than one on copper layers, and do not have holes
( holes are linked by overlapping segments to the main outline)
* in order to have drawable (and plottable) filled polygons.
* @return true if OK, false if the solid polygons cannot be built
* @param aPcb: the current board (can be NULL for non copper zones)
* @param aOutlineBuffer: A reference to a SHAPE_POLY_SET buffer to store polygons, or NULL.
* if NULL (default):
* - m_FilledPolysList is used to store solid areas polygons.
* - on copper layers, tracks and other items shapes of other nets are
* removed from solid areas
* if not null:
* Only the zone outline (with holes, if any) is stored in aOutlineBuffer
* with holes linked. Therefore only one polygon is created
*
* When aOutlineBuffer is not null, his function calls
* AddClearanceAreasPolygonsToPolysList() to add holes for pads and tracks
* and other items not in net.
*/
bool BuildFilledSolidAreasPolygons( BOARD* aPcb, SHAPE_POLY_SET* aOutlineBuffer = NULL );
/**
* Function ComputeRawFilledAreas
* Add non copper areas polygons (pads and tracks with clearance)
* to a filled copper area
* used in BuildFilledSolidAreasPolygons when calculating filled areas in a zone
* Non copper areas are pads and track and their clearance area
* The filled copper area must be computed before
* BuildFilledSolidAreasPolygons() call this function just after creating the
* filled copper area polygon (without clearance areas
* @param aPcb: the current board
* _NG version uses SHAPE_POLY_SET instead of Boost.Polygon
*/
void ComputeRawFilledAreas( BOARD* aPcb );
/** /**
* Function TransformOutlinesShapeWithClearanceToPolygon * Function TransformOutlinesShapeWithClearanceToPolygon
@ -359,7 +304,7 @@ public:
*/ */
void TransformOutlinesShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, void TransformOutlinesShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer,
int aMinClearanceValue, int aMinClearanceValue,
bool aUseNetClearance ); bool aUseNetClearance ) const;
void TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, void TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer,
int aClearanceValue, int aClearanceValue,
@ -409,15 +354,6 @@ public:
*/ */
bool HitTest( const EDA_RECT& aRect, bool aContained = true, int aAccuracy = 0 ) const override; bool HitTest( const EDA_RECT& aRect, bool aContained = true, int aAccuracy = 0 ) const override;
/**
* Function FillZoneAreasWithSegments
* Fill sub areas in a zone with segments with m_ZoneMinThickness width
* A scan is made line per line, on the whole filled areas, with a step of m_ZoneMinThickness.
* all intersecting points with the horizontal infinite line and polygons to fill are calculated
* a list of SEGZONE items is built, line per line
* @return true if success, false on error
*/
bool FillZoneAreasWithSegments();
/** /**
* Function UnFill * Function UnFill
@ -610,27 +546,31 @@ public:
void CacheTriangulation(); void CacheTriangulation();
/** /**
* Function AddFilledPolysList * Function SetFilledPolysList
* sets the list of filled polygons. * sets the list of filled polygons.
*/ */
void AddFilledPolysList( SHAPE_POLY_SET& aPolysList ) void SetFilledPolysList( SHAPE_POLY_SET& aPolysList )
{ {
m_FilledPolysList = aPolysList; m_FilledPolysList = aPolysList;
} }
/**
* Function SetFilledPolysList
* sets the list of filled polygons.
*/
void SetRawPolysList( SHAPE_POLY_SET& aPolysList )
{
m_RawPolysList = aPolysList;
}
/** /**
* Function GetSmoothedPoly * Function GetSmoothedPoly
* returns a pointer to the corner-smoothed version of * returns a pointer to the corner-smoothed version of
* m_Poly if it exists, otherwise it returns m_Poly. * m_Poly if it exists, otherwise it returns m_Poly.
* @return SHAPE_POLY_SET* - pointer to the polygon. * @return SHAPE_POLY_SET* - pointer to the polygon.
*/ */
SHAPE_POLY_SET* GetSmoothedPoly() const bool BuildSmoothedPoly( SHAPE_POLY_SET& aSmoothedPoly ) const;
{
if( m_smoothedPoly )
return m_smoothedPoly;
else
return m_Poly;
};
void SetCornerSmoothingType( int aType ) { m_cornerSmoothingType = aType; }; void SetCornerSmoothingType( int aType ) { m_cornerSmoothingType = aType; };
@ -647,19 +587,9 @@ public:
*/ */
void AddPolygon( std::vector< wxPoint >& aPolygon ); void AddPolygon( std::vector< wxPoint >& aPolygon );
/** void SetFillSegments( const ZONE_SEGMENT_FILL& aSegments )
* add a polygon to the zone filled areas list.
* these polygons have no hole, therefore any added polygon is a new
* filled area
*/
void AddFilledPolygon( SHAPE_POLY_SET& aPolygon )
{ {
m_FilledPolysList.Append( aPolygon ); m_FillSegmList = aSegments;
}
void AddFillSegments( std::vector< SEGMENT >& aSegments )
{
m_FillSegmList.insert( m_FillSegmList.end(), aSegments.begin(), aSegments.end() );
} }
SHAPE_POLY_SET& RawPolysList() SHAPE_POLY_SET& RawPolysList()
@ -743,10 +673,8 @@ public:
virtual void SwapData( BOARD_ITEM* aImage ) override; virtual void SwapData( BOARD_ITEM* aImage ) override;
private: private:
void buildFeatureHoleList( BOARD* aPcb, SHAPE_POLY_SET& aFeatures );
SHAPE_POLY_SET* m_Poly; ///< Outline of the zone. SHAPE_POLY_SET* m_Poly; ///< Outline of the zone.
SHAPE_POLY_SET* m_smoothedPoly; // Corner-smoothed version of m_Poly
int m_cornerSmoothingType; int m_cornerSmoothingType;
unsigned int m_cornerRadius; unsigned int m_cornerRadius;
@ -788,8 +716,8 @@ private:
int m_ThermalReliefCopperBridge; int m_ThermalReliefCopperBridge;
/// How to fill areas: 0 => use filled polygons, 1 => fill with segments. /// How to fill areas: ZFM_POLYGONS => use filled polygons, ZFM_SEGMENTS => fill with segments.
int m_FillMode; ZONE_FILL_MODE m_FillMode;
/// The index of the corner being moved or nullptr if no corner is selected. /// The index of the corner being moved or nullptr if no corner is selected.
SHAPE_POLY_SET::VERTEX_INDEX* m_CornerSelection; SHAPE_POLY_SET::VERTEX_INDEX* m_CornerSelection;
@ -800,7 +728,7 @@ private:
/** Segments used to fill the zone (#m_FillMode ==1 ), when fill zone by segment is used. /** Segments used to fill the zone (#m_FillMode ==1 ), when fill zone by segment is used.
* In this case the segments have #m_ZoneMinThickness width. * In this case the segments have #m_ZoneMinThickness width.
*/ */
std::vector <SEGMENT> m_FillSegmList; ZONE_SEGMENT_FILL m_FillSegmList;
/* set of filled polygons used to draw a zone as a filled area. /* set of filled polygons used to draw a zone as a filled area.
* from outlines (m_Poly) but unlike m_Poly these filled polygons have no hole * from outlines (m_Poly) but unlike m_Poly these filled polygons have no hole

View File

@ -38,7 +38,7 @@
ZONE_SETTINGS::ZONE_SETTINGS() ZONE_SETTINGS::ZONE_SETTINGS()
{ {
m_ZonePriority = 0; m_ZonePriority = 0;
m_FillMode = 0; // Mode for filling zone : 1 use segments, 0 use polygons m_FillMode = ZFM_POLYGONS; // Mode for filling zone : 1 use segments, 0 use polygons
// Zone clearance value // Zone clearance value
m_ZoneClearance = Mils2iu( ZONE_CLEARANCE_MIL ); m_ZoneClearance = Mils2iu( ZONE_CLEARANCE_MIL );
// Min thickness value in filled areas (this is the minimum width of copper to fill solid areas) : // Min thickness value in filled areas (this is the minimum width of copper to fill solid areas) :

View File

@ -32,12 +32,13 @@
#include "zones.h" #include "zones.h"
class ZONE_CONTAINER;
#define MAX_ZONE_CORNER_RADIUS_MILS 400 #define MAX_ZONE_CORNER_RADIUS_MILS 400
enum ZONE_FILL_MODE
{
ZFM_POLYGONS = 0, // fill zone with polygons
ZFM_SEGMENTS = 1 // fill zone with segments (legacy)
};
/** /**
* Class ZONE_SETTINGS * Class ZONE_SETTINGS
@ -55,8 +56,7 @@ public:
SMOOTHING_LAST SMOOTHING_LAST
}; };
/// Mode for filling zone : 1 use segments, 0 use polygons ZONE_FILL_MODE m_FillMode;
int m_FillMode;
int m_ZonePriority; ///< Priority (0 ... N) of the zone int m_ZonePriority; ///< Priority (0 ... N) of the zone

View File

@ -172,7 +172,7 @@ void DIALOG_COPPER_ZONE::initDialog()
if( m_settings.m_Zone_45_Only ) if( m_settings.m_Zone_45_Only )
m_OrientEdgesOpt->SetSelection( 1 ); m_OrientEdgesOpt->SetSelection( 1 );
m_FillModeCtrl->SetSelection( m_settings.m_FillMode ? 1 : 0 ); m_FillModeCtrl->SetSelection( m_settings.m_FillMode == ZFM_SEGMENTS ? 1 : 0 );
AddUnitSymbol( *m_ClearanceValueTitle, g_UserUnit ); AddUnitSymbol( *m_ClearanceValueTitle, g_UserUnit );
msg = StringFromValue( g_UserUnit, m_settings.m_ZoneClearance ); msg = StringFromValue( g_UserUnit, m_settings.m_ZoneClearance );
@ -381,7 +381,7 @@ bool DIALOG_COPPER_ZONE::AcceptOptions( bool aPromptForErrors, bool aUseExportab
} }
m_netNameShowFilter = m_ShowNetNameFilter->GetValue(); m_netNameShowFilter = m_ShowNetNameFilter->GetValue();
m_settings.m_FillMode = (m_FillModeCtrl->GetSelection() == 0) ? 0 : 1; m_settings.m_FillMode = (m_FillModeCtrl->GetSelection() == 0) ? ZFM_POLYGONS : ZFM_SEGMENTS;
wxString txtvalue = m_ZoneClearanceCtrl->GetValue(); wxString txtvalue = m_ZoneClearanceCtrl->GetValue();
m_settings.m_ZoneClearance = ValueFromString( g_UserUnit, txtvalue ); m_settings.m_ZoneClearance = ValueFromString( g_UserUnit, txtvalue );

