Apply IDF tools patch from Cirilo Bernardo

This commit is contained in:
Cirilo Bernardo 2014-02-05 10:27:21 +01:00 committed by jean-pierre charras
parent b39408b14a
commit fbe8484225
13 changed files with 2470 additions and 674 deletions

View File

@ -542,6 +542,7 @@ add_subdirectory( potrace )
add_subdirectory( bitmap2component )
add_subdirectory( pcb_calculator )
add_subdirectory( tools )
add_subdirectory( utils )
add_subdirectory( qa )
#add_subdirectory( new )

View File

@ -129,6 +129,7 @@ set( PCBNEW_EXPORTERS
exporters/export_gencad.cpp
exporters/export_idf.cpp
exporters/export_vrml.cpp
exporters/idf_common.cpp
exporters/idf.cpp
exporters/gen_drill_report_files.cpp
exporters/gen_modules_placefile.cpp

View File

@ -47,8 +47,6 @@
#include <idf.h>
#include <build_version.h>
// differences in angle smaller than MIN_ANG are considered equal
#define MIN_ANG (0.01)
// minimum drill diameter (nanometers) - 10000 is a 0.01mm drill
#define IDF_MIN_DIA ( 10000.0 )
@ -70,280 +68,6 @@ static bool GetIDFString( const std::string& aLine, std::string& aIDFString,
// END: IDF_LIB helper routines
bool IDF_POINT::Matches( const IDF_POINT& aPoint, double aRadius )
{
double dx = x - aPoint.x;
double dy = y - aPoint.y;
double d2 = dx * dx + dy * dy;
if( d2 <= aRadius * aRadius )
return true;
return false;
}
double IDF_POINT::CalcDistance( const IDF_POINT& aPoint ) const
{
double dx = aPoint.x - x;
double dy = aPoint.y - y;
double dist = sqrt( dx * dx + dy * dy );
return dist;
}
double IDF3::CalcAngleRad( const IDF_POINT& aStartPoint, const IDF_POINT& aEndPoint )
{
return atan2( aEndPoint.y - aStartPoint.y, aEndPoint.x - aStartPoint.x );
}
double IDF3::CalcAngleDeg( const IDF_POINT& aStartPoint, const IDF_POINT& aEndPoint )
{
double ang = CalcAngleRad( aStartPoint, aEndPoint );
// round to thousandths of a degree
int iang = int (ang / M_PI * 1800000.0);
ang = iang / 10000.0;
return ang;
}
IDF_SEGMENT::IDF_SEGMENT()
{
angle = 0.0;
offsetAngle = 0.0;
radius = 0.0;
}
IDF_SEGMENT::IDF_SEGMENT( const IDF_POINT& aStartPoint, const IDF_POINT& aEndPoint )
{
angle = 0.0;
offsetAngle = 0.0;
radius = 0.0;
startPoint = aStartPoint;
endPoint = aEndPoint;
}
IDF_SEGMENT::IDF_SEGMENT( const IDF_POINT& aStartPoint,
const IDF_POINT& aEndPoint,
double aAngle,
bool aFromKicad )
{
double diff = abs( aAngle ) - 360.0;
if( ( diff < MIN_ANG
&& diff > -MIN_ANG ) || ( aAngle < MIN_ANG && aAngle > -MIN_ANG ) || (!aFromKicad) )
{
angle = 0.0;
startPoint = aStartPoint;
endPoint = aEndPoint;
if( diff < MIN_ANG && diff > -MIN_ANG )
{
angle = 360.0;
center = aStartPoint;
offsetAngle = 0.0;
radius = aStartPoint.CalcDistance( aEndPoint );
}
else if( aAngle < MIN_ANG && aAngle > -MIN_ANG )
{
CalcCenterAndRadius();
}
return;
}
// we need to convert from the KiCad arc convention
angle = aAngle;
center = aStartPoint;
offsetAngle = IDF3::CalcAngleDeg( aStartPoint, aEndPoint );
radius = aStartPoint.CalcDistance( aEndPoint );
startPoint = aEndPoint;
double ang = offsetAngle + aAngle;
ang = (ang / 180.0) * M_PI;
endPoint.x = ( radius * cos( ang ) ) + center.x;
endPoint.y = ( radius * sin( ang ) ) + center.y;
}
bool IDF_SEGMENT::MatchesStart( const IDF_POINT& aPoint, double aRadius )
{
return startPoint.Matches( aPoint, aRadius );
}
bool IDF_SEGMENT::MatchesEnd( const IDF_POINT& aPoint, double aRadius )
{
return endPoint.Matches( aPoint, aRadius );
}
void IDF_SEGMENT::CalcCenterAndRadius( void )
{
// NOTE: this routine does not check if the points are the same
// or too close to be sensible in a production setting.
double offAng = IDF3::CalcAngleRad( startPoint, endPoint );
double d = startPoint.CalcDistance( endPoint ) / 2.0;
double xm = ( startPoint.x + endPoint.x ) * 0.5;
double ym = ( startPoint.y + endPoint.y ) * 0.5;
radius = d / sin( angle * M_PI / 180.0 );
if( radius < 0.0 )
{
radius = -radius;
}
// calculate the height of the triangle with base d and hypotenuse r
double dh2 = radius * radius - d * d;
if( dh2 < 0 )
{
// this should only ever happen due to rounding errors when r == d
dh2 = 0;
}
double h = sqrt( dh2 );
if( angle > 0.0 )
offAng += M_PI2;
else
offAng -= M_PI2;
if( ( angle > M_PI ) || ( angle < -M_PI ) )
offAng += M_PI;
center.x = h * cos( offAng ) + xm;
center.y = h * sin( offAng ) + ym;
offsetAngle = IDF3::CalcAngleDeg( center, startPoint );
}
bool IDF_SEGMENT::IsCircle( void )
{
double diff = abs( angle ) - 360.0;
if( ( diff < MIN_ANG ) && ( diff > -MIN_ANG ) )
return true;
return false;
}
double IDF_SEGMENT::GetMinX( void )
{
if( angle == 0.0 )
return std::min( startPoint.x, endPoint.x );
// Calculate the leftmost point of the circle or arc
if( IsCircle() )
{
// if only everything were this easy
return center.x - radius;
}
// cases:
// 1. CCW arc: if offset + included angle >= 180 deg then
// MinX = center.x - radius, otherwise MinX is the
// same as for the case of a line.
// 2. CW arc: if offset + included angle <= -180 deg then
// MinX = center.x - radius, otherwise MinX is the
// same as for the case of a line.
if( angle > 0 )
{
// CCW case
if( ( offsetAngle + angle ) >= 180.0 )
{
return center.x - radius;
}
else
{
return std::min( startPoint.x, endPoint.x );
}
}
// CW case
if( ( offsetAngle + angle ) <= -180.0 )
{
return center.x - radius;
}
return std::min( startPoint.x, endPoint.x );
}
void IDF_SEGMENT::SwapEnds( void )
{
if( IsCircle() )
{
// reverse the direction
angle = -angle;
return;
}
IDF_POINT tmp = startPoint;
startPoint = endPoint;
endPoint = tmp;
if( ( angle < MIN_ANG ) && ( angle > -MIN_ANG ) )
return; // nothing more to do
// change the direction of the arc
angle = -angle;
// calculate the new offset angle
offsetAngle = IDF3::CalcAngleDeg( center, startPoint );
}
void IDF_OUTLINE::push( IDF_SEGMENT* item )
{
if( !outline.empty() )
{
if( item->IsCircle() )
{
// not allowed
wxString msg = wxT( "INVALID GEOMETRY: a circle is being added to a non-empty outline" );
THROW_IO_ERROR( msg );
}
else
{
if( outline.back()->IsCircle() )
{
// we can't add lines to a circle
wxString msg = wxT( "INVALID GEOMETRY: a line is being added to a circular outline" );
THROW_IO_ERROR( msg );
}
else if( !item->MatchesStart( outline.back()->endPoint ) )
{
// startPoint[N] != endPoint[N -1]
wxString msg = wxT( "INVALID GEOMETRY: disjoint segments" );
THROW_IO_ERROR( msg );
}
}
}
outline.push_back( item );
dir += ( outline.back()->endPoint.x - outline.back()->startPoint.x )
* ( outline.back()->endPoint.y + outline.back()->startPoint.y );
}
IDF_DRILL_DATA::IDF_DRILL_DATA( double aDrillDia, double aPosX, double aPosY,
IDF3::KEY_PLATING aPlating,
@ -881,141 +605,6 @@ void IDF_BOARD::GetOffset( double& x, double& y )
}
void IDF3::GetOutline( std::list<IDF_SEGMENT*>& aLines,
IDF_OUTLINE& aOutline )
{
aOutline.Clear();
// NOTE: To tell if the point order is CCW or CW,
// sum all: (endPoint.X[n] - startPoint.X[n])*(endPoint[n] + startPoint.Y[n])
// If the result is >0, the direction is CW, otherwise
// it is CCW. Note that the result cannot be 0 unless
// we have a bounded area of 0.
// First we find the segment with the leftmost point
std::list<IDF_SEGMENT*>::iterator bl = aLines.begin();
std::list<IDF_SEGMENT*>::iterator el = aLines.end();
std::list<IDF_SEGMENT*>::iterator idx = bl++; // iterator for the object with minX
double minx = (*idx)->GetMinX();
double curx;
while( bl != el )
{
curx = (*bl)->GetMinX();
if( curx < minx )
{
minx = curx;
idx = bl;
}
++bl;
}
aOutline.push( *idx );
aLines.erase( idx );
// If the item is a circle then we're done
if( aOutline.front()->IsCircle() )
return;
// Assemble the loop
bool complete = false; // set if loop is complete
bool matched; // set if a segment's end point was matched
while( !complete )
{
matched = false;
bl = aLines.begin();
el = aLines.end();
while( bl != el && !matched )
{
if( (*bl)->MatchesStart( aOutline.back()->endPoint ) )
{
if( (*bl)->IsCircle() )
{
// a circle on the perimeter is pathological but we just ignore it
++bl;
}
else
{
matched = true;
aOutline.push( *bl );
aLines.erase( bl );
}
continue;
}
++bl;
}
if( !matched )
{
// attempt to match the end points
bl = aLines.begin();
el = aLines.end();
while( bl != el && !matched )
{
if( (*bl)->MatchesEnd( aOutline.back()->endPoint ) )
{
if( (*bl)->IsCircle() )
{
// a circle on the perimeter is pathological but we just ignore it
++bl;
}
else
{
matched = true;
(*bl)->SwapEnds();
aOutline.push( *bl );
aLines.erase( bl );
}
continue;
}
++bl;
}
}
if( !matched )
{
// still no match - attempt to close the loop
if( (aOutline.size() > 1) || ( aOutline.front()->angle < -MIN_ANG )
|| ( aOutline.front()->angle > MIN_ANG ) )
{
// close the loop
IDF_SEGMENT* seg = new IDF_SEGMENT( aOutline.back()->endPoint,
aOutline.front()->startPoint );
if( seg )
{
complete = true;
aOutline.push( seg );
break;
}
}
// the outline is bad; drop the segments
aOutline.Clear();
return;
}
// check if the loop is complete
if( aOutline.front()->MatchesStart( aOutline.back()->endPoint ) )
{
complete = true;
break;
}
}
}
IDF_LIB::~IDF_LIB()
{
while( !components.empty() )

View File

@ -31,269 +31,7 @@
#include <wx/string.h>
#include <set>
#include <string>
#ifndef M_PI
#define M_PI 3.1415926535897932384626433832795028841
#endif
#ifndef M_PI2
#define M_PI2 ( M_PI / 2.0 )
#endif
#ifndef M_PI4
#define M_PI4 ( M_PI / 4.0 )
#endif
class IDF_POINT;
class IDF_SEGMENT;
class IDF_DRILL_DATA;
class IDF_OUTLINE;
class IDF_LIB;
namespace IDF3 {
enum KEY_OWNER
{
UNOWNED = 0, // < either MCAD or ECAD may modify a feature
MCAD, // < only MCAD may modify a feature
ECAD // < only ECAD may modify a feature
};
enum KEY_HOLETYPE
{
PIN = 0, // < drill hole is for a pin
VIA, // < drill hole is for a via
MTG, // < drill hole is for mounting
TOOL, // < drill hole is for tooling
OTHER // < user has specified a custom type
};
enum KEY_PLATING
{
PTH = 0, // < Plate-Through Hole
NPTH // < Non-Plate-Through Hole
};
enum KEY_REFDES
{
BOARD = 0, // < feature is associated with the board
NOREFDES, // < feature is associated with a component with no RefDes
PANEL, // < feature is associated with an IDF panel
REFDES // < reference designator as assigned by the CAD software
};
// calculate the angle between the horizon and the segment aStartPoint to aEndPoint
double CalcAngleRad( const IDF_POINT& aStartPoint, const IDF_POINT& aEndPoint );
double CalcAngleDeg( const IDF_POINT& aStartPoint, const IDF_POINT& aEndPoint );
// take contiguous elements from 'lines' and stuff them into 'outline'
void GetOutline( std::list<IDF_SEGMENT*>& aLines,
IDF_OUTLINE& aOutline );
}
/**
* @Struct IDF_POINT
* represents a vector of three doubles; this may be represent
* a point in space, or scaling, translation or rotation along
* three axes.
*/
struct IDF_VECTOR
{
double x;
double y;
double z;
};
/**
* @Class IDF_POINT
* represents a point
*/
class IDF_POINT
{
public:
double x; // < X coordinate
double y; // < Y coordinate
IDF_POINT()
{
x = 0.0;
y = 0.0;
}
/**
* Function Matches()
* returns true if the given coordinate point is within the given radius
* of the point.
* @param aPoint : coordinates of the point being compared
* @param aRadius : radius within which the points are considered the same
*/
bool Matches( const IDF_POINT& aPoint, double aRadius = 1e-5 );
double CalcDistance( const IDF_POINT& aPoint ) const;
};
/**
* @Class IDF_SEGMENT
* represents a geometry segment as used in IDFv3 outlines
*/
class IDF_SEGMENT
{
private:
/**
* Function CalcCenterAndRadius()
* Calculates the center, radius, and angle between center and start point given the
* IDF compliant points and included angle.
* @var startPoint, @var endPoint, and @var angle must be set prior as per IDFv3
*/
void CalcCenterAndRadius( void );
public:
IDF_POINT startPoint; // starting point in IDF coordinates
IDF_POINT endPoint; // end point in IDF coordinates
IDF_POINT center; // center of an arc or circle; used primarily for calculating min X
double angle; // included angle (degrees) according to IDFv3 specification
double offsetAngle; // angle between center and start of arc; used to speed up some calcs.
double radius; // radius of the arc or circle; used to speed up some calcs.
/**
* Function IDF_SEGMENT()
* initializes the internal variables
*/
IDF_SEGMENT();
/**
* Function IDF_SEGMENT( start, end )
* creates a straight segment
*/
IDF_SEGMENT( const IDF_POINT& aStartPoint, const IDF_POINT& aEndPoint );
/**
* Function IDF_SEGMENT( start, end )
* creates a straight segment, arc, or circle depending on the angle
* @param aStartPoint : start point (center if using KiCad convention, otherwise IDF convention)
* @param aEndPoint : end point (start of arc if using KiCad convention, otherwise IDF convention)
* @param aAngle : included angle; the KiCad convention is equivalent to the IDF convention
* @param fromKicad : set true if we need to convert from KiCad to IDF convention
*/
IDF_SEGMENT( const IDF_POINT& aStartPoint,
const IDF_POINT& aEndPoint,
double aAngle,
bool aFromKicad );
/**
* Function MatchesStart()
* returns true if the given coordinate is within a radius 'rad'
* of the start point.
* @param aPoint : coordinates of the point being compared
* @param aRadius : radius within which the points are considered the same
*/
bool MatchesStart( const IDF_POINT& aPoint, double aRadius = 1e-3 );
/**
* Function MatchesEnd()
* returns true if the given coordinate is within a radius 'rad'
* of the end point.
* @param aPoint : coordinates of the point being compared
* @param aRadius : radius within which the points are considered the same
*/
bool MatchesEnd( const IDF_POINT& aPoint, double aRadius = 1e-3 );
/**
* Function IsCircle()
* returns true if this segment is a circle
*/
bool IsCircle( void );
/**
* Function GetMinX()
* returns the minimum X coordinate of this segment
*/
double GetMinX( void );
/**
* Function SwapEnds()
* Swaps the start and end points and alters internal
* variables as necessary for arcs
*/
void SwapEnds( void );
};
/**
* @Class IDF_OUTLINE
* contains segment and winding information for an IDF outline
*/
class IDF_OUTLINE
{
private:
double dir;
std::list<IDF_SEGMENT*> outline;
public:
IDF_OUTLINE() { dir = 0.0; }
~IDF_OUTLINE() { Clear(); }
// returns true if the current list of points represents a counterclockwise winding
bool IsCCW( void )
{
if( dir > 0.0 )
return false;
return true;
}
// clears the internal list of outline segments
void Clear( void )
{
dir = 0.0;
while( !outline.empty() )
{
delete outline.front();
outline.pop_front();
}
}
// returns the size of the internal segment list
size_t size( void )
{
return outline.size();
}
// returns true if the internal segment list is empty
bool empty( void )
{
return outline.empty();
}
// return the front() of the internal segment list
IDF_SEGMENT*& front( void )
{
return outline.front();
}
// return the back() of the internal segment list
IDF_SEGMENT*& back( void )
{
return outline.back();
}
// return the begin() iterator of the internal segment list
std::list<IDF_SEGMENT*>::iterator begin( void )
{
return outline.begin();
}
// return the end() iterator of the internal segment list
std::list<IDF_SEGMENT*>::iterator end( void )
{
return outline.end();
}
// push a segment onto the internal list
void push( IDF_SEGMENT* item );
};
#include <idf_common.h>
/**