View File

@ -198,7 +198,7 @@ void DIALOG_NON_COPPER_ZONES_EDITOR::OnOkClick( wxCommandEvent& event )
return; return;
} }
m_settings.m_FillMode = 0; // Use always polygon fill mode m_settings.m_FillMode = ZFM_POLYGONS; // Use always polygon fill mode
switch( m_OutlineAppearanceCtrl->GetSelection() ) switch( m_OutlineAppearanceCtrl->GetSelection() )
{ {

View File

@ -49,6 +49,8 @@
#include "wxPcbStruct.h" #include "wxPcbStruct.h"
#include "../../kicad/kicad.h" #include "../../kicad/kicad.h"
#include <zone_filler.h>
// minimum width (mm) of a VRML line // minimum width (mm) of a VRML line
#define MIN_VRML_LINEWIDTH 0.12 #define MIN_VRML_LINEWIDTH 0.12
@ -951,10 +953,13 @@ static void export_vrml_zones( MODEL_VRML& aModel, BOARD* aPcb )
if( !GetLayer( aModel, zone->GetLayer(), &vl ) ) if( !GetLayer( aModel, zone->GetLayer(), &vl ) )
continue; continue;
// fixme: this modifies the board where it shouldn't, but I don't have the time
// to clean this up - TW
if( !zone->IsFilled() ) if( !zone->IsFilled() )
{ {
zone->SetFillMode( 0 ); // use filled polygons ZONE_FILLER filler( aPcb );
zone->BuildFilledSolidAreasPolygons( aPcb ); zone->SetFillMode( ZFM_POLYGONS ); // use filled polygons
filler.Fill( { zone } );
} }
const SHAPE_POLY_SET& poly = zone->GetFilledPolysList(); const SHAPE_POLY_SET& poly = zone->GetFilledPolysList();

View File

@ -1869,17 +1869,17 @@ void PCB_IO::format( ZONE_CONTAINER* aZone, int aNestLevel ) const
} }
// Save the filling segments list // Save the filling segments list
const std::vector< SEGMENT >& segs = aZone->FillSegments(); const auto& segs = aZone->FillSegments();
if( segs.size() ) if( segs.size() )
{ {
m_out->Print( aNestLevel+1, "(fill_segments\n" ); m_out->Print( aNestLevel+1, "(fill_segments\n" );
for( std::vector< SEGMENT >::const_iterator it = segs.begin(); it != segs.end(); ++it ) for( ZONE_SEGMENT_FILL::const_iterator it = segs.begin(); it != segs.end(); ++it )
{ {
m_out->Print( aNestLevel+2, "(pts (xy %s) (xy %s))\n", m_out->Print( aNestLevel+2, "(pts (xy %s) (xy %s))\n",
FMT_IU( it->m_Start ).c_str(), FMT_IU( wxPoint( it->A ) ).c_str(),
FMT_IU( it->m_End ).c_str() ); FMT_IU( wxPoint( it->B ) ).c_str() );
} }
m_out->Print( aNestLevel+1, ")\n" ); m_out->Print( aNestLevel+1, ")\n" );

View File

@ -2613,7 +2613,7 @@ void LEGACY_PLUGIN::loadZONE_CONTAINER()
BIU thermalReliefGap = biuParse( data += 2 , &data ); // +=2 for " F" BIU thermalReliefGap = biuParse( data += 2 , &data ); // +=2 for " F"
BIU thermalReliefCopperBridge = biuParse( data ); BIU thermalReliefCopperBridge = biuParse( data );
zc->SetFillMode( fillmode ? 1 : 0 ); zc->SetFillMode( fillmode ? ZFM_SEGMENTS : ZFM_POLYGONS );
// @todo ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF: don't really want pcbnew.h // @todo ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF: don't really want pcbnew.h
// in here, after all, its a PLUGIN and global data is evil. // in here, after all, its a PLUGIN and global data is evil.
@ -2690,7 +2690,7 @@ void LEGACY_PLUGIN::loadZONE_CONTAINER()
makeNewOutline = end_contour; makeNewOutline = end_contour;
} }
zc->AddFilledPolysList( polysList ); zc->SetFilledPolysList( polysList );
} }
else if( TESTLINE( "$FILLSEGMENTS" ) ) else if( TESTLINE( "$FILLSEGMENTS" ) )
@ -2706,7 +2706,7 @@ void LEGACY_PLUGIN::loadZONE_CONTAINER()
BIU ex = biuParse( data, &data ); BIU ex = biuParse( data, &data );
BIU ey = biuParse( data ); BIU ey = biuParse( data );
zc->FillSegments().push_back( SEGMENT( wxPoint( sx, sy ), wxPoint( ex, ey ) ) ); zc->FillSegments().push_back( SEG( VECTOR2I( sx, sy ), VECTOR2I( ex, ey ) ) );
} }
} }
@ -2724,7 +2724,7 @@ void LEGACY_PLUGIN::loadZONE_CONTAINER()
{ {
if( !zc->IsOnCopperLayer() ) if( !zc->IsOnCopperLayer() )
{ {
zc->SetFillMode( 0 ); zc->SetFillMode( ZFM_POLYGONS );
zc->SetNetCode( NETINFO_LIST::UNCONNECTED ); zc->SetNetCode( NETINFO_LIST::UNCONNECTED );
} }

View File

@ -2948,7 +2948,7 @@ ZONE_CONTAINER* PCB_PARSER::parseZONE_CONTAINER()
Expecting( "segment or polygon" ); Expecting( "segment or polygon" );
// @todo Create an enum for fill modes. // @todo Create an enum for fill modes.
zone->SetFillMode( token == T_polygon ? 0 : 1 ); zone->SetFillMode( token == T_polygon ? ZFM_POLYGONS : ZFM_SEGMENTS );
NeedRIGHT(); NeedRIGHT();
break; break;
@ -3092,7 +3092,7 @@ ZONE_CONTAINER* PCB_PARSER::parseZONE_CONTAINER()
case T_fill_segments: case T_fill_segments:
{ {
std::vector< SEGMENT > segs; ZONE_SEGMENT_FILL segs;
for( token = NextTok(); token != T_RIGHT; token = NextTok() ) for( token = NextTok(); token != T_RIGHT; token = NextTok() )
{ {
@ -3104,12 +3104,12 @@ ZONE_CONTAINER* PCB_PARSER::parseZONE_CONTAINER()
if( token != T_pts ) if( token != T_pts )
Expecting( T_pts ); Expecting( T_pts );
SEGMENT segment( parseXY(), parseXY() ); SEG segment( parseXY(), parseXY() );
NeedRIGHT(); NeedRIGHT();
segs.push_back( segment ); segs.push_back( segment );
} }
zone->AddFillSegments( segs ); zone->SetFillSegments( segs );
} }
break; break;
@ -3123,7 +3123,7 @@ ZONE_CONTAINER* PCB_PARSER::parseZONE_CONTAINER()
{ {
if( !zone->IsOnCopperLayer() ) if( !zone->IsOnCopperLayer() )
{ {
zone->SetFillMode( 0 ); zone->SetFillMode( ZFM_POLYGONS );
zone->SetNetCode( NETINFO_LIST::UNCONNECTED ); zone->SetNetCode( NETINFO_LIST::UNCONNECTED );
} }
@ -3132,7 +3132,7 @@ ZONE_CONTAINER* PCB_PARSER::parseZONE_CONTAINER()
} }
if( !pts.IsEmpty() ) if( !pts.IsEmpty() )
zone->AddFilledPolysList( pts ); zone->SetFilledPolysList( pts );
// Ensure keepout and non copper zones do not have a net // Ensure keepout and non copper zones do not have a net
// (which have no sense for these zones) // (which have no sense for these zones)

View File

@ -875,7 +875,7 @@ void PlotSolderMaskLayer( BOARD *aBoard, PLOTTER* aPlotter,
areas.BooleanAdd( initialPolys, SHAPE_POLY_SET::PM_FAST ); areas.BooleanAdd( initialPolys, SHAPE_POLY_SET::PM_FAST );
areas.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); areas.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
zone.AddFilledPolysList( areas ); zone.SetFilledPolysList( areas );
itemplotter.PlotFilledAreas( &zone ); itemplotter.PlotFilledAreas( &zone );
} }

View File

@ -687,8 +687,8 @@ void BRDITEMS_PLOTTER::PlotFilledAreas( ZONE_CONTAINER* aZone )
{ {
for( unsigned iseg = 0; iseg < aZone->FillSegments().size(); iseg++ ) for( unsigned iseg = 0; iseg < aZone->FillSegments().size(); iseg++ )
{ {
wxPoint start = aZone->FillSegments()[iseg].m_Start; wxPoint start = (wxPoint) aZone->FillSegments()[iseg].A;
wxPoint end = aZone->FillSegments()[iseg].m_End; wxPoint end = (wxPoint) aZone->FillSegments()[iseg].B;
m_plotter->ThickSegment( start, end, m_plotter->ThickSegment( start, end,
aZone->GetMinThickness(), aZone->GetMinThickness(),
GetPlotMode(), &gbr_metadata ); GetPlotMode(), &gbr_metadata );