View File

@ -0,0 +1,484 @@
/**
* file: idf_common.cpp
*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013-2014 Cirilo Bernardo
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <list>
#include <string>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <richio.h>
#include <idf_common.h>
#include <build_version.h>
#ifdef DEBUG_IDF
void IDF3::PrintSeg( IDF_SEGMENT* aSegment )
{
if( aSegment->IsCircle() )
{
fprintf(stdout, "printSeg(): CIRCLE: C(%.3f, %.3f) P(%.3f, %.3f) rad. %.3f\n",
aSegment->startPoint.x, aSegment->startPoint.y,
aSegment->endPoint.x, aSegment->endPoint.y,
aSegment->radius );
return;
}
if( aSegment->angle < -MIN_ANG || aSegment->angle > MIN_ANG )
{
fprintf(stdout, "printSeg(): ARC: p1(%.3f, %.3f) p2(%.3f, %.3f) ang. %.3f\n",
aSegment->startPoint.x, aSegment->startPoint.y,
aSegment->endPoint.x, aSegment->endPoint.y,
aSegment->angle );
return;
}
fprintf(stdout, "printSeg(): LINE: p1(%.3f, %.3f) p2(%.3f, %.3f)\n",
aSegment->startPoint.x, aSegment->startPoint.y,
aSegment->endPoint.x, aSegment->endPoint.y );
return;
}
#endif
bool IDF_POINT::Matches( const IDF_POINT& aPoint, double aRadius )
{
double dx = x - aPoint.x;
double dy = y - aPoint.y;
double d2 = dx * dx + dy * dy;
if( d2 <= aRadius * aRadius )
return true;
return false;
}
double IDF_POINT::CalcDistance( const IDF_POINT& aPoint ) const
{
double dx = aPoint.x - x;
double dy = aPoint.y - y;
double dist = sqrt( dx * dx + dy * dy );
return dist;
}
double IDF3::CalcAngleRad( const IDF_POINT& aStartPoint, const IDF_POINT& aEndPoint )
{
return atan2( aEndPoint.y - aStartPoint.y, aEndPoint.x - aStartPoint.x );
}
double IDF3::CalcAngleDeg( const IDF_POINT& aStartPoint, const IDF_POINT& aEndPoint )
{
double ang = CalcAngleRad( aStartPoint, aEndPoint );
// round to thousandths of a degree
int iang = int (ang / M_PI * 1800000.0);
ang = iang / 10000.0;
return ang;
}
void IDF3::GetOutline( std::list<IDF_SEGMENT*>& aLines,
IDF_OUTLINE& aOutline )
{
aOutline.Clear();
// NOTE: To tell if the point order is CCW or CW,
// sum all: (endPoint.X[n] - startPoint.X[n])*(endPoint[n] + startPoint.Y[n])
// If the result is >0, the direction is CW, otherwise
// it is CCW. Note that the result cannot be 0 unless
// we have a bounded area of 0.
// First we find the segment with the leftmost point
std::list<IDF_SEGMENT*>::iterator bl = aLines.begin();
std::list<IDF_SEGMENT*>::iterator el = aLines.end();
std::list<IDF_SEGMENT*>::iterator idx = bl++; // iterator for the object with minX
double minx = (*idx)->GetMinX();
double curx;
while( bl != el )
{
curx = (*bl)->GetMinX();
if( curx < minx )
{
minx = curx;
idx = bl;
}
++bl;
}
aOutline.push( *idx );
#ifdef DEBUG_IDF
PrintSeg( *idx );
#endif
aLines.erase( idx );
// If the item is a circle then we're done
if( aOutline.front()->IsCircle() )
return;
// Assemble the loop
bool complete = false; // set if loop is complete
bool matched; // set if a segment's end point was matched
while( !complete )
{
matched = false;
bl = aLines.begin();
el = aLines.end();
while( bl != el && !matched )
{
if( (*bl)->MatchesStart( aOutline.back()->endPoint ) )
{
if( (*bl)->IsCircle() )
{
// a circle on the perimeter is pathological but we just ignore it
++bl;
}
else
{
matched = true;
#ifdef DEBUG_IDF
PrintSeg( *bl );
#endif
aOutline.push( *bl );
aLines.erase( bl );
}
continue;
}
++bl;
}
if( !matched )
{
// attempt to match the end points
bl = aLines.begin();
el = aLines.end();
while( bl != el && !matched )
{
if( (*bl)->MatchesEnd( aOutline.back()->endPoint ) )
{
if( (*bl)->IsCircle() )
{
// a circle on the perimeter is pathological but we just ignore it
++bl;
}
else
{
matched = true;
(*bl)->SwapEnds();
#ifdef DEBUG_IDF
printSeg( *bl );
#endif
aOutline.push( *bl );
aLines.erase( bl );
}
continue;
}
++bl;
}
}
if( !matched )
{
// still no match - attempt to close the loop
if( (aOutline.size() > 1) || ( aOutline.front()->angle < -MIN_ANG )
|| ( aOutline.front()->angle > MIN_ANG ) )
{
// close the loop
IDF_SEGMENT* seg = new IDF_SEGMENT( aOutline.back()->endPoint,
aOutline.front()->startPoint );
if( seg )
{
complete = true;
#ifdef DEBUG_IDF
printSeg( seg );
#endif
aOutline.push( seg );
break;
}
}
// the outline is bad; drop the segments
aOutline.Clear();
return;
}
// check if the loop is complete
if( aOutline.front()->MatchesStart( aOutline.back()->endPoint ) )
{
complete = true;
break;
}
}
}
IDF_SEGMENT::IDF_SEGMENT()
{
angle = 0.0;
offsetAngle = 0.0;
radius = 0.0;
}
IDF_SEGMENT::IDF_SEGMENT( const IDF_POINT& aStartPoint, const IDF_POINT& aEndPoint )
{
angle = 0.0;
offsetAngle = 0.0;
radius = 0.0;
startPoint = aStartPoint;
endPoint = aEndPoint;
}
IDF_SEGMENT::IDF_SEGMENT( const IDF_POINT& aStartPoint,
const IDF_POINT& aEndPoint,
double aAngle,
bool aFromKicad )
{
double diff = abs( aAngle ) - 360.0;
if( ( diff < MIN_ANG
&& diff > -MIN_ANG ) || ( aAngle < MIN_ANG && aAngle > -MIN_ANG ) || (!aFromKicad) )
{
angle = 0.0;
startPoint = aStartPoint;
endPoint = aEndPoint;
if( diff < MIN_ANG && diff > -MIN_ANG )
{
angle = 360.0;
center = aStartPoint;
offsetAngle = 0.0;
radius = aStartPoint.CalcDistance( aEndPoint );
}
else if( aAngle < MIN_ANG && aAngle > -MIN_ANG )
{
CalcCenterAndRadius();
}
return;
}
// we need to convert from the KiCad arc convention
angle = aAngle;
center = aStartPoint;
offsetAngle = IDF3::CalcAngleDeg( aStartPoint, aEndPoint );
radius = aStartPoint.CalcDistance( aEndPoint );
startPoint = aEndPoint;
double ang = offsetAngle + aAngle;
ang = (ang / 180.0) * M_PI;
endPoint.x = ( radius * cos( ang ) ) + center.x;
endPoint.y = ( radius * sin( ang ) ) + center.y;
}
bool IDF_SEGMENT::MatchesStart( const IDF_POINT& aPoint, double aRadius )
{
return startPoint.Matches( aPoint, aRadius );
}
bool IDF_SEGMENT::MatchesEnd( const IDF_POINT& aPoint, double aRadius )
{
return endPoint.Matches( aPoint, aRadius );
}
void IDF_SEGMENT::CalcCenterAndRadius( void )
{
// NOTE: this routine does not check if the points are the same
// or too close to be sensible in a production setting.
double offAng = IDF3::CalcAngleRad( startPoint, endPoint );
double d = startPoint.CalcDistance( endPoint ) / 2.0;
double xm = ( startPoint.x + endPoint.x ) * 0.5;
double ym = ( startPoint.y + endPoint.y ) * 0.5;
radius = d / sin( angle * M_PI / 180.0 );
if( radius < 0.0 )
{
radius = -radius;
}
// calculate the height of the triangle with base d and hypotenuse r
double dh2 = radius * radius - d * d;
if( dh2 < 0 )
{
// this should only ever happen due to rounding errors when r == d
dh2 = 0;
}
double h = sqrt( dh2 );
if( angle > 0.0 )
offAng += M_PI2;
else
offAng -= M_PI2;
if( ( angle > M_PI ) || ( angle < -M_PI ) )
offAng += M_PI;
center.x = h * cos( offAng ) + xm;
center.y = h * sin( offAng ) + ym;
offsetAngle = IDF3::CalcAngleDeg( center, startPoint );
}
bool IDF_SEGMENT::IsCircle( void )
{
double diff = abs( angle ) - 360.0;
if( ( diff < MIN_ANG ) && ( diff > -MIN_ANG ) )
return true;
return false;
}
double IDF_SEGMENT::GetMinX( void )
{
if( angle == 0.0 )
return std::min( startPoint.x, endPoint.x );
// Calculate the leftmost point of the circle or arc
if( IsCircle() )
{
// if only everything were this easy
return center.x - radius;
}
// cases:
// 1. CCW arc: if offset + included angle >= 180 deg then
// MinX = center.x - radius, otherwise MinX is the
// same as for the case of a line.
// 2. CW arc: if offset + included angle <= -180 deg then
// MinX = center.x - radius, otherwise MinX is the
// same as for the case of a line.
if( angle > 0 )
{
// CCW case
if( ( offsetAngle + angle ) >= 180.0 )
{
return center.x - radius;
}
else
{
return std::min( startPoint.x, endPoint.x );
}
}
// CW case
if( ( offsetAngle + angle ) <= -180.0 )
{
return center.x - radius;
}
return std::min( startPoint.x, endPoint.x );
}
void IDF_SEGMENT::SwapEnds( void )
{
if( IsCircle() )
{
// reverse the direction
angle = -angle;
return;
}
IDF_POINT tmp = startPoint;
startPoint = endPoint;
endPoint = tmp;
if( ( angle < MIN_ANG ) && ( angle > -MIN_ANG ) )
return; // nothing more to do
// change the direction of the arc
angle = -angle;
// calculate the new offset angle
offsetAngle = IDF3::CalcAngleDeg( center, startPoint );
}
void IDF_OUTLINE::push( IDF_SEGMENT* item )
{
if( !outline.empty() )
{
if( item->IsCircle() )
{
// not allowed
wxString msg = wxT( "INVALID GEOMETRY: a circle is being added to a non-empty outline" );
THROW_IO_ERROR( msg );
}
else
{
if( outline.back()->IsCircle() )
{
// we can't add lines to a circle
wxString msg = wxT( "INVALID GEOMETRY: a line is being added to a circular outline" );
THROW_IO_ERROR( msg );
}
else if( !item->MatchesStart( outline.back()->endPoint ) )
{
// startPoint[N] != endPoint[N -1]
wxString msg = wxT( "INVALID GEOMETRY: disjoint segments" );
THROW_IO_ERROR( msg );
}
}
}
outline.push_back( item );
dir += ( outline.back()->endPoint.x - outline.back()->startPoint.x )
* ( outline.back()->endPoint.y + outline.back()->startPoint.y );
}