View File

@ -30,21 +30,49 @@
#include <class_board.h> #include <class_board.h>
#include <class_zone.h> #include <class_zone.h>
#include <class_module.h> #include <class_module.h>
#include <class_edge_mod.h>
#include <class_drawsegment.h>
#include <class_track.h>
#include <class_pcb_text.h>
#include <class_pcb_target.h>
#include <connectivity_data.h> #include <connectivity_data.h>
#include <board_commit.h> #include <board_commit.h>
#include <widgets/progress_reporter.h> #include <widgets/progress_reporter.h>
#include <geometry/shape_poly_set.h>
#include <geometry/shape_file_io.h>
#include <geometry/convex_hull.h>
#include "zone_filler.h" #include "zone_filler.h"
#ifdef USE_OPENMP #ifdef USE_OPENMP
#include <omp.h> #include <omp.h>
#endif /* USE_OPENMP */ #endif /* USE_OPENMP */
extern void BuildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuffer,
const BOARD* aPcb,
const ZONE_CONTAINER* aZone,
double aArcCorrection,
double aRoundPadThermalRotation );
extern void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer,
const D_PAD& aPad,
int aThermalGap,
int aCopperThickness,
int aMinThicknessValue,
int aCircleToSegmentsCount,
double aCorrectionFactor,
double aThermalRot );
static double s_thermalRot = 450; // angle of stubs in thermal reliefs for round pads
static const bool s_DumpZonesWhenFilling = false;
ZONE_FILLER::ZONE_FILLER( BOARD* aBoard, COMMIT* aCommit ) : ZONE_FILLER::ZONE_FILLER( BOARD* aBoard, COMMIT* aCommit ) :
m_commit( aCommit ),
m_board( aBoard ), m_board( aBoard ),
m_commit( aCommit ),
m_progressReporter( nullptr ) m_progressReporter( nullptr )
{ {
} }
@ -86,7 +114,7 @@ void ZONE_FILLER::Fill( std::vector<ZONE_CONTAINER*> aZones )
for( int i = 0; i < toFill.size(); i++ ) for( int i = 0; i < toFill.size(); i++ )
{ {
if (m_commit) if( m_commit )
{ {
m_commit->Modify( toFill[i].m_zone ); m_commit->Modify( toFill[i].m_zone );
} }
@ -103,7 +131,14 @@ void ZONE_FILLER::Fill( std::vector<ZONE_CONTAINER*> aZones )
#endif #endif
for( int i = 0; i < toFill.size(); i++ ) for( int i = 0; i < toFill.size(); i++ )
{ {
toFill[i].m_zone->BuildFilledSolidAreasPolygons( m_board ); SHAPE_POLY_SET rawPolys, finalPolys;
ZONE_SEGMENT_FILL segFill;
fillSingleZone ( toFill[i].m_zone, rawPolys, finalPolys, segFill );
toFill[i].m_zone->SetRawPolysList( rawPolys );
toFill[i].m_zone->SetFilledPolysList( finalPolys );
toFill[i].m_zone->SetFillSegments( segFill );
toFill[i].m_zone->SetIsFilled( true );
if( m_progressReporter ) if( m_progressReporter )
{ {
@ -130,7 +165,7 @@ void ZONE_FILLER::Fill( std::vector<ZONE_CONTAINER*> aZones )
poly.DeletePolygon( idx ); poly.DeletePolygon( idx );
} }
zone.m_zone->AddFilledPolysList( poly ); zone.m_zone->SetFilledPolysList( poly );
} }
if( m_progressReporter ) if( m_progressReporter )
@ -150,6 +185,7 @@ void ZONE_FILLER::Fill( std::vector<ZONE_CONTAINER*> aZones )
{ {
m_progressReporter->AdvanceProgress(); m_progressReporter->AdvanceProgress();
} }
toFill[i].m_zone->CacheTriangulation(); toFill[i].m_zone->CacheTriangulation();
} }
@ -164,10 +200,700 @@ void ZONE_FILLER::Fill( std::vector<ZONE_CONTAINER*> aZones )
if( m_commit ) if( m_commit )
{ {
m_commit->Push( _( "Fill Zone(s)" ), false ); m_commit->Push( _( "Fill Zone(s)" ), false );
} else { }
else
{
for( int i = 0; i < toFill.size(); i++ ) for( int i = 0; i < toFill.size(); i++ )
{ {
connectivity->Update( toFill[i].m_zone ); connectivity->Update( toFill[i].m_zone );
} }
} }
} }
void ZONE_FILLER::buildZoneFeatureHoleList( const ZONE_CONTAINER* aZone,
SHAPE_POLY_SET& aFeatures ) const
{
int segsPerCircle;
double correctionFactor;
// Set the number of segments in arc approximations
if( aZone->GetArcSegmentCount() == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF )
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF;
else
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF;
/* calculates the coeff to compensate radius reduction of holes clearance
* due to the segment approx.
* For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2)
* s_Correction is 1 /cos( PI/s_CircleToSegmentsCount )
*/
correctionFactor = 1.0 / cos( M_PI / (double) segsPerCircle );
aFeatures.RemoveAllContours();
int outline_half_thickness = aZone->GetMinThickness() / 2;
// When removing holes, the holes must be expanded by outline_half_thickness
// to take in account the thickness of the zone outlines
int zone_clearance = aZone->GetClearance() + outline_half_thickness;
// When holes are created by non copper items (edge cut items), use only
// the m_ZoneClearance parameter (zone clearance with no netclass clearance)
int zone_to_edgecut_clearance = aZone->GetZoneClearance() + outline_half_thickness;
/* store holes (i.e. tracks and pads areas as polygons outlines)
* in a polygon list
*/
/* items ouside the zone bounding box are skipped
* the bounding box is the zone bounding box + the biggest clearance found in Netclass list
*/
EDA_RECT item_boundingbox;
EDA_RECT zone_boundingbox = aZone->GetBoundingBox();
int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue();
biggest_clearance = std::max( biggest_clearance, zone_clearance );
zone_boundingbox.Inflate( biggest_clearance );
/*
* First : Add pads. Note: pads having the same net as zone are left in zone.
* Thermal shapes will be created later if necessary
*/
/* Use a dummy pad to calculate hole clearance when a pad is not on all copper layers
* and this pad has a hole
* This dummy pad has the size and shape of the hole
* Therefore, this dummy pad is a circle or an oval.
* A pad must have a parent because some functions expect a non null parent
* to find the parent board, and some other data
*/
MODULE dummymodule( m_board ); // Creates a dummy parent
D_PAD dummypad( &dummymodule );
for( MODULE* module = m_board->m_Modules; module; module = module->Next() )
{
D_PAD* nextpad;
for( D_PAD* pad = module->PadsList(); pad != NULL; pad = nextpad )
{
nextpad = pad->Next(); // pad pointer can be modified by next code, so
// calculate the next pad here
if( !pad->IsOnLayer( aZone->GetLayer() ) )
{
/* Test for pads that are on top or bottom only and have a hole.
* There are curious pads but they can be used for some components that are
* inside the board (in fact inside the hole. Some photo diodes and Leds are
* like this)
*/
if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 )
continue;
// Use a dummy pad to calculate a hole shape that have the same dimension as
// the pad hole
dummypad.SetSize( pad->GetDrillSize() );
dummypad.SetOrientation( pad->GetOrientation() );
dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ?
PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
dummypad.SetPosition( pad->GetPosition() );
pad = &dummypad;
}
// Note: netcode <=0 means not connected item
if( ( pad->GetNetCode() != aZone->GetNetCode() ) || ( pad->GetNetCode() <= 0 ) )
{
int item_clearance = pad->GetClearance() + outline_half_thickness;
item_boundingbox = pad->GetBoundingBox();
item_boundingbox.Inflate( item_clearance );
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
int clearance = std::max( zone_clearance, item_clearance );
// PAD_SHAPE_CUSTOM can have a specific keepout, to avoid to break the shape
if( pad->GetShape() == PAD_SHAPE_CUSTOM
&& pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
// the pad shape in zone can be its convex hull or
// the shape itself
SHAPE_POLY_SET outline( pad->GetCustomShapeAsPolygon() );
outline.Inflate( KiROUND( clearance * correctionFactor ), segsPerCircle );
pad->CustomShapeAsPolygonToBoardPosition( &outline,
pad->GetPosition(), pad->GetOrientation() );
if( pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
std::vector<wxPoint> convex_hull;
BuildConvexHull( convex_hull, outline );
aFeatures.NewOutline();
for( unsigned ii = 0; ii < convex_hull.size(); ++ii )
aFeatures.Append( convex_hull[ii] );
}
else
aFeatures.Append( outline );
}
else
pad->TransformShapeWithClearanceToPolygon( aFeatures,
clearance,
segsPerCircle,
correctionFactor );
}
continue;
}
// Pads are removed from zone if the setup is PAD_ZONE_CONN_NONE
// or if they have a custom shape, because a thermal relief will break
// the shape
if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_NONE
|| pad->GetShape() == PAD_SHAPE_CUSTOM )
{
int gap = zone_clearance;
int thermalGap = aZone->GetThermalReliefGap( pad );
gap = std::max( gap, thermalGap );
item_boundingbox = pad->GetBoundingBox();
item_boundingbox.Inflate( gap );
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
// PAD_SHAPE_CUSTOM has a specific keepout, to avoid to break the shape
// the pad shape in zone can be its convex hull or the shape itself
if( pad->GetShape() == PAD_SHAPE_CUSTOM
&& pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
// the pad shape in zone can be its convex hull or
// the shape itself
SHAPE_POLY_SET outline( pad->GetCustomShapeAsPolygon() );
outline.Inflate( KiROUND( gap * correctionFactor ), segsPerCircle );
pad->CustomShapeAsPolygonToBoardPosition( &outline,
pad->GetPosition(), pad->GetOrientation() );
std::vector<wxPoint> convex_hull;
BuildConvexHull( convex_hull, outline );
aFeatures.NewOutline();
for( unsigned ii = 0; ii < convex_hull.size(); ++ii )
aFeatures.Append( convex_hull[ii] );
}
else
pad->TransformShapeWithClearanceToPolygon( aFeatures,
gap, segsPerCircle, correctionFactor );
}
}
}
}
/* Add holes (i.e. tracks and vias areas as polygons outlines)
* in cornerBufferPolysToSubstract
*/
for( auto track : m_board->Tracks() )
{
if( !track->IsOnLayer( aZone->GetLayer() ) )
continue;
if( track->GetNetCode() == aZone->GetNetCode() && ( aZone->GetNetCode() != 0) )
continue;
int item_clearance = track->GetClearance() + outline_half_thickness;
item_boundingbox = track->GetBoundingBox();
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
int clearance = std::max( zone_clearance, item_clearance );
track->TransformShapeWithClearanceToPolygon( aFeatures,
clearance,
segsPerCircle,
correctionFactor );
}
}
/* Add module edge items that are on copper layers
* Pcbnew allows these items to be on copper layers in microwave applictions
* This is a bad thing, but must be handled here, until a better way is found
*/
for( auto module : m_board->Modules() )
{
for( auto item : module->GraphicalItems() )
{
if( !item->IsOnLayer( aZone->GetLayer() ) && !item->IsOnLayer( Edge_Cuts ) )
continue;
if( item->Type() != PCB_MODULE_EDGE_T )
continue;
item_boundingbox = item->GetBoundingBox();
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
int zclearance = zone_clearance;
if( item->IsOnLayer( Edge_Cuts ) )
// use only the m_ZoneClearance, not the clearance using
// the netclass value, because we do not have a copper item
zclearance = zone_to_edgecut_clearance;
( (EDGE_MODULE*) item )->TransformShapeWithClearanceToPolygon(
aFeatures, zclearance, segsPerCircle, correctionFactor );
}
}
}
// Add graphic items (copper texts) and board edges
// Currently copper texts have no net, so only the zone_clearance
// is used.
for( auto item : m_board->Drawings() )
{
if( item->GetLayer() != aZone->GetLayer() && item->GetLayer() != Edge_Cuts )
continue;
int zclearance = zone_clearance;
if( item->GetLayer() == Edge_Cuts )
// use only the m_ZoneClearance, not the clearance using
// the netclass value, because we do not have a copper item
zclearance = zone_to_edgecut_clearance;
switch( item->Type() )
{
case PCB_LINE_T:
( (DRAWSEGMENT*) item )->TransformShapeWithClearanceToPolygon(
aFeatures,
zclearance, segsPerCircle, correctionFactor );
break;
case PCB_TEXT_T:
( (TEXTE_PCB*) item )->TransformBoundingBoxWithClearanceToPolygon(
aFeatures, zclearance );
break;
default:
break;
}
}
// Add zones outlines having an higher priority and keepout
for( int ii = 0; ii < m_board->GetAreaCount(); ii++ )
{
ZONE_CONTAINER* zone = m_board->GetArea( ii );
// If the zones share no common layers
if( !aZone->CommonLayerExists( zone->GetLayerSet() ) )
continue;
if( !zone->GetIsKeepout() && zone->GetPriority() <= aZone->GetPriority() )
continue;
if( zone->GetIsKeepout() && !zone->GetDoNotAllowCopperPour() )
continue;
// A highter priority zone or keepout area is found: remove this area
item_boundingbox = zone->GetBoundingBox();
if( !item_boundingbox.Intersects( zone_boundingbox ) )
continue;
// Add the zone outline area.
// However if the zone has the same net as the current zone,
// do not add any clearance.
// the zone will be connected to the current zone, but filled areas
// will use different parameters (clearance, thermal shapes )
bool same_net = aZone->GetNetCode() == zone->GetNetCode();
bool use_net_clearance = true;
int min_clearance = zone_clearance;
// Do not forget to make room to draw the thick outlines
// of the hole created by the area of the zone to remove
int holeclearance = zone->GetClearance() + outline_half_thickness;
// The final clearance is obviously the max value of each zone clearance
min_clearance = std::max( min_clearance, holeclearance );
if( zone->GetIsKeepout() || same_net )
{
// Just take in account the fact the outline has a thickness, so