View File

@ -0,0 +1,290 @@
/**
* @file idf_common.h
*/
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013-2014 Cirilo Bernardo
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef IDF_COMMON_H
#define IDF_COMMON_H
#include <list>
#ifndef M_PI
#define M_PI 3.1415926535897932384626433832795028841
#endif
#ifndef M_PI2
#define M_PI2 ( M_PI / 2.0 )
#endif
#ifndef M_PI4
#define M_PI4 ( M_PI / 4.0 )
#endif
// differences in angle smaller than MIN_ANG are considered equal
#define MIN_ANG (0.01)
class IDF_POINT;
class IDF_SEGMENT;
class IDF_DRILL_DATA;
class IDF_OUTLINE;
class IDF_LIB;
namespace IDF3 {
enum KEY_OWNER
{
UNOWNED = 0, // < either MCAD or ECAD may modify a feature
MCAD, // < only MCAD may modify a feature
ECAD // < only ECAD may modify a feature
};
enum KEY_HOLETYPE
{
PIN = 0, // < drill hole is for a pin
VIA, // < drill hole is for a via
MTG, // < drill hole is for mounting
TOOL, // < drill hole is for tooling
OTHER // < user has specified a custom type
};
enum KEY_PLATING
{
PTH = 0, // < Plate-Through Hole
NPTH // < Non-Plate-Through Hole
};
enum KEY_REFDES
{
BOARD = 0, // < feature is associated with the board
NOREFDES, // < feature is associated with a component with no RefDes
PANEL, // < feature is associated with an IDF panel
REFDES // < reference designator as assigned by the CAD software
};
// calculate the angle between the horizon and the segment aStartPoint to aEndPoint
double CalcAngleRad( const IDF_POINT& aStartPoint, const IDF_POINT& aEndPoint );
double CalcAngleDeg( const IDF_POINT& aStartPoint, const IDF_POINT& aEndPoint );
// take contiguous elements from 'lines' and stuff them into 'outline'
void GetOutline( std::list<IDF_SEGMENT*>& aLines,
IDF_OUTLINE& aOutline );
#ifdef DEBUG_IDF
// prints out segment information for debug purposes
void PrintSeg( IDF_SEGMENT* aSegment );
#endif
}
/**
* @Class IDF_POINT
* represents a point
*/
class IDF_POINT
{
public:
double x; // < X coordinate
double y; // < Y coordinate
IDF_POINT()
{
x = 0.0;
y = 0.0;
}
/**
* Function Matches()
* returns true if the given coordinate point is within the given radius
* of the point.
* @param aPoint : coordinates of the point being compared
* @param aRadius : radius within which the points are considered the same
*/
bool Matches( const IDF_POINT& aPoint, double aRadius = 1e-5 );
double CalcDistance( const IDF_POINT& aPoint ) const;
};
/**
* @Class IDF_SEGMENT
* represents a geometry segment as used in IDFv3 outlines
*/
class IDF_SEGMENT
{
private:
/**
* Function CalcCenterAndRadius()
* Calculates the center, radius, and angle between center and start point given the
* IDF compliant points and included angle.
* @var startPoint, @var endPoint, and @var angle must be set prior as per IDFv3
*/
void CalcCenterAndRadius( void );
public:
IDF_POINT startPoint; // starting point in IDF coordinates
IDF_POINT endPoint; // end point in IDF coordinates
IDF_POINT center; // center of an arc or circle; used primarily for calculating min X
double angle; // included angle (degrees) according to IDFv3 specification
double offsetAngle; // angle between center and start of arc; used to speed up some calcs.
double radius; // radius of the arc or circle; used to speed up some calcs.
/**
* Function IDF_SEGMENT()
* initializes the internal variables
*/
IDF_SEGMENT();
/**
* Function IDF_SEGMENT( start, end )
* creates a straight segment
*/
IDF_SEGMENT( const IDF_POINT& aStartPoint, const IDF_POINT& aEndPoint );
/**
* Function IDF_SEGMENT( start, end )
* creates a straight segment, arc, or circle depending on the angle
* @param aStartPoint : start point (center if using KiCad convention, otherwise IDF convention)
* @param aEndPoint : end point (start of arc if using KiCad convention, otherwise IDF convention)
* @param aAngle : included angle; the KiCad convention is equivalent to the IDF convention
* @param fromKicad : set true if we need to convert from KiCad to IDF convention
*/
IDF_SEGMENT( const IDF_POINT& aStartPoint,
const IDF_POINT& aEndPoint,
double aAngle,
bool aFromKicad );
/**
* Function MatchesStart()
* returns true if the given coordinate is within a radius 'rad'
* of the start point.
* @param aPoint : coordinates of the point being compared
* @param aRadius : radius within which the points are considered the same
*/
bool MatchesStart( const IDF_POINT& aPoint, double aRadius = 1e-3 );
/**
* Function MatchesEnd()
* returns true if the given coordinate is within a radius 'rad'
* of the end point.
* @param aPoint : coordinates of the point being compared
* @param aRadius : radius within which the points are considered the same
*/
bool MatchesEnd( const IDF_POINT& aPoint, double aRadius = 1e-3 );
/**
* Function IsCircle()
* returns true if this segment is a circle
*/
bool IsCircle( void );
/**
* Function GetMinX()
* returns the minimum X coordinate of this segment
*/
double GetMinX( void );
/**
* Function SwapEnds()
* Swaps the start and end points and alters internal
* variables as necessary for arcs
*/
void SwapEnds( void );
};
/**
* @Class IDF_OUTLINE
* contains segment and winding information for an IDF outline
*/
class IDF_OUTLINE
{
private:
double dir;
std::list<IDF_SEGMENT*> outline;
public:
IDF_OUTLINE() { dir = 0.0; }
~IDF_OUTLINE() { Clear(); }
// returns true if the current list of points represents a counterclockwise winding
bool IsCCW( void )
{
if( dir > 0.0 )
return false;
return true;
}
// clears the internal list of outline segments
void Clear( void )
{
dir = 0.0;
while( !outline.empty() )
{
delete outline.front();
outline.pop_front();
}
}
// returns the size of the internal segment list
size_t size( void )
{
return outline.size();
}
// returns true if the internal segment list is empty
bool empty( void )
{
return outline.empty();
}
// return the front() of the internal segment list
IDF_SEGMENT*& front( void )
{
return outline.front();
}
// return the back() of the internal segment list
IDF_SEGMENT*& back( void )
{
return outline.back();
}
// return the begin() iterator of the internal segment list
std::list<IDF_SEGMENT*>::iterator begin( void )
{
return outline.begin();
}
// return the end() iterator of the internal segment list
std::list<IDF_SEGMENT*>::iterator end( void )
{
return outline.end();
}
// push a segment onto the internal list
void push( IDF_SEGMENT* item );
};
#endif // IDF_COMMON_H

2
utils/CMakeLists.txt Normal file
View File

@ -0,0 +1,2 @@
add_subdirectory( idftools )

View File

@ -0,0 +1,25 @@
include_directories(
"${CMAKE_SOURCE_DIR}/include"
"${CMAKE_SOURCE_DIR}/lib_dxf"
"${CMAKE_SOURCE_DIR}/pcbnew/exporters"
"${CMAKE_SOURCE_DIR}/utils/idftools"
)
link_directories(
"${CMAKE_BINARY_DIR}/lib_dxf"
)
add_executable( idfcyl idf_cylinder.cpp )
add_executable( idfrect idf_rect.cpp )
add_executable( dxf2idf dxf2idfmain.cpp dxf2idf.cpp
"${CMAKE_SOURCE_DIR}/pcbnew/exporters/idf_common.cpp"
"${CMAKE_SOURCE_DIR}/common/richio.cpp"
)
target_link_libraries( dxf2idf lib_dxf ${wxWidgets_LIBRARIES} )
install( TARGETS idfcyl idfrect dxf2idf
DESTINATION ${KICAD_BIN}
COMPONENT binary )

292
utils/idftools/dxf2idf.cpp Normal file
View File

@ -0,0 +1,292 @@
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014 Cirilo Bernardo
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <cstdio>
#include <iostream>
#include <libdxfrw.h>
#include <dxf2idf.h>
// differences in angle smaller than MIN_ANG are considered equal
#define MIN_ANG (0.01)
DXF2IDF::~DXF2IDF()
{
while( !lines.empty() )
{
#ifdef DEBUG_IDF
IDF3::printSeg( lines.back() );
#endif
delete lines.back();
lines.pop_back();
}
}
bool DXF2IDF::ReadDxf( const std::string aFile )
{
dxfRW* reader = new dxfRW( aFile.c_str() );
if( !reader )
return false;
bool success = reader->read( this, true );
delete reader;
return success;
}
void DXF2IDF::addLine( const DRW_Line& data )
{
IDF_POINT p1, p2;
p1.x = data.basePoint.x;
p1.y = data.basePoint.y;
p2.x = data.secPoint.x;
p2.y = data.secPoint.y;
IDF_SEGMENT* seg = new IDF_SEGMENT( p1, p2 );
if( !seg )
{
std::cerr << "* FAULT: could not add a linear segment to the outline\n";
}
else
{
lines.push_back( seg );
}
return;
}
void DXF2IDF::addCircle( const DRW_Circle& data )
{
IDF_POINT p1, p2;
p1.x = data.basePoint.x;
p1.y = data.basePoint.y;
p2.x = p1.x + data.radious;
p2.y = p1.y;
IDF_SEGMENT* seg = new IDF_SEGMENT( p1, p2, 360, true );
if( !seg )
{
std::cerr << "* FAULT: could not add a linear segment to the outline\n";
}
else
{
lines.push_back( seg );
}
return;
}
void DXF2IDF::addArc( const DRW_Arc& data )
{
IDF_POINT p1, p2;
p1.x = data.basePoint.x;
p1.y = data.basePoint.y;
// note: DXF circles always run CCW
double ea = data.endangle;
while( ea < data.staangle )
ea += M_PI;
p2.x = p1.x + cos( data.staangle ) * data.radious;
p2.y = p1.y + sin( data.staangle ) * data.radious;
double angle = ( ea - data.staangle ) * 180.0 / M_PI;
IDF_SEGMENT* seg = new IDF_SEGMENT( p1, p2, angle, true );
if( !seg )
{
std::cerr << "* FAULT: could not add a linear segment to the outline\n";
}
else
{
lines.push_back( seg );
}
return;
}
bool DXF2IDF::WriteOutline( FILE* aFile, bool isInch )
{
if( lines.empty() )
{
std::cerr << "* DXF2IDF: empty outline\n";
return false;
}
// 1. find lowest X value
// 2. string an outline together
// 3. emit warnings if more than 1 outline
IDF_OUTLINE outline;
IDF3::GetOutline( lines, outline );
if( outline.empty() )
{
std::cerr << "* DXF2IDF::WriteOutline(): no valid outline in file\n";
return false;
}
if( !lines.empty() )
{
std::cerr << "* DXF2IDF::WriteOutline(): WARNING: more than 1 outline in file\n";
std::cerr << "* Only the first outline will be used\n";
}
char loopDir = '1';
if( outline.IsCCW() )
loopDir = '0';
std::list<IDF_SEGMENT*>::iterator bo;
std::list<IDF_SEGMENT*>::iterator eo;
if( outline.size() == 1 )
{
if( !outline.front()->IsCircle() )
{
std::cerr << "* DXF2IDF::WriteOutline(): bad outline\n";
return false;
}
// NOTE: a circle always has an angle of 360, never -360,
// otherwise SolidWorks chokes on the file.
if( isInch )
{
fprintf( aFile, "%c %d %d 0\n", loopDir,
(int) (1000 * outline.front()->startPoint.x),
(int) (1000 * outline.front()->startPoint.y) );
fprintf( aFile, "%c %d %d 360\n", loopDir,
(int) (1000 * outline.front()->endPoint.x),
(int) (1000 * outline.front()->endPoint.y) );
}
else
{
fprintf( aFile, "%c %.3f %.3f 0\n", loopDir,
outline.front()->startPoint.x, outline.front()->startPoint.y );
fprintf( aFile, "%c %.3f %.3f 360\n", loopDir,
outline.front()->endPoint.x, outline.front()->endPoint.y );
}
return true;
}
// ensure that the very last point is the same as the very first point
outline.back()-> endPoint = outline.front()->startPoint;
bo = outline.begin();
eo = outline.end();
// for the first item we write out both points
if( (*bo)->angle < MIN_ANG && (*bo)->angle > -MIN_ANG )
{
if( isInch )
{
fprintf( aFile, "%c %d %d 0\n", loopDir,
(int) (1000 * (*bo)->startPoint.x),
(int) (1000 * (*bo)->startPoint.y) );
fprintf( aFile, "%c %d %d 0\n", loopDir,
(int) (1000 * (*bo)->endPoint.x),
(int) (1000 * (*bo)->endPoint.y) );
}
else
{
fprintf( aFile, "%c %.3f %.3f 0\n", loopDir,
(*bo)->startPoint.x, (*bo)->startPoint.y );
fprintf( aFile, "%c %.3f %.3f 0\n", loopDir,
(*bo)->endPoint.x, (*bo)->endPoint.y );
}
}
else
{
if( isInch )
{
fprintf( aFile, "%c %d %d 0\n", loopDir,
(int) (1000 * (*bo)->startPoint.x),
(int) (1000 * (*bo)->startPoint.y) );
fprintf( aFile, "%c %d %d %.2f\n", loopDir,
(int) (1000 * (*bo)->endPoint.x),
(int) (1000 * (*bo)->endPoint.y),
(*bo)->angle );
}
else
{
fprintf( aFile, "%c %.3f %.3f 0\n", loopDir,
(*bo)->startPoint.x, (*bo)->startPoint.y );
fprintf( aFile, "%c %.3f %.3f %.2f\n", loopDir,
(*bo)->endPoint.x, (*bo)->endPoint.y, (*bo)->angle );
}
}
++bo;
// for all other segments we only write out the last point
while( bo != eo )
{
if( isInch )
{
if( (*bo)->angle < MIN_ANG && (*bo)->angle > -MIN_ANG )
{
fprintf( aFile, "%c %d %d 0\n", loopDir,
(int) (1000 * (*bo)->endPoint.x),
(int) (1000 * (*bo)->endPoint.y) );
}
else
{
fprintf( aFile, "%c %d %d %.2f\n", loopDir,
(int) (1000 * (*bo)->endPoint.x),
(int) (1000 * (*bo)->endPoint.y),
(*bo)->angle );
}
}
else
{
if( (*bo)->angle < MIN_ANG && (*bo)->angle > -MIN_ANG )
{
fprintf( aFile, "%c %.5f %.5f 0\n", loopDir,
(*bo)->endPoint.x, (*bo)->endPoint.y );
}
else
{
fprintf( aFile, "%c %.5f %.5f %.2f\n", loopDir,
(*bo)->endPoint.x, (*bo)->endPoint.y, (*bo)->angle );
}
}
++bo;
}
return true;
}

96
utils/idftools/dxf2idf.h Normal file
View File

@ -0,0 +1,96 @@
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014 Cirilo Bernardo
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef DXF2IDF_H
#define DXF2IDF_H
#include <string>
#include <drw_interface.h>
#include <idf_common.h>
class DXF2IDF : public DRW_Interface
{
private:
std::list< IDF_SEGMENT* > lines; // Unsorted list of graphical segments
public:
~DXF2IDF();
bool ReadDxf( const std::string aFile );
bool WriteOutline( FILE* aFile, bool isInch );
private:
// DRW_Interface implemented callback functions
virtual void addLine(const DRW_Line& data);
virtual void addArc(const DRW_Arc& data );
virtual void addCircle(const DRW_Circle& data );
// DRW_Interface callbacks unsupported by DXF2IDF
virtual void addHeader( const DRW_Header* data ){}
virtual void addLType( const DRW_LType& data ){}
virtual void addLayer( const DRW_Layer& data ){}
virtual void addDimStyle( const DRW_Dimstyle& data ){}
virtual void addVport(const DRW_Vport& data){}
virtual void addTextStyle(const DRW_Textstyle& data){}
virtual void addBlock(const DRW_Block& data ){}
virtual void setBlock(const int handle){}
virtual void endBlock(){}
virtual void addPoint(const DRW_Point& data ){}
virtual void addRay(const DRW_Ray& data ){}
virtual void addXline(const DRW_Xline& data ){}
virtual void addEllipse(const DRW_Ellipse& data ){}
virtual void addLWPolyline(const DRW_LWPolyline& data ){}
virtual void addPolyline(const DRW_Polyline& data ){}
virtual void addSpline(const DRW_Spline* data ){}
virtual void addKnot(const DRW_Entity&){}
virtual void addInsert(const DRW_Insert& data ){}
virtual void addTrace(const DRW_Trace& data ){}
virtual void add3dFace(const DRW_3Dface& data ){}
virtual void addSolid(const DRW_Solid& data ){}
virtual void addMText(const DRW_MText& data){}
virtual void addText(const DRW_Text& data ){}
virtual void addDimAlign(const DRW_DimAligned *data ){}
virtual void addDimLinear(const DRW_DimLinear *data ){}
virtual void addDimRadial(const DRW_DimRadial *data ){}
virtual void addDimDiametric(const DRW_DimDiametric *data ){}
virtual void addDimAngular(const DRW_DimAngular *data ){}
virtual void addDimAngular3P(const DRW_DimAngular3p *data ){}
virtual void addDimOrdinate(const DRW_DimOrdinate *data ){}
virtual void addLeader(const DRW_Leader *data ){}
virtual void addHatch(const DRW_Hatch* data ){}
virtual void addViewport(const DRW_Viewport& data){}
virtual void addImage(const DRW_Image* data ){}
virtual void linkImage(const DRW_ImageDef* data ){}
virtual void addComment(const char*){}
virtual void writeHeader(DRW_Header& data){}
virtual void writeBlocks(){}
virtual void writeBlockRecords(){}
virtual void writeEntities(){}
virtual void writeLTypes(){}
virtual void writeLayers(){}
virtual void writeTextstyles(){}
virtual void writeVports(){}
virtual void writeDimstyles(){}
};
#endif // DXF2IDF_H