// the actual area to substract is inflated to take in account this fact
min_clearance = outline_half_thickness;
use_net_clearance = false;
}
zone->TransformOutlinesShapeWithClearanceToPolygon(
aFeatures, min_clearance, use_net_clearance );
}
// Remove thermal symbols
for( auto module : m_board->Modules() )
{
for( auto pad : module->Pads() )
{
// Rejects non-standard pads with tht-only thermal reliefs
if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_THT_THERMAL
&& pad->GetAttribute() != PAD_ATTRIB_STANDARD )
continue;
if( aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THERMAL
&& aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THT_THERMAL )
continue;
if( !pad->IsOnLayer( aZone->GetLayer() ) )
continue;
if( pad->GetNetCode() != aZone->GetNetCode() )
continue;
item_boundingbox = pad->GetBoundingBox();
int thermalGap = aZone->GetThermalReliefGap( pad );
item_boundingbox.Inflate( thermalGap, thermalGap );
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
CreateThermalReliefPadPolygon( aFeatures,
*pad, thermalGap,
aZone->GetThermalReliefCopperBridge( pad ),
aZone->GetMinThickness(),
segsPerCircle,
correctionFactor, s_thermalRot );
}
}
}
}
/**
* Function ComputeRawFilledAreas
* Supports a min thickness area constraint.
* Add non copper areas polygons (pads and tracks with clearance)
* to the filled copper area found
* in BuildFilledPolysListData after calculating filled areas in a zone
* Non filled copper areas are pads and track and their clearance areas
* The filled copper area must be computed just before.
* BuildFilledPolysListData() call this function just after creating the
* filled copper area polygon (without clearance areas)
* to do that this function:
* 1 - Creates the main outline (zone outline) using a correction to shrink the resulting area
* with m_ZoneMinThickness/2 value.
* The result is areas with a margin of m_ZoneMinThickness/2
* When drawing outline with segments having a thickness of m_ZoneMinThickness, the
* outlines will match exactly the initial outlines
* 3 - Add all non filled areas (pads, tracks) in group B with a clearance of m_Clearance +
* m_ZoneMinThickness/2
* in a buffer
* - If Thermal shapes are wanted, add non filled area, in order to create these thermal shapes
* 4 - calculates the polygon A - B
* 5 - put resulting list of polygons (filled areas) in m_FilledPolysList
* This zone contains pads with the same net.
* 6 - Remove insulated copper islands
* 7 - If Thermal shapes are wanted, remove unconnected stubs in thermal shapes:
* creates a buffer of polygons corresponding to stubs to remove
* sub them to the filled areas.
* Remove new insulated copper islands
*/
void ZONE_FILLER::computeRawFilledAreas( const ZONE_CONTAINER* aZone,
const SHAPE_POLY_SET& aSmoothedOutline,
SHAPE_POLY_SET& aRawPolys,
SHAPE_POLY_SET& aFinalPolys ) const
{
int segsPerCircle;
double correctionFactor;
int outline_half_thickness = aZone->GetMinThickness() / 2;
std::unique_ptr<SHAPE_FILE_IO> dumper( new SHAPE_FILE_IO(
s_DumpZonesWhenFilling ? "zones_dump.txt" : "", SHAPE_FILE_IO::IOM_APPEND ) );
// Set the number of segments in arc approximations
if( aZone->GetArcSegmentCount() == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF )
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF;
else
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF;
/* calculates the coeff to compensate radius reduction of holes clearance
* due to the segment approx.
* For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2)
* s_Correction is 1 /cos( PI/s_CircleToSegmentsCount )
*/
correctionFactor = 1.0 / cos( M_PI / (double) segsPerCircle );
if( s_DumpZonesWhenFilling )
dumper->BeginGroup( "clipper-zone" );
SHAPE_POLY_SET solidAreas = aSmoothedOutline;
solidAreas.Inflate( -outline_half_thickness, segsPerCircle );
solidAreas.Simplify( SHAPE_POLY_SET::PM_FAST );
SHAPE_POLY_SET holes;
if( s_DumpZonesWhenFilling )
dumper->Write( &solidAreas, "solid-areas" );
buildZoneFeatureHoleList( aZone, holes );
if( s_DumpZonesWhenFilling )
dumper->Write( &holes, "feature-holes" );
holes.Simplify( SHAPE_POLY_SET::PM_FAST );
if( s_DumpZonesWhenFilling )
dumper->Write( &holes, "feature-holes-postsimplify" );
// Generate the filled areas (currently, without thermal shapes, which will
// be created later).
// Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to generate strictly simple polygons
// needed by Gerber files and Fracture()
solidAreas.BooleanSubtract( holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
if( s_DumpZonesWhenFilling )
dumper->Write( &solidAreas, "solid-areas-minus-holes" );
SHAPE_POLY_SET areas_fractured = solidAreas;
areas_fractured.Fracture( SHAPE_POLY_SET::PM_FAST );
if( s_DumpZonesWhenFilling )
dumper->Write( &areas_fractured, "areas_fractured" );
aFinalPolys = areas_fractured;
SHAPE_POLY_SET thermalHoles;
// Test thermal stubs connections and add polygons to remove unconnected stubs.
// (this is a refinement for thermal relief shapes)
if( aZone->GetNetCode() > 0 )
BuildUnconnectedThermalStubsPolygonList( thermalHoles, m_board, aZone,
correctionFactor, s_thermalRot );
// remove copper areas corresponding to not connected stubs
if( !thermalHoles.IsEmpty() )
{
thermalHoles.Simplify( SHAPE_POLY_SET::PM_FAST );
// Remove unconnected stubs. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to
// generate strictly simple polygons
// needed by Gerber files and Fracture()
solidAreas.BooleanSubtract( thermalHoles, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
if( s_DumpZonesWhenFilling )
dumper->Write( &thermalHoles, "thermal-holes" );
// put these areas in m_FilledPolysList
SHAPE_POLY_SET th_fractured = solidAreas;
th_fractured.Fracture( SHAPE_POLY_SET::PM_FAST );
if( s_DumpZonesWhenFilling )
dumper->Write( &th_fractured, "th_fractured" );
aFinalPolys = th_fractured;
}
aRawPolys = aFinalPolys;
if( s_DumpZonesWhenFilling )
dumper->EndGroup();
}
/* Build the filled solid areas data from real outlines (stored in m_Poly)
* The solid areas can be more than one on copper layers, and do not have holes
( holes are linked by overlapping segments to the main outline)
* aPcb: the current board (can be NULL for non copper zones)
* aCornerBuffer: A reference to a buffer to store polygon corners, or NULL
* if aCornerBuffer == NULL:
* - m_FilledPolysList is used to store solid areas polygons.
* - on copper layers, tracks and other items shapes of other nets are
* removed from solid areas
* if not null:
* Only the zone outline (with holes, if any) are stored in aCornerBuffer
* with holes linked. Therefore only one polygon is created
* This function calls ComputeRawFilledAreas()
* to add holes for pads and tracks and other items not in net.
*/
bool ZONE_FILLER::fillSingleZone( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPolys, SHAPE_POLY_SET& aFinalPolys, ZONE_SEGMENT_FILL& aSegmentFill ) const
{
SHAPE_POLY_SET smoothedPoly;
/* convert outlines + holes to outlines without holes (adding extra segments if necessary)
* m_Poly data is expected normalized, i.e. NormalizeAreaOutlines was used after building
* this zone
*/
if ( !aZone->BuildSmoothedPoly( smoothedPoly ) )
return false;
if( aZone->IsOnCopperLayer() )
{
computeRawFilledAreas( aZone, smoothedPoly, aRawPolys, aFinalPolys );
if( aZone->GetFillMode() == ZFM_SEGMENTS ) // if fill mode uses segments, create them:
{
if( !fillZoneWithSegments( aZone, aFinalPolys, aSegmentFill) )
return false;
}
}
else
{
aRawPolys = smoothedPoly;
aFinalPolys = smoothedPoly;
aFinalPolys.Inflate( -aZone->GetMinThickness() / 2, 16 );
aFinalPolys.Fracture( SHAPE_POLY_SET::PM_FAST );
}
return true;
}
bool ZONE_FILLER::fillZoneWithSegments( const ZONE_CONTAINER* aZone, const SHAPE_POLY_SET& aFilledPolys, ZONE_SEGMENT_FILL& aFillSegs ) const
{
bool success = true;
// segments are on something like a grid. Give it a minimal size
// to avoid too many segments, and use the m_ZoneMinThickness when (this is usually the case)
// the size is > mingrid_size.
// This is not perfect, but the actual purpose of this code
// is to allow filling zones on a grid, with grid size > m_ZoneMinThickness,
// in order to have really a grid.
//
// Using a user selectable grid size is for future Kicad versions.
// For now the area is fully filled.
int mingrid_size = Millimeter2iu( 0.05 );
int grid_size = std::max( mingrid_size, aZone->GetMinThickness() );
// Make segments slightly overlapping to ensure a good full filling
grid_size -= grid_size/20;
// Creates the horizontal segments
for ( int index = 0; index < aFilledPolys.OutlineCount(); index++ )
{
const SHAPE_LINE_CHAIN& outline0 = aFilledPolys.COutline( index );
success = fillPolygonWithHorizontalSegments( outline0, aFillSegs, grid_size );
if( !success )
break;
// Creates the vertical segments. Because the filling algo creates horizontal segments,
// to reuse the fillPolygonWithHorizontalSegments function, we rotate the polygons to fill
// then fill them, then inverse rotate the result
SHAPE_LINE_CHAIN outline90;
outline90.Append( outline0 );
// Rotate 90 degrees the outline:
for( int ii = 0; ii < outline90.PointCount(); ii++ )
{
VECTOR2I& point = outline90.Point( ii );
std::swap( point.x, point.y );
point.y = -point.y;
}
int first_point = aFillSegs.size();
success = fillPolygonWithHorizontalSegments( outline90, aFillSegs, grid_size );
if( !success )
break;
// Rotate -90 degrees the segments:
for( unsigned ii = first_point; ii < aFillSegs.size(); ii++ )
{
SEG& segm = aFillSegs[ii];
std::swap( segm.A.x, segm.A.y );
std::swap( segm.B.x, segm.B.y );
segm.A.x = - segm.A.x;
segm.B.x = - segm.B.x;
}
}
return success;
}
/** Helper function fillPolygonWithHorizontalSegments
* fills a polygon with horizontal segments.
* It can be used for any angle, if the zone outline to fill is rotated by this angle
* and the result is rotated by -angle
* @param aPolygon = a SHAPE_LINE_CHAIN polygon to fill
* @param aFillSegmList = a std::vector\<SEGMENT\> which will be populated by filling segments
* @param aStep = the horizontal grid size
*/
bool ZONE_FILLER::fillPolygonWithHorizontalSegments( const SHAPE_LINE_CHAIN& aPolygon,
ZONE_SEGMENT_FILL& aFillSegmList, int aStep ) const
{
std::vector <int> x_coordinates;
bool success = true;
// Creates the horizontal segments
const SHAPE_LINE_CHAIN& outline = aPolygon;
const BOX2I& rect = outline.BBox();
// Calculate the y limits of the zone
for( int refy = rect.GetY(), endy = rect.GetBottom(); refy < endy; refy += aStep )
{
// find all intersection points of an infinite line with polyline sides
x_coordinates.clear();
for( int v = 0; v < outline.PointCount(); v++ )
{
int seg_startX = outline.CPoint( v ).x;
int seg_startY = outline.CPoint( v ).y;
int seg_endX = outline.CPoint( v + 1 ).x;
int seg_endY = outline.CPoint( v + 1 ).y;
/* Trivial cases: skip if ref above or below the segment to test */
if( ( seg_startY > refy ) && ( seg_endY > refy ) )
continue;
// segment below ref point, or its Y end pos on Y coordinate ref point: skip
if( ( seg_startY <= refy ) && (seg_endY <= refy ) )
continue;
/* at this point refy is between seg_startY and seg_endY
* see if an horizontal line at Y = refy is intersecting this segment
*/
// calculate the x position of the intersection of this segment and the
// infinite line this is more easier if we move the X,Y axis origin to
// the segment start point:
seg_endX -= seg_startX;
seg_endY -= seg_startY;
double newrefy = (double) ( refy - seg_startY );
double intersec_x;
if ( seg_endY == 0 ) // horizontal segment on the same line: skip
continue;
// Now calculate the x intersection coordinate of the horizontal line at
// y = newrefy and the segment from (0,0) to (seg_endX,seg_endY) with the
// horizontal line at the new refy position the line slope is:
// slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY
// and the x pos relative to the new origin is:
// intersec_x = refy/slope = refy * inv_slope
// Note: because horizontal segments are already tested and skipped, slope
// exists (seg_end_y not O)
double inv_slope = (double) seg_endX / seg_endY;
intersec_x = newrefy * inv_slope;
x_coordinates.push_back( (int) intersec_x + seg_startX );
}
// A line scan is finished: build list of segments
// Sort intersection points by increasing x value:
// So 2 consecutive points are the ends of a segment
std::sort( x_coordinates.begin(), x_coordinates.end() );
// An even number of coordinates is expected, because a segment has 2 ends.
// An if this algorithm always works, it must always find an even count.
if( ( x_coordinates.size() & 1 ) != 0 )
{
success = false;
break;
}
// Create segments having the same Y coordinate
int iimax = x_coordinates.size() - 1;
for( int ii = 0; ii < iimax; ii += 2 )
{
VECTOR2I seg_start, seg_end;
seg_start.x = x_coordinates[ii];
seg_start.y = refy;
seg_end.x = x_coordinates[ii + 1];
seg_end.y = refy;
SEG segment( seg_start, seg_end );
aFillSegmList.push_back( segment );
}
} // End examine segments in one area
return success;
}