View File

@ -0,0 +1,189 @@
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014 Cirilo Bernardo
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <cstdio>
#include <iostream>
#include <sstream>
#include <string>
#include <list>
#include <dxf2idf.h>
using namespace std;
int main( int argc, char **argv )
{
list< string > comments;
string line;
stringstream tstr;
string dname; // DXF filename
string gname; // Geometry Name
string pname; // Part Name
double height; // extrusion height
bool inch = false; // true = inches, false = mm
bool ok;
if( argc == 1 )
{
// no arguments; print out usage information
cout << "dxf2idf: this program takes line, arc, and circle segments\n";
cout << " from a DXF file and creates an IDF component outline file.\n\n";
cout << "Input:\n";
cout << " DXF filename: the input file, must end in '.dxf'\n";
cout << " Units: mm, in (millimeters or inches)\n";
cout << " Geometry Name: string, as per IDF version 3.0 specification\n";
cout << " Part Name: as per IDF version 3.0 specification of Part Number\n";
cout << " Height: extruded height of the outline\n";
cout << " Comments: all non-empty lines are comments to be added to\n";
cout << " the IDF file. An empty line signifies the end of\n";
cout << " the comment block.\n";
cout << " File name: output filename, must end in '.idf'\n\n";
}
line.clear();
while( line.empty() || line.find( ".dxf" ) == string::npos )
{
cout << "* DXF filename: ";
line.clear();
std::getline( cin, line );
}
dname = line;
line.clear();
while( line.compare( "mm" ) && line.compare( "in" )
&& line.compare( "MM" ) && line.compare( "IN" ) )
{
cout << "* Units (mm,in): ";
line.clear();
std::getline( cin, line );
}
if( line.compare( "mm" ) && line.compare( "MM" ) )
inch = true;
line.clear();
while( line.empty() )
{
cout << "* Geometry name: ";
line.clear();
std::getline( cin, line );
if( line.find( "\"" ) != string::npos )
{
cerr << "[INFO] geometry name may not contain quotation marks\n";
line.clear();
}
}
gname = line;
line.clear();
while( line.empty() )
{
cout << "* Part name: ";
line.clear();
std::getline( cin, line );
if( line.find( "\"" ) != string::npos )
{
cerr << "[INFO] part name may not contain quotation marks\n";
line.clear();
}
}
pname = line;
ok = false;
while( !ok )
{
cout << "* Height: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
if( (tstr >> height ) && height > 0.001 )
ok = true;
}
cout << "* COMMENTS: any non-blank line is a comment;\n";
cout << " a blank line signifies the end of comments.\n";
ok = false;
while( !ok )
{
line.clear();
std::getline( cin, line );
if( line.empty() )
{
ok = true;
}
else
{
if( line[0] != '#' )
line.insert( 0, "# " );
comments.push_back( line );
}
}
line.clear();
while( line.empty() || line.find( ".idf" ) == string::npos )
{
cout << "* File name (*.idf): ";
line.clear();
std::getline( cin, line );
}
DXF2IDF dxf;
dxf.ReadDxf( dname.c_str() );
FILE* fp = fopen( line.c_str(), "w" );
list< string >::const_iterator scom = comments.begin();
list< string >::const_iterator ecom = comments.end();
while( scom != ecom )
{
fprintf( fp, "%s\n", (*scom).c_str() );
++scom;
}
fprintf( fp, ".ELECTRICAL\n" );
if( inch )
fprintf( fp, "\"%s\" \"%s\" THOU %d\n", gname.c_str(),
pname.c_str(), (int) (height * 1000.0) );
else
fprintf( fp, "\"%s\" \"%s\" MM %.3f\n", gname.c_str(),
pname.c_str(), height );
dxf.WriteOutline( fp, inch );
fprintf( fp, ".END_ELECTRICAL\n" );
return 0;
}

View File

@ -0,0 +1,668 @@
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014 Cirilo Bernardo
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/*
* This program creates an outline for a horizontal or vertically
* oriented axial or radial leaded cylinder with dimensions based
* on the user's input.
*/
#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <cmath>
#include <cstdio>
#include <list>
#include <utility>
#include <clocale>
using namespace std;
void make_vcyl( bool inch, bool axial, double dia, double length,
double z, double wireDia );
void make_hcyl( bool inch, bool axial, double dia, double length,
double z, double wireDia );
void writeAxialCyl( FILE* fp, bool inch, double dia, double length, double wireDia, double pitch );
void writeRadialCyl( FILE* fp, bool inch, double dia, double length, double wireDia,
double pitch, double lead );
int main( int argc, char **argv )
{
// IDF implicitly requires the C locale
setlocale( LC_ALL, "C" );
if( argc == 1 )
{
cout << "idfcyl: This program generates an outline for a cylindrical component.\n";
cout << " The cylinder may be horizontal or vertical.\n";
cout << " A horizontal cylinder may have wires at one or both ends.\n";
cout << " A vertical cylinder may have at most one wire which may be\n";
cout << " placed on the left or right side.\n\n";
cout << "Input:\n";
cout << " Unit: mm, in (millimeters or inches)\n";
cout << " Orientation: V (vertical)\n";
cout << " Lead type: X, R (axial, radial)\n";
cout << " Diameter of body\n";
cout << " Length of body\n";
cout << " Board offset\n";
cout << " * Wire diameter\n";
cout << " * Pitch\n";
cout << " ** Wire side: L, R (left, right)\n";
cout << " *** Lead length\n";
cout << " File name (must end in *.idf)\n\n";
cout << " NOTES:\n";
cout << " * only required for horizontal orientation or\n";
cout << " vertical orientation with axial leads\n\n";
cout << " ** only required for vertical orientation with axial leads\n\n";
cout << " *** only required for horizontal orientation with radial leads\n\n";
}
char orientation = '\0';
bool inch = false; // default mm
double dia = 0.0;
double length = 0.0;
double extraZ = 0.0;
double wireDia = 0.0;
bool axial = false;
stringstream tstr;
string line;
line.clear();
while( line.compare( "mm" ) && line.compare( "in" ) )
{
cout << "* Units (mm,in): ";
line.clear();
std::getline( cin, line );
}
if( line.compare( "mm" ) )
inch = true;
line.clear();
while( line.compare( "H" ) && line.compare( "h" )
&& line.compare( "V" ) && line.compare( "v" ) )
{
cout << "* Orientation (H,V): ";
line.clear();
std::getline( cin, line );
}
if( line.compare( "H" ) && line.compare( "h" ) )
orientation = 'v';
else
orientation = 'h';
bool ok = false;
while( !ok )
{
cout << "* Axial or Radial (X,R): ";
line.clear();
std::getline( cin, line );
if( !line.compare( "x" ) || !line.compare( "X" ) )
{
axial = true;
ok = true;
}
else if( !line.compare( "r" ) || !line.compare( "R" ) )
{
axial = false;
ok = true;
}
}
// cylinder dimensions
ok = false;
while( !ok )
{
cout << "* Diameter: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
if( (tstr >> dia) && dia > 0.0 )
ok = true;
}
ok = false;
while( !ok )
{
cout << "* Length: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
if( (tstr >> length) && length > 0.0 )
ok = true;
}
ok = false;
while( !ok )
{
cout << "* Board offset: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
if( (tstr >> extraZ) && extraZ > 0.0 )
ok = true;
}
ok = false;
while( ( axial || orientation == 'h' ) && !ok )
{
cout << "* Wire diameter: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
if( (tstr >> wireDia) && wireDia > 0.0 )
{
if( wireDia < dia )
ok = true;
else
cout << "* WARNING: wire diameter must be < cylinder diameter\n";
}
}
switch( orientation )
{
case 'v':
make_vcyl( inch, axial, dia, length, extraZ, wireDia );
break;
case 'h':
make_hcyl( inch, axial, dia, length, extraZ, wireDia );
break;
default:
break;
}
setlocale( LC_ALL, "" );
return 0;
}
void make_vcyl( bool inch, bool axial, double dia, double length,
double z, double wireDia )
{
bool ok = false;
bool left = false;
stringstream tstr;
string line;
double pitch = 0.0;
while( axial && !ok )
{
cout << "* Pitch: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
if( (tstr >> pitch) && pitch > 0.0 )
{
if( (pitch - wireDia) <= (dia / 2.0) )
{
cout << "* WARNING: Pitch must be > dia/2 + wireDia\n";
}
else
{
ok = true;
}
}
}
ok = false;
while( axial && !ok )
{
cout << "* Pin side (L,R): ";
line.clear();
std::getline( cin, line );
if( !line.compare( "l" ) || !line.compare( "L" ) )
{
left = true;
ok = true;
}
else if( !line.compare( "r" ) || !line.compare( "R" ) )
ok = true;
}
line.clear();
while( line.empty() || line.find( ".idf" ) == string::npos )
{
cout << "* File name (*.idf): ";
line.clear();
std::getline( cin, line );
}
FILE* fp = fopen( line.c_str(), "w" );
if( !fp )
{
cerr << "Could not open output file: " << line << "\n";
return;
}
fprintf( fp, "# cylindrical outline, vertical, " );
if( !axial )
fprintf( fp, "radial leads\n" );
else
fprintf( fp, "axial lead on %s\n", left ? "left" : "right" );
fprintf( fp, "# file: \"%s\"\n", line.c_str() );
if( inch )
{
fprintf( fp, "# dia: %d THOU\n", (int) (dia * 1000) );
fprintf( fp, "# length: %d THOU\n", (int) (length * 1000) );
fprintf( fp, "# board offset: %d THOU\n", (int) (z * 1000) );
if( axial )
{
fprintf( fp, "# wire dia: %d THOU\n", (int) (wireDia * 1000) );
fprintf( fp, "# pitch: %d THOU\n", (int) (pitch * 1000) );
}
}
else
{
fprintf( fp, "# dia: %.3f mm\n", dia );
fprintf( fp, "# length: %.3f mm\n", length );
fprintf( fp, "# board offset: %.3f mm\n", z );
if( axial )
{
fprintf( fp, "# wire dia: %.3f mm\n", wireDia );
fprintf( fp, "# pitch: %.3f mm\n", pitch );
}
}
fprintf( fp, ".ELECTRICAL\n" );
if( !axial )
{
fprintf( fp, "\"CYLV_%s_RAD\" \"D%.3f_H%.3f_Z%.3f\" ", inch ? "IN" : "MM",
dia, length, z );
}
else
{
fprintf( fp, "\"CYLV_%s_AX%s\" \"D%.3f_H%.3f_Z%.3f_WD%.3f_P%.3f\" ", inch ? "IN" : "MM",
left ? "L" : "R", dia, length, z, wireDia, pitch );
}
if( inch )
fprintf( fp, "THOU %d\n", (int) ((length + z) * 1000) );
else
fprintf( fp, "MM %.3f\n", length + z );
if( !axial )
{
fprintf( fp, "0 0 0 0\n" );
if( inch )
fprintf( fp, "0 %d 0 360\n", (int) (dia * 1000) );
else
fprintf( fp, "0 %.3f 0 360\n", dia );
fprintf( fp, ".END_ELECTRICAL\n" );
fclose( fp );
return;
}
double px[4], py[4];
// points are:
// [0] = upper point on cylinder perimeter
// [1] = lower point on cylinder perimeter
// [2] = point beneath wire center
// [3] = point above wire center
if( inch )
{
dia *= 1000.0;
pitch *= 1000.0;
wireDia *= 1000.0;
}
double ang = asin( wireDia / dia );
px[0] = dia * cos( ang ) / 2.0 - pitch / 2.0;
px[1] = px[0];
px[2] = pitch / 2.0;
px[3] = px[2];
py[0] = wireDia / 2.0;
py[1] = -py[0];
py[2] = py[1];
py[3] = py[0];
char li = '0';
double fullAng = 360.0;
if( left )
{
li = '1';
fullAng = -360.0;
for( int i = 0; i < 4; ++i ) px[i] = -px[i];
}
if( inch )
{
fprintf( fp, "%c %d %d 0\n", li, (int) px[0], (int) py[0] );
fprintf( fp, "%c %d %d %.3f\n", li, (int) px[1], (int) py[1],
fullAng * ( 1 - ang / M_PI ) );
fprintf( fp, "%c %d %d 0\n", li, (int) px[2], (int) py[2] );
fprintf( fp, "%c %d %d %s\n", li, (int) px[3], (int) py[3],
left ? "-180" : "180" );
fprintf( fp, "%c %d %d 0\n", li, (int) px[0], (int) py[0] );
}
else
{
fprintf( fp, "%c %.3f %.3f 0\n", li, px[0], py[0] );
fprintf( fp, "%c %.3f %.3f %.3f\n", li, px[1], py[1], fullAng * ( 1 - ang / M_PI ) );
fprintf( fp, "%c %.3f %.3f 0\n", li, px[2], py[2] );
fprintf( fp, "%c %.3f %.3f %s\n", li, px[3], py[3],
left ? "-180" : "180" );
fprintf( fp, "%c %.3f %.3f 0\n", li, px[0], py[0] );
}
fprintf( fp, ".END_ELECTRICAL\n" );
fclose( fp );
return;
}
void make_hcyl( bool inch, bool axial, double dia, double length,
double z, double wireDia )
{
bool ok = false;
stringstream tstr;
string line;
double pitch = 0.0;
double lead = 0.0; // lead length for radial leads
ok = false;
while( !ok )
{
if( axial )
cout << "* Axial pitch: ";
else
cout << "* Radial pitch: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
if( (tstr >> pitch) && pitch > 0.0 )
{
if( axial )
{
if( (pitch - wireDia) <= length )
{
cout << "* WARNING: Axial pitch must be > length + wireDia\n";
}
else
{
ok = true;
}
}
else
{
if( (pitch + wireDia) >= dia )
{
cout << "* WARNING: Radial pitch must be < dia - wireDia\n";
}
else if( pitch <= wireDia )
{
cout << "* WARNING: Radial pitch must be > wireDia\n";
}
else
{
ok = true;
}
}
}
}
ok = false;
while( !axial && !ok )
{
cout << "* Lead length: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
if( (tstr >> lead) && lead > 0.0 )
{
if( lead < wireDia )
cout << "* WARNING: lead length must be >= wireDia\n";
else
ok = true;
}
}
line.clear();
while( line.empty() || line.find( ".idf" ) == string::npos )
{
cout << "* File name (*.idf): ";
line.clear();
std::getline( cin, line );
}
FILE* fp = fopen( line.c_str(), "w" );
if( !fp )
{
cerr << "Could not open output file: " << line << "\n";
return;
}
fprintf( fp, "# cylindrical outline, horiz., " );
fprintf( fp, "%s pins\n", axial ? "axial" : "radial" );
fprintf( fp, "# file: \"%s\"\n", line.c_str() );
if( inch )
{
fprintf( fp, "# dia: %d THOU\n", (int) (dia * 1000) );
fprintf( fp, "# length: %d THOU\n", (int) (length * 1000) );
fprintf( fp, "# extra height: %d THOU\n", (int) (z * 1000) );
fprintf( fp, "# wire dia: %d THOU\n", (int) (wireDia * 1000) );
fprintf( fp, "# pitch: %d THOU\n", (int) (pitch * 1000) );
if( !axial )
fprintf( fp, "# lead: %d THOU\n", (int) (lead * 1000) );
}
else
{
fprintf( fp, "# dia: %.3f mm\n", dia );
fprintf( fp, "# length: %.3f mm\n", length );
fprintf( fp, "# extra height: %.3f mm\n", z );
fprintf( fp, "# wire dia: %.3f mm\n", wireDia );
fprintf( fp, "# pitch: %.3f mm\n", pitch );
if( !axial )
fprintf( fp, "# lead: %.3f mm\n", lead );
}
fprintf( fp, ".ELECTRICAL\n" );
if( axial )
{
fprintf( fp, "\"CYLH_%s_AXI\" \"D%.3f_H%.3f_Z%.3f_WD%.3f_P%.3f\" ",
inch ? "IN" : "MM", dia, length, z, wireDia, pitch );
}
else
{
fprintf( fp, "\"CYLH_%s_RAD\" \"D%.3f_H%.3f_Z%.3f_WD%.3f_P%.3f_L%.3f\" ",
inch ? "IN" : "MM", dia, length, z, wireDia, pitch, lead );
}
if( inch )
{
fprintf( fp, "THOU %d\n", (int) ((dia + z) * 1000) );
dia *= 1000.0;
length *= 1000.0;
wireDia *= 1000.0;
pitch *= 1000.0;
if( !axial )
lead *= 1000.0;
}
else
{
fprintf( fp, "MM %.3f\n", dia + z );
}
if( axial )
writeAxialCyl( fp, inch, dia, length, wireDia, pitch );
else
writeRadialCyl( fp, inch, dia, length, wireDia, pitch, lead );
fprintf( fp, ".END_ELECTRICAL\n" );
fclose( fp );
return;
return;
}
void writeAxialCyl( FILE* fp, bool inch, double dia, double length,
double wireDia, double pitch )
{
double x1, y1;
double x2, y2;
x1 = -length / 2.0;
x2 = -pitch / 2.0;
y1 = dia / 2.0;
y2 = wireDia / 2.0;
if( inch )
{
fprintf( fp, "0 %d %d 0\n", (int) x1, (int) y1 );
fprintf( fp, "0 %d %d 0\n", (int) x1, (int) y2 );
fprintf( fp, "0 %d %d 0\n", (int) x2, (int) y2 );
fprintf( fp, "0 %d %d 180\n", (int) x2, (int) -y2 );
fprintf( fp, "0 %d %d 0\n", (int) x1, (int) -y2 );
fprintf( fp, "0 %d %d 0\n", (int) x1, (int) -y1 );
fprintf( fp, "0 %d %d 0\n", (int) -x1, (int) -y1 );
fprintf( fp, "0 %d %d 0\n", (int) -x1, (int) -y2 );
fprintf( fp, "0 %d %d 0\n", (int) -x2, (int) -y2 );
fprintf( fp, "0 %d %d 180\n", (int) -x2, (int) y2 );
fprintf( fp, "0 %d %d 0\n", (int) -x1, (int) y2 );
fprintf( fp, "0 %d %d 0\n", (int) -x1, (int) y1 );
fprintf( fp, "0 %d %d 0\n", (int) x1, (int) y1 );
}
else
{
fprintf( fp, "0 %.3f %.3f 0\n", x1, y1 );
fprintf( fp, "0 %.3f %.3f 0\n", x1, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x2, y2 );
fprintf( fp, "0 %.3f %.3f 180\n", x2, -y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x1, -y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x1, -y1 );
fprintf( fp, "0 %.3f %.3f 0\n", -x1, -y1 );
fprintf( fp, "0 %.3f %.3f 0\n", -x1, -y2 );
fprintf( fp, "0 %.3f %.3f 0\n", -x2, -y2 );
fprintf( fp, "0 %.3f %.3f 180\n", -x2, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", -x1, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", -x1, y1 );
fprintf( fp, "0 %.3f %.3f 0\n", x1, y1 );
}
return;
}
void writeRadialCyl( FILE* fp, bool inch, double dia, double length,
double wireDia, double pitch, double lead )
{
double x1, y1;
double x2, y2;
double x3;
// center is between the mounting holes
// which are on a horizontal line
y1 = lead + length;
y2 = lead;
x1 = dia / 2.0;
x2 = ( pitch + wireDia ) /2.0;
x3 = x2 - wireDia;
if( inch )
{
fprintf( fp, "0 %d %d 0\n", (int) -x1, (int) y1 );
fprintf( fp, "0 %d %d 0\n", (int) -x1, (int) y2 );
fprintf( fp, "0 %d %d 0\n", (int) -x2, (int) y2 );
fprintf( fp, "0 %d 0 0\n", (int) -x2 );
fprintf( fp, "0 %d 0 180\n", (int) -x3 );
fprintf( fp, "0 %d %d 0\n", (int) -x3, (int) y2 );
fprintf( fp, "0 %d %d 0\n", (int) x3, (int) y2 );
fprintf( fp, "0 %d 0 0\n", (int) x3 );
fprintf( fp, "0 %d 0 180\n", (int) x2 );
fprintf( fp, "0 %d %d 0\n", (int) x2, (int) y2 );
fprintf( fp, "0 %d %d 0\n", (int) x1, (int) y2 );
fprintf( fp, "0 %d %d 0\n", (int) x1, (int) y1 );
fprintf( fp, "0 %d %d 0\n", (int) -x1, (int) y1 );
}
else
{
fprintf( fp, "0 %.3f %.3f 0\n", -x1, y1 );
fprintf( fp, "0 %.3f %.3f 0\n", -x1, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", -x2, y2 );
fprintf( fp, "0 %.3f 0 0\n", -x2 );
fprintf( fp, "0 %.3f 0 180\n", -x3 );
fprintf( fp, "0 %.3f %.3f 0\n", -x3, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x3, y2 );
fprintf( fp, "0 %.3f 0 0\n", x3 );
fprintf( fp, "0 %.3f 0 180\n", x2 );
fprintf( fp, "0 %.3f %.3f 0\n", x2, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x1, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x1, y1 );
fprintf( fp, "0 %.3f %.3f 0\n", -x1, y1 );
}
return;
}