View File

@ -27,11 +27,13 @@
#define __ZONE_FILLER_H #define __ZONE_FILLER_H
#include <vector> #include <vector>
#include <class_zone.h>
class PROGRESS_REPORTER; class PROGRESS_REPORTER;
class BOARD; class BOARD;
class COMMIT; class COMMIT;
class ZONE_CONTAINER; class SHAPE_POLY_SET;
class SHAPE_LINE_CHAIN;
class ZONE_FILLER class ZONE_FILLER
{ {
@ -44,9 +46,70 @@ public:
void Unfill( std::vector<ZONE_CONTAINER*> aZones ); void Unfill( std::vector<ZONE_CONTAINER*> aZones );
private: private:
void buildZoneFeatureHoleList( const ZONE_CONTAINER* aZone,
SHAPE_POLY_SET& aFeatures ) const;
/**
* Function computeRawFilledAreas
* Add non copper areas polygons (pads and tracks with clearance)
* to a filled copper area
* used in BuildFilledSolidAreasPolygons when calculating filled areas in a zone
* Non copper areas are pads and track and their clearance area
* The filled copper area must be computed before
* BuildFilledSolidAreasPolygons() call this function just after creating the
* filled copper area polygon (without clearance areas
* @param aPcb: the current board
* _NG version uses SHAPE_POLY_SET instead of Boost.Polygon
*/
void computeRawFilledAreas( const ZONE_CONTAINER* aZone,
const SHAPE_POLY_SET& aSmoothedOutline,
SHAPE_POLY_SET& aRawPolys,
SHAPE_POLY_SET& aFinalPolys ) const;
bool fillPolygonWithHorizontalSegments( const SHAPE_LINE_CHAIN& aPolygon,
ZONE_SEGMENT_FILL& aFillSegmList, int aStep ) const;
/**
* Function fillZoneWithSegments
* Fill sub areas in a zone with segments with m_ZoneMinThickness width
* A scan is made line per line, on the whole filled areas, with a step of m_ZoneMinThickness.
* all intersecting points with the horizontal infinite line and polygons to fill are calculated
* a list of SEGZONE items is built, line per line
* @return true if success, false on error
*/
bool fillZoneWithSegments( const ZONE_CONTAINER* aZone,
const SHAPE_POLY_SET& aFilledPolys,
ZONE_SEGMENT_FILL& aFillSegs ) const;
/**
* Build the filled solid areas polygons from zone outlines (stored in m_Poly)
* The solid areas can be more than one on copper layers, and do not have holes
* ( holes are linked by overlapping segments to the main outline)
* in order to have drawable (and plottable) filled polygons.
* @return true if OK, false if the solid polygons cannot be built
* @param aPcb: the current board (can be NULL for non copper zones)
* @param aOutlineBuffer: A reference to a SHAPE_POLY_SET buffer to store polygons, or NULL.
* if NULL (default):
* - m_FilledPolysList is used to store solid areas polygons.
* - on copper layers, tracks and other items shapes of other nets are
* removed from solid areas
* if not null:
* Only the zone outline (with holes, if any) is stored in aOutlineBuffer
* with holes linked. Therefore only one polygon is created
*
* When aOutlineBuffer is not null, his function calls
* AddClearanceAreasPolygonsToPolysList() to add holes for pads and tracks
* and other items not in net.
*/
bool fillSingleZone( const ZONE_CONTAINER* aZone,
SHAPE_POLY_SET& aRawPolys,
SHAPE_POLY_SET& aFinalPolys,
ZONE_SEGMENT_FILL& aSegmentFill ) const;
BOARD* m_board;
COMMIT* m_commit; COMMIT* m_commit;
PROGRESS_REPORTER* m_progressReporter; PROGRESS_REPORTER* m_progressReporter;
BOARD* m_board;
}; };
#endif #endif

View File

@ -1,878 +0,0 @@
/**
* @file zone_filling_algorithm.cpp:
* Algorithms used to fill a zone defined by a polygon and a filling starting point.
*/
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2016 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 1992-2016 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <algorithm> // sort
#include <cmath>
#include <sstream>
#include <fctsys.h>
#include <wxPcbStruct.h>
#include <trigo.h>
#include <class_board.h>
#include <class_module.h>
#include <class_track.h>
#include <class_edge_mod.h>
#include <class_drawsegment.h>
#include <class_pcb_text.h>
#include <class_zone.h>
#include <project.h>
#include <pcbnew.h>
#include <zones.h>
#include <convert_basic_shapes_to_polygon.h>
#include <geometry/shape_poly_set.h>
#include <geometry/shape_file_io.h>
#include <geometry/convex_hull.h>
#include <connectivity_data.h>
/* Functions to convert some board items to polygons
* (pads, tracks ..)
* This is used to calculate filled areas in copper zones.
* Filled areas are areas remainder of the full zone area after removed all polygons
* calculated from these items shapes and the clearance area
*
* Important note:
* Because filled areas must have a minimum thickness to match with Design rule, they are
* draw in 2 step:
* 1 - filled polygons are drawn
* 2 - polygon outlines are drawn with a "minimum thickness width" ( or with a minimum
* thickness pen )
* So outlines of filled polygons are calculated with the constraint they match with clearance,
* taking in account outlines have thickness
* This ensures:
* - areas meet the minimum thickness requirement.
* - shapes are smoothed.
*/
// Polygon calculations can use fast mode or force strickly simple polygons after calculations
// Forcing strickly simple polygons is time consuming, and we have not see issues in fast mode
// so we use fast mode when possible (intermediate calculations)
// (choice is SHAPE_POLY_SET::PM_STRICTLY_SIMPLE or SHAPE_POLY_SET::PM_FAST)
#define POLY_CALC_MODE SHAPE_POLY_SET::PM_FAST
/* DEBUG OPTION:
* To emit zone data to a file when filling zones for the debugging purposes,
* set this 'true' and build.
*/
static const bool s_DumpZonesWhenFilling = false;
extern void BuildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuffer,
BOARD* aPcb, ZONE_CONTAINER* aZone,
double aArcCorrection,
double aRoundPadThermalRotation);
extern void CreateThermalReliefPadPolygon( SHAPE_POLY_SET& aCornerBuffer,
D_PAD& aPad,
int aThermalGap,
int aCopperThickness,
int aMinThicknessValue,
int aCircleToSegmentsCount,
double aCorrectionFactor,
double aThermalRot );
// Local Variables:
static double s_thermalRot = 450; // angle of stubs in thermal reliefs for round pads
/* Build the filled solid areas data from real outlines (stored in m_Poly)
* The solid areas can be more than one on copper layers, and do not have holes
( holes are linked by overlapping segments to the main outline)
* aPcb: the current board (can be NULL for non copper zones)
* aCornerBuffer: A reference to a buffer to store polygon corners, or NULL
* if aCornerBuffer == NULL:
* - m_FilledPolysList is used to store solid areas polygons.
* - on copper layers, tracks and other items shapes of other nets are
* removed from solid areas
* if not null:
* Only the zone outline (with holes, if any) are stored in aCornerBuffer
* with holes linked. Therefore only one polygon is created
* This function calls ComputeRawFilledAreas()
* to add holes for pads and tracks and other items not in net.
*/
bool ZONE_CONTAINER::BuildFilledSolidAreasPolygons( BOARD* aPcb, SHAPE_POLY_SET* aOutlineBuffer )
{
/* convert outlines + holes to outlines without holes (adding extra segments if necessary)
* m_Poly data is expected normalized, i.e. NormalizeAreaOutlines was used after building
* this zone
*/
if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations do not like it ...
return false;
// Make a smoothed polygon out of the user-drawn polygon if required
if( m_smoothedPoly )
{
delete m_smoothedPoly;
m_smoothedPoly = NULL;
}
switch( m_cornerSmoothingType )
{
case ZONE_SETTINGS::SMOOTHING_CHAMFER:
m_smoothedPoly = new SHAPE_POLY_SET();
*m_smoothedPoly = m_Poly->Chamfer( m_cornerRadius );
break;
case ZONE_SETTINGS::SMOOTHING_FILLET:
m_smoothedPoly = new SHAPE_POLY_SET();
*m_smoothedPoly = m_Poly->Fillet( m_cornerRadius, m_ArcToSegmentsCount );
break;
default:
// Acute angles between adjacent edges can create issues in calculations,
// in inflate/deflate outlines transforms, especially when the angle is very small.
// We can avoid issues by creating a very small chamfer which remove acute angles,
// or left it without chamfer and use only CPOLYGONS_LIST::InflateOutline to create
// clearance areas
m_smoothedPoly = new SHAPE_POLY_SET();
*m_smoothedPoly = m_Poly->Chamfer( Millimeter2iu( 0.0 ) );
break;
}
if( aOutlineBuffer )
aOutlineBuffer->Append( *m_smoothedPoly );
/* For copper layers, we now must add holes in the Polygon list.
* holes are pads and tracks with their clearance area
* For non copper layers, just recalculate the m_FilledPolysList
* with m_ZoneMinThickness taken in account
*/
else
{
m_FilledPolysList.RemoveAllContours();
if( IsOnCopperLayer() )
{
ComputeRawFilledAreas( aPcb );
if( m_FillMode ) // if fill mode uses segments, create them:
{
if( !FillZoneAreasWithSegments() )
return false;
}
}
else
{
m_FillMode = 0; // Fill by segments is no more used in non copper layers
// force use solid polygons (usefull only for old boards)
m_FilledPolysList = *m_smoothedPoly;
// The filled areas are deflated by -m_ZoneMinThickness / 2, because
// the outlines are drawn with a line thickness = m_ZoneMinThickness to
// give a good shape with the minimal thickness
m_FilledPolysList.Inflate( -m_ZoneMinThickness / 2, 16 );
m_FilledPolysList.Fracture( SHAPE_POLY_SET::PM_FAST );
}
m_IsFilled = true;
}
return true;
}
/** Helper function fillPolygonWithHorizontalSegments
* fills a polygon with horizontal segments.
* It can be used for any angle, if the zone outline to fill is rotated by this angle
* and the result is rotated by -angle
* @param aPolygon = a SHAPE_LINE_CHAIN polygon to fill
* @param aFillSegmList = a std::vector\<SEGMENT\> which will be populated by filling segments
* @param aStep = the horizontal grid size
*/
bool fillPolygonWithHorizontalSegments( const SHAPE_LINE_CHAIN& aPolygon,
std::vector <SEGMENT>& aFillSegmList, int aStep );
bool ZONE_CONTAINER::FillZoneAreasWithSegments()
{
bool success = true;
// segments are on something like a grid. Give it a minimal size
// to avoid too many segments, and use the m_ZoneMinThickness when (this is usually the case)
// the size is > mingrid_size.
// This is not perfect, but the actual purpose of this code
// is to allow filling zones on a grid, with grid size > m_ZoneMinThickness,
// in order to have really a grid.
//
// Using a user selectable grid size is for future Kicad versions.
// For now the area is fully filled.
int mingrid_size = Millimeter2iu( 0.05 );
int grid_size = std::max( mingrid_size, m_ZoneMinThickness );
// Make segments slightly overlapping to ensure a good full filling
grid_size -= grid_size/20;
// All filled areas are in m_FilledPolysList
// m_FillSegmList will contain the horizontal and vertical segments
// the segment width is m_ZoneMinThickness.
m_FillSegmList.clear();
// Creates the horizontal segments
for ( int index = 0; index < m_FilledPolysList.OutlineCount(); index++ )
{
const SHAPE_LINE_CHAIN& outline0 = m_FilledPolysList.COutline( index );
success = fillPolygonWithHorizontalSegments( outline0, m_FillSegmList, grid_size );
if( !success )
break;
// Creates the vertical segments. Because the filling algo creates horizontal segments,
// to reuse the fillPolygonWithHorizontalSegments function, we rotate the polygons to fill
// then fill them, then inverse rotate the result
SHAPE_LINE_CHAIN outline90;
outline90.Append( outline0 );
// Rotate 90 degrees the outline:
for( int ii = 0; ii < outline90.PointCount(); ii++ )
{
VECTOR2I& point = outline90.Point( ii );
std::swap( point.x, point.y );
point.y = -point.y;
}
int first_point = m_FillSegmList.size();
success = fillPolygonWithHorizontalSegments( outline90, m_FillSegmList, grid_size );
if( !success )
break;
// Rotate -90 degrees the segments:
for( unsigned ii = first_point; ii < m_FillSegmList.size(); ii++ )
{
SEGMENT& segm = m_FillSegmList[ii];
std::swap( segm.m_Start.x, segm.m_Start.y );
std::swap( segm.m_End.x, segm.m_End.y );
segm.m_Start.x = - segm.m_Start.x;
segm.m_End.x = - segm.m_End.x;
}
}
if( success )
m_IsFilled = true;
else
m_FillSegmList.clear();
return success;
}
bool fillPolygonWithHorizontalSegments( const SHAPE_LINE_CHAIN& aPolygon,
std::vector <SEGMENT>& aFillSegmList, int aStep )
{
std::vector <int> x_coordinates;
bool success = true;
// Creates the horizontal segments
const SHAPE_LINE_CHAIN& outline = aPolygon;
const BOX2I& rect = outline.BBox();
// Calculate the y limits of the zone
for( int refy = rect.GetY(), endy = rect.GetBottom(); refy < endy; refy += aStep )
{
// find all intersection points of an infinite line with polyline sides
x_coordinates.clear();
for( int v = 0; v < outline.PointCount(); v++ )
{
int seg_startX = outline.CPoint( v ).x;
int seg_startY = outline.CPoint( v ).y;
int seg_endX = outline.CPoint( v + 1 ).x;
int seg_endY = outline.CPoint( v + 1 ).y;
/* Trivial cases: skip if ref above or below the segment to test */
if( ( seg_startY > refy ) && ( seg_endY > refy ) )
continue;
// segment below ref point, or its Y end pos on Y coordinate ref point: skip
if( ( seg_startY <= refy ) && (seg_endY <= refy ) )
continue;
/* at this point refy is between seg_startY and seg_endY
* see if an horizontal line at Y = refy is intersecting this segment
*/
// calculate the x position of the intersection of this segment and the
// infinite line this is more easier if we move the X,Y axis origin to
// the segment start point:
seg_endX -= seg_startX;
seg_endY -= seg_startY;
double newrefy = (double) ( refy - seg_startY );
double intersec_x;
if ( seg_endY == 0 ) // horizontal segment on the same line: skip
continue;
// Now calculate the x intersection coordinate of the horizontal line at
// y = newrefy and the segment from (0,0) to (seg_endX,seg_endY) with the
// horizontal line at the new refy position the line slope is:
// slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY
// and the x pos relative to the new origin is:
// intersec_x = refy/slope = refy * inv_slope
// Note: because horizontal segments are already tested and skipped, slope
// exists (seg_end_y not O)
double inv_slope = (double) seg_endX / seg_endY;
intersec_x = newrefy * inv_slope;
x_coordinates.push_back( (int) intersec_x + seg_startX );
}
// A line scan is finished: build list of segments
// Sort intersection points by increasing x value:
// So 2 consecutive points are the ends of a segment
std::sort( x_coordinates.begin(), x_coordinates.end() );
// An even number of coordinates is expected, because a segment has 2 ends.
// An if this algorithm always works, it must always find an even count.
if( ( x_coordinates.size() & 1 ) != 0 )
{
success = false;
break;
}
// Create segments having the same Y coordinate
int iimax = x_coordinates.size() - 1;
for( int ii = 0; ii < iimax; ii += 2 )
{
wxPoint seg_start, seg_end;
seg_start.x = x_coordinates[ii];
seg_start.y = refy;
seg_end.x = x_coordinates[ii + 1];
seg_end.y = refy;
SEGMENT segment( seg_start, seg_end );
aFillSegmList.push_back( segment );
}
} // End examine segments in one area
return success;
}
void ZONE_CONTAINER::buildFeatureHoleList( BOARD* aPcb, SHAPE_POLY_SET& aFeatures )
{
int segsPerCircle;
double correctionFactor;
// Set the number of segments in arc approximations
if( m_ArcToSegmentsCount == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF )
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF;
else
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF;
/* calculates the coeff to compensate radius reduction of holes clearance
* due to the segment approx.
* For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2)
* s_Correction is 1 /cos( PI/s_CircleToSegmentsCount )
*/
correctionFactor = 1.0 / cos( M_PI / (double) segsPerCircle );
aFeatures.RemoveAllContours();
int outline_half_thickness = m_ZoneMinThickness / 2;
// When removing holes, the holes must be expanded by outline_half_thickness
// to take in account the thickness of the zone outlines
int zone_clearance = GetClearance() + outline_half_thickness;
// When holes are created by non copper items (edge cut items), use only
// the m_ZoneClearance parameter (zone clearance with no netclass clearance)
int zone_to_edgecut_clearance = GetZoneClearance() + outline_half_thickness;
/* store holes (i.e. tracks and pads areas as polygons outlines)
* in a polygon list
*/
/* items ouside the zone bounding box are skipped
* the bounding box is the zone bounding box + the biggest clearance found in Netclass list
*/
EDA_RECT item_boundingbox;
EDA_RECT zone_boundingbox = GetBoundingBox();
int biggest_clearance = aPcb->GetDesignSettings().GetBiggestClearanceValue();
biggest_clearance = std::max( biggest_clearance, zone_clearance );
zone_boundingbox.Inflate( biggest_clearance );
/*
* First : Add pads. Note: pads having the same net as zone are left in zone.
* Thermal shapes will be created later if necessary
*/
/* Use a dummy pad to calculate hole clearance when a pad is not on all copper layers
* and this pad has a hole
* This dummy pad has the size and shape of the hole
* Therefore, this dummy pad is a circle or an oval.