421
utils/idftools/idf_rect.cpp Normal file
View File

@ -0,0 +1,421 @@
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014 Cirilo Bernardo
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <cmath>
#include <cstdio>
#include <list>
#include <utility>
#include <clocale>
using namespace std;
void writeLeaded( FILE* fp, double width, double length, double height,
double wireDia, double pitch, bool inch );
void writeLeadless( FILE* fp, double width, double length,
double height, double chamfer, bool inch );
int main( int argc, char **argv )
{
// IDF implicitly requires the C locale
setlocale( LC_ALL, "C" );
if( argc == 1 )
{
cout << "idfrect: This program generates an outline for a rectangular component.\n";
cout << " The component may have a single lead (axial) or a chamfer on the\n";
cout << " upper left corner.\n";
cout << "Input:\n";
cout << " Unit: mm, in (millimeters or inches)\n";
cout << " Width:\n";
cout << " Length:\n";
cout << " Height:\n";
cout << " Chamfer: length of the 45 deg. chamfer\n";
cout << " * Leaded: Y,N (lead is always to the right)\n";
cout << " ** Wire diameter\n";
cout << " ** Pitch\n";
cout << " File name (must end in *.idf)\n\n";
cout << " NOTES:\n";
cout << " * only required if chamfer = 0\n\n";
cout << " ** only required for leaded components\n\n";
}
bool inch = false; // default mm
double width = 0.0;
double length = 0.0;
double height = 0.0;
double wireDia = 0.0;
double pitch = 0.0;
double chamfer = 0.0;
bool leaded = false;
bool ok = false;
stringstream tstr;
string line;
line.clear();
while( line.compare( "mm" ) && line.compare( "in" ) )
{
cout << "* Units (mm,in): ";
line.clear();
std::getline( cin, line );
}
if( line.compare( "mm" ) )
inch = true;
ok = false;
while( !ok )
{
cout << "* Width: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
if( (tstr >> width) && width >= 0.001 )
ok = true;
}
ok = false;
while( !ok )
{
cout << "* Length: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
if( (tstr >> length) && length > 0.0 )
ok = true;
}
ok = false;
while( !ok )
{
cout << "* Height: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
if( (tstr >> height) && height >= 0.001 )
ok = true;
}
ok = false;
while( !ok )
{
cout << "* Chamfer (0 for none): ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
if( (tstr >> chamfer) && chamfer >= 0.0 )
{
if( chamfer > width / 3.0 || chamfer > length / 3.0 )
cout << "* WARNING: chamfer must be <= MIN( width, length )/3\n";
else
ok = true;
}
}
if( chamfer < 1e-6 )
{
ok = false;
while( !ok )
{
cout << "* Leaded: Y, N: ";
line.clear();
std::getline( cin, line );
if( !line.compare( "Y" ) || !line.compare( "y" ) )
{
leaded = true;
ok = true;
}
else if( !line.compare( "N" ) || !line.compare( "n" ) )
{
leaded = false;
ok = true;
}
}
}
ok = false;
while( leaded && !ok )
{
cout << "* Wire dia.: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
if( (tstr >> wireDia) && wireDia >= 0.001 )
{
if( wireDia >= length )
cout << "* WARNING: wire diameter must be < length\n";
else
ok = true;
}
}
ok = false;
while( leaded && !ok )
{
cout << "* Pitch: ";
line.clear();
std::getline( cin, line );
tstr.clear();
tstr.str( line );
if( (tstr >> pitch) && pitch >= 0.001 )
{
if( pitch <= ( length + wireDia ) / 2.0 )
cout << "* WARNING: pitch must be > (length + wireDia)/2\n";
else
ok = true;
}
}
line.clear();
while( line.empty() || line.find( ".idf" ) == string::npos )
{
cout << "* File name (*.idf): ";
line.clear();
std::getline( cin, line );
}
FILE* fp = fopen( line.c_str(), "w" );
if( !fp )
{
cerr << "Could not open output file: " << line << "\n";
}
else
{
fprintf( fp, "# rectangular outline%s\n", leaded ? ", leaded" : "" );
fprintf( fp, "# file: \"%s\"\n", line.c_str() );
if( inch )
{
width *= 1000.0;
length *= 1000.0;
height *= 1000.0;
wireDia *= 1000.0;
pitch *= 1000.0;
chamfer *= 1000.0;
fprintf( fp, "# width: %d THOU\n", (int) width );
fprintf( fp, "# length: %d THOU\n", (int) length );
fprintf( fp, "# height: %d THOU\n", (int) height );
if( leaded )
{
fprintf( fp, "# wire dia: %d THOU\n", (int) wireDia );
fprintf( fp, "# pitch: %d THOU\n", (int) pitch );
}
else
{
fprintf( fp, "# chamfer: %d THOU\n", (int) chamfer );
}
fprintf( fp, ".ELECTRICAL\n" );
fprintf( fp, "\"RECT%sIN\" \"W%d_L%d_H%d", leaded ? "L" : "",
(int) width, (int) length, (int) height );
if( leaded )
fprintf( fp, "_D%d_P%d\" ", (int) wireDia, (int) pitch );
else
fprintf( fp, "_C%d\" ", (int) chamfer );
fprintf( fp, "THOU