* A pad must have a parent because some functions expect a non null parent
* to find the parent board, and some other data
*/
MODULE dummymodule( aPcb ); // Creates a dummy parent
D_PAD dummypad( &dummymodule );
for( MODULE* module = aPcb->m_Modules; module; module = module->Next() )
{
D_PAD* nextpad;
for( D_PAD* pad = module->PadsList(); pad != NULL; pad = nextpad )
{
nextpad = pad->Next(); // pad pointer can be modified by next code, so
// calculate the next pad here
if( !pad->IsOnLayer( GetLayer() ) )
{
/* Test for pads that are on top or bottom only and have a hole.
* There are curious pads but they can be used for some components that are
* inside the board (in fact inside the hole. Some photo diodes and Leds are
* like this)
*/
if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 )
continue;
// Use a dummy pad to calculate a hole shape that have the same dimension as
// the pad hole
dummypad.SetSize( pad->GetDrillSize() );
dummypad.SetOrientation( pad->GetOrientation() );
dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ?
PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
dummypad.SetPosition( pad->GetPosition() );
pad = &dummypad;
}
// Note: netcode <=0 means not connected item
if( ( pad->GetNetCode() != GetNetCode() ) || ( pad->GetNetCode() <= 0 ) )
{
int item_clearance = pad->GetClearance() + outline_half_thickness;
item_boundingbox = pad->GetBoundingBox();
item_boundingbox.Inflate( item_clearance );
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
int clearance = std::max( zone_clearance, item_clearance );
// PAD_SHAPE_CUSTOM can have a specific keepout, to avoid to break the shape
if( pad->GetShape() == PAD_SHAPE_CUSTOM &&
pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
// the pad shape in zone can be its convex hull or
// the shape itself
SHAPE_POLY_SET outline( pad->GetCustomShapeAsPolygon() );
outline.Inflate( KiROUND( clearance*correctionFactor) , segsPerCircle );
pad->CustomShapeAsPolygonToBoardPosition( &outline,
pad->GetPosition(), pad->GetOrientation() );
if( pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
std::vector<wxPoint> convex_hull;
BuildConvexHull( convex_hull, outline );
aFeatures.NewOutline();
for( unsigned ii = 0; ii < convex_hull.size(); ++ii )
aFeatures.Append( convex_hull[ii] );
}
else
aFeatures.Append( outline );
}
else
pad->TransformShapeWithClearanceToPolygon( aFeatures,
clearance,
segsPerCircle,
correctionFactor );
}
continue;
}
// Pads are removed from zone if the setup is PAD_ZONE_CONN_NONE
// or if they have a custom shape, because a thermal relief will break
// the shape
if( GetPadConnection( pad ) == PAD_ZONE_CONN_NONE ||
pad->GetShape() == PAD_SHAPE_CUSTOM )
{
int gap = zone_clearance;
int thermalGap = GetThermalReliefGap( pad );
gap = std::max( gap, thermalGap );
item_boundingbox = pad->GetBoundingBox();
item_boundingbox.Inflate( gap );
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
// PAD_SHAPE_CUSTOM has a specific keepout, to avoid to break the shape
// the pad shape in zone can be its convex hull or the shape itself
if( pad->GetShape() == PAD_SHAPE_CUSTOM &&
pad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
// the pad shape in zone can be its convex hull or
// the shape itself
SHAPE_POLY_SET outline( pad->GetCustomShapeAsPolygon() );
outline.Inflate( KiROUND( gap*correctionFactor) , segsPerCircle );
pad->CustomShapeAsPolygonToBoardPosition( &outline,
pad->GetPosition(), pad->GetOrientation() );
std::vector<wxPoint> convex_hull;
BuildConvexHull( convex_hull, outline );
aFeatures.NewOutline();
for( unsigned ii = 0; ii < convex_hull.size(); ++ii )
aFeatures.Append( convex_hull[ii] );
}
else
pad->TransformShapeWithClearanceToPolygon( aFeatures,
gap, segsPerCircle, correctionFactor );
}
}
}
}
/* Add holes (i.e. tracks and vias areas as polygons outlines)
* in cornerBufferPolysToSubstract
*/
for( TRACK* track = aPcb->m_Track; track; track = track->Next() )
{
if( !track->IsOnLayer( GetLayer() ) )
continue;
if( track->GetNetCode() == GetNetCode() && (GetNetCode() != 0) )
continue;
int item_clearance = track->GetClearance() + outline_half_thickness;
item_boundingbox = track->GetBoundingBox();
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
int clearance = std::max( zone_clearance, item_clearance );
track->TransformShapeWithClearanceToPolygon( aFeatures,
clearance,
segsPerCircle,
correctionFactor );
}
}
/* Add module edge items that are on copper layers
* Pcbnew allows these items to be on copper layers in microwave applictions
* This is a bad thing, but must be handled here, until a better way is found
*/
for( MODULE* module = aPcb->m_Modules; module; module = module->Next() )
{
for( BOARD_ITEM* item = module->GraphicalItemsList(); item; item = item->Next() )
{
if( !item->IsOnLayer( GetLayer() ) && !item->IsOnLayer( Edge_Cuts ) )
continue;
if( item->Type() != PCB_MODULE_EDGE_T )
continue;
item_boundingbox = item->GetBoundingBox();
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
int zclearance = zone_clearance;
if( item->IsOnLayer( Edge_Cuts ) )
// use only the m_ZoneClearance, not the clearance using
// the netclass value, because we do not have a copper item
zclearance = zone_to_edgecut_clearance;
( (EDGE_MODULE*) item )->TransformShapeWithClearanceToPolygon(
aFeatures, zclearance, segsPerCircle, correctionFactor );
}
}
}
// Add graphic items (copper texts) and board edges
// Currently copper texts have no net, so only the zone_clearance
// is used.
for( auto item : aPcb->Drawings() )
{
if( item->GetLayer() != GetLayer() && item->GetLayer() != Edge_Cuts )
continue;
int zclearance = zone_clearance;
if( item->GetLayer() == Edge_Cuts )
// use only the m_ZoneClearance, not the clearance using
// the netclass value, because we do not have a copper item
zclearance = zone_to_edgecut_clearance;
switch( item->Type() )
{
case PCB_LINE_T:
( (DRAWSEGMENT*) item )->TransformShapeWithClearanceToPolygon(
aFeatures,
zclearance, segsPerCircle, correctionFactor );
break;
case PCB_TEXT_T:
( (TEXTE_PCB*) item )->TransformBoundingBoxWithClearanceToPolygon(
aFeatures, zclearance );
break;
default:
break;
}
}
// Add zones outlines having an higher priority and keepout
for( int ii = 0; ii < GetBoard()->GetAreaCount(); ii++ )
{
ZONE_CONTAINER* zone = GetBoard()->GetArea( ii );
// If the zones share no common layers
if( !CommonLayerExists( zone->GetLayerSet() ) )
continue;
if( !zone->GetIsKeepout() && zone->GetPriority() <= GetPriority() )
continue;
if( zone->GetIsKeepout() && ! zone->GetDoNotAllowCopperPour() )
continue;
// A highter priority zone or keepout area is found: remove this area
item_boundingbox = zone->GetBoundingBox();
if( !item_boundingbox.Intersects( zone_boundingbox ) )
continue;
// Add the zone outline area.
// However if the zone has the same net as the current zone,
// do not add any clearance.
// the zone will be connected to the current zone, but filled areas
// will use different parameters (clearance, thermal shapes )
bool same_net = GetNetCode() == zone->GetNetCode();
bool use_net_clearance = true;
int min_clearance = zone_clearance;
// Do not forget to make room to draw the thick outlines
// of the hole created by the area of the zone to remove
int holeclearance = zone->GetClearance() + outline_half_thickness;
// The final clearance is obviously the max value of each zone clearance
min_clearance = std::max( min_clearance, holeclearance );
if( zone->GetIsKeepout() || same_net )
{
// Just take in account the fact the outline has a thickness, so
// the actual area to substract is inflated to take in account this fact
min_clearance = outline_half_thickness;
use_net_clearance = false;
}
zone->TransformOutlinesShapeWithClearanceToPolygon(
aFeatures, min_clearance, use_net_clearance );
}
// Remove thermal symbols
for( MODULE* module = aPcb->m_Modules; module; module = module->Next() )
{
for( D_PAD* pad = module->PadsList(); pad != NULL; pad = pad->Next() )
{
// Rejects non-standard pads with tht-only thermal reliefs
if( GetPadConnection( pad ) == PAD_ZONE_CONN_THT_THERMAL
&& pad->GetAttribute() != PAD_ATTRIB_STANDARD )
continue;
if( GetPadConnection( pad ) != PAD_ZONE_CONN_THERMAL
&& GetPadConnection( pad ) != PAD_ZONE_CONN_THT_THERMAL )
continue;
if( !pad->IsOnLayer( GetLayer() ) )
continue;
if( pad->GetNetCode() != GetNetCode() )
continue;
item_boundingbox = pad->GetBoundingBox();
int thermalGap = GetThermalReliefGap( pad );
item_boundingbox.Inflate( thermalGap, thermalGap );
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
CreateThermalReliefPadPolygon( aFeatures,
*pad, thermalGap,
GetThermalReliefCopperBridge( pad ),
m_ZoneMinThickness,
segsPerCircle,
correctionFactor, s_thermalRot );
}
}
}
}
/**
* Function ComputeRawFilledAreas
* Supports a min thickness area constraint.
* Add non copper areas polygons (pads and tracks with clearance)
* to the filled copper area found
* in BuildFilledPolysListData after calculating filled areas in a zone
* Non filled copper areas are pads and track and their clearance areas
* The filled copper area must be computed just before.
* BuildFilledPolysListData() call this function just after creating the
* filled copper area polygon (without clearance areas)
* to do that this function:
* 1 - Creates the main outline (zone outline) using a correction to shrink the resulting area
* with m_ZoneMinThickness/2 value.
* The result is areas with a margin of m_ZoneMinThickness/2
* When drawing outline with segments having a thickness of m_ZoneMinThickness, the
* outlines will match exactly the initial outlines
* 3 - Add all non filled areas (pads, tracks) in group B with a clearance of m_Clearance +
* m_ZoneMinThickness/2
* in a buffer
* - If Thermal shapes are wanted, add non filled area, in order to create these thermal shapes
* 4 - calculates the polygon A - B
* 5 - put resulting list of polygons (filled areas) in m_FilledPolysList
* This zone contains pads with the same net.
* 6 - Remove insulated copper islands
* 7 - If Thermal shapes are wanted, remove unconnected stubs in thermal shapes:
* creates a buffer of polygons corresponding to stubs to remove
* sub them to the filled areas.
* Remove new insulated copper islands
*/
void ZONE_CONTAINER::ComputeRawFilledAreas( BOARD* aPcb )
{
int segsPerCircle;
double correctionFactor;
int outline_half_thickness = m_ZoneMinThickness / 2;
std::unique_ptr<SHAPE_FILE_IO> dumper( new SHAPE_FILE_IO(
s_DumpZonesWhenFilling ? "zones_dump.txt" : "", SHAPE_FILE_IO::IOM_APPEND ) );
// Set the number of segments in arc approximations
if( m_ArcToSegmentsCount == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF )
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF;
else
segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF;
/* calculates the coeff to compensate radius reduction of holes clearance
* due to the segment approx.
* For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2)
* s_Correction is 1 /cos( PI/s_CircleToSegmentsCount )
*/
correctionFactor = 1.0 / cos( M_PI / (double) segsPerCircle );
CPOLYGONS_LIST tmp;
if(s_DumpZonesWhenFilling)
dumper->BeginGroup("clipper-zone");
SHAPE_POLY_SET solidAreas = *m_smoothedPoly;
solidAreas.Inflate( -outline_half_thickness, segsPerCircle );
solidAreas.Simplify( POLY_CALC_MODE );
SHAPE_POLY_SET holes;
if(s_DumpZonesWhenFilling)
dumper->Write( &solidAreas, "solid-areas" );
tmp.RemoveAllContours();
buildFeatureHoleList( aPcb, holes );
if(s_DumpZonesWhenFilling)
dumper->Write( &holes, "feature-holes" );
holes.Simplify( POLY_CALC_MODE );
if (s_DumpZonesWhenFilling)
dumper->Write( &holes, "feature-holes-postsimplify" );
// Generate the filled areas (currently, without thermal shapes, which will
// be created later).
// Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to generate strictly simple polygons
// needed by Gerber files and Fracture()
solidAreas.BooleanSubtract( holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
if (s_DumpZonesWhenFilling)
dumper->Write( &solidAreas, "solid-areas-minus-holes" );
SHAPE_POLY_SET areas_fractured = solidAreas;
areas_fractured.Fracture( POLY_CALC_MODE );
if (s_DumpZonesWhenFilling)
dumper->Write( &areas_fractured, "areas_fractured" );
m_FilledPolysList = areas_fractured;
SHAPE_POLY_SET thermalHoles;
// Test thermal stubs connections and add polygons to remove unconnected stubs.
// (this is a refinement for thermal relief shapes)
if( GetNetCode() > 0 )
BuildUnconnectedThermalStubsPolygonList( thermalHoles, aPcb, this,
correctionFactor, s_thermalRot );
// remove copper areas corresponding to not connected stubs
if( !thermalHoles.IsEmpty() )
{
thermalHoles.Simplify( POLY_CALC_MODE );
// Remove unconnected stubs. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to
// generate strictly simple polygons
// needed by Gerber files and Fracture()
solidAreas.BooleanSubtract( thermalHoles, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
if( s_DumpZonesWhenFilling )
dumper->Write( &thermalHoles, "thermal-holes" );
// put these areas in m_FilledPolysList
SHAPE_POLY_SET th_fractured = solidAreas;
th_fractured.Fracture( POLY_CALC_MODE );
if( s_DumpZonesWhenFilling )
dumper->Write ( &th_fractured, "th_fractured" );
m_FilledPolysList = th_fractured;
}
m_RawPolysList = m_FilledPolysList;
if(s_DumpZonesWhenFilling)
dumper->EndGroup();
}
void ZONE_CONTAINER::RemoveInsulatedCopperIslands( BOARD* aPcb )
{
std::vector<int> islands;
auto connectivity = aPcb->GetConnectivity();
connectivity->FindIsolatedCopperIslands( this, islands );
std::sort( islands.begin(), islands.end(), std::greater<int>() );
for( auto idx : islands )
{
m_FilledPolysList.DeletePolygon( idx );
}
connectivity->Update( this );
}

View File

@ -47,11 +47,11 @@
* false to create the outline polygon. * false to create the outline polygon.
*/ */
void ZONE_CONTAINER::TransformOutlinesShapeWithClearanceToPolygon( void ZONE_CONTAINER::TransformOutlinesShapeWithClearanceToPolygon(
SHAPE_POLY_SET& aCornerBuffer, int aMinClearanceValue, bool aUseNetClearance ) SHAPE_POLY_SET& aCornerBuffer, int aMinClearanceValue, bool aUseNetClearance ) const
{ {
// Creates the zone outline polygon (with holes if any) // Creates the zone outline polygon (with holes if any)
SHAPE_POLY_SET polybuffer; SHAPE_POLY_SET polybuffer;
BuildFilledSolidAreasPolygons( NULL, &polybuffer ); BuildSmoothedPoly( polybuffer );
// add clearance to outline // add clearance to outline
int clearance = aMinClearanceValue; int clearance = aMinClearanceValue;
@ -86,8 +86,8 @@ void ZONE_CONTAINER::TransformOutlinesShapeWithClearanceToPolygon(
*/ */
void BuildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuffer, void BuildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuffer,
BOARD* aPcb, const BOARD* aPcb,
ZONE_CONTAINER* aZone, const ZONE_CONTAINER* aZone,
double aArcCorrection, double aArcCorrection,
double aRoundPadThermalRotation ) double aRoundPadThermalRotation )
{ {

View File

@ -62,6 +62,10 @@ bool BOARD::OnAreaPolygonModified( PICKED_ITEMS_LIST* aModifiedZonesList,
CombineAllAreasInNet( aModifiedZonesList, modified_area->GetNetCode(), true ); CombineAllAreasInNet( aModifiedZonesList, modified_area->GetNetCode(), true );
} }
/*
FIXME : do we really need this?
if( !IsCopperLayer( layer ) ) // Refill non copper zones on this layer if( !IsCopperLayer( layer ) ) // Refill non copper zones on this layer
{ {
for( unsigned ia = 0; ia < m_ZoneDescriptorList.size(); ia++ ) for( unsigned ia = 0; ia < m_ZoneDescriptorList.size(); ia++ )
@ -69,6 +73,8 @@ bool BOARD::OnAreaPolygonModified( PICKED_ITEMS_LIST* aModifiedZonesList,
m_ZoneDescriptorList[ia]->BuildFilledSolidAreasPolygons( this ); m_ZoneDescriptorList[ia]->BuildFilledSolidAreasPolygons( this );
} }
*/
// Test for bad areas: all zones must have more than 2 corners: // Test for bad areas: all zones must have more than 2 corners:
// Note: should not happen, but just in case. // Note: should not happen, but just in case.
for( unsigned ii = 0; ii < m_ZoneDescriptorList.size(); ) for( unsigned ii = 0; ii < m_ZoneDescriptorList.size(); )
@ -284,7 +290,9 @@ int BOARD::Test_Drc_Areas_Outlines_To_Areas_Outlines( ZONE_CONTAINER* aArea_To_E
for( int ia = 0; ia < GetAreaCount(); ia++ ) for( int ia = 0; ia < GetAreaCount(); ia++ )
{ {
ZONE_CONTAINER* Area_Ref = GetArea( ia ); ZONE_CONTAINER* Area_Ref = GetArea( ia );
SHAPE_POLY_SET* refSmoothedPoly = Area_Ref->GetSmoothedPoly(); SHAPE_POLY_SET refSmoothedPoly;
Area_Ref->BuildSmoothedPoly( refSmoothedPoly );
if( !Area_Ref->IsOnCopperLayer() ) if( !Area_Ref->IsOnCopperLayer() )
continue; continue;
@ -296,7 +304,9 @@ int BOARD::Test_Drc_Areas_Outlines_To_Areas_Outlines( ZONE_CONTAINER* aArea_To_E
for( int ia2 = 0; ia2 < GetAreaCount(); ia2++ ) for( int ia2 = 0; ia2 < GetAreaCount(); ia2++ )
{ {
ZONE_CONTAINER* area_to_test = GetArea( ia2 ); ZONE_CONTAINER* area_to_test = GetArea( ia2 );
SHAPE_POLY_SET* testSmoothedPoly = area_to_test->GetSmoothedPoly(); SHAPE_POLY_SET testSmoothedPoly;
area_to_test->BuildSmoothedPoly( testSmoothedPoly );
if( Area_Ref == area_to_test ) if( Area_Ref == area_to_test )
continue; continue;
@ -330,11 +340,11 @@ int BOARD::Test_Drc_Areas_Outlines_To_Areas_Outlines( ZONE_CONTAINER* aArea_To_E
zone2zoneClearance = 1; zone2zoneClearance = 1;
// test for some corners of Area_Ref inside area_to_test // test for some corners of Area_Ref inside area_to_test
for( auto iterator = refSmoothedPoly->IterateWithHoles(); iterator; iterator++ ) for( auto iterator = refSmoothedPoly.IterateWithHoles(); iterator; iterator++ )
{ {
VECTOR2I currentVertex = *iterator; VECTOR2I currentVertex = *iterator;
if( testSmoothedPoly->Contains( currentVertex ) ) if( testSmoothedPoly.Contains( currentVertex ) )
{ {
// COPPERAREA_COPPERAREA error: copper area ref corner inside copper area // COPPERAREA_COPPERAREA error: copper area ref corner inside copper area
if( aCreate_Markers ) if( aCreate_Markers )
@ -356,11 +366,11 @@ int BOARD::Test_Drc_Areas_Outlines_To_Areas_Outlines( ZONE_CONTAINER* aArea_To_E
} }
// test for some corners of area_to_test inside Area_Ref // test for some corners of area_to_test inside Area_Ref
for( auto iterator = testSmoothedPoly->IterateWithHoles(); iterator; iterator++ ) for( auto iterator = testSmoothedPoly.IterateWithHoles(); iterator; iterator++ )
{ {
VECTOR2I currentVertex = *iterator; VECTOR2I currentVertex = *iterator;
if( refSmoothedPoly->Contains( currentVertex ) ) if( refSmoothedPoly.Contains( currentVertex ) )
{ {
// COPPERAREA_COPPERAREA error: copper area corner inside copper area ref // COPPERAREA_COPPERAREA error: copper area corner inside copper area ref
if( aCreate_Markers ) if( aCreate_Markers )
@ -383,13 +393,13 @@ int BOARD::Test_Drc_Areas_Outlines_To_Areas_Outlines( ZONE_CONTAINER* aArea_To_E
// Iterate through all the segments of refSmoothedPoly // Iterate through all the segments of refSmoothedPoly
for( auto refIt = refSmoothedPoly->IterateSegmentsWithHoles(); refIt; refIt++ ) for( auto refIt = refSmoothedPoly.IterateSegmentsWithHoles(); refIt; refIt++ )
{ {
// Build ref segment // Build ref segment
SEG refSegment = *refIt; SEG refSegment = *refIt;
// Iterate through all the segments in testSmoothedPoly // Iterate through all the segments in testSmoothedPoly
for( auto testIt = testSmoothedPoly->IterateSegmentsWithHoles(); testIt; testIt++ ) for( auto testIt = testSmoothedPoly.IterateSegmentsWithHoles(); testIt; testIt++ )
{ {
// Build test segment // Build test segment
SEG testSegment = *testIt; SEG testSegment = *testIt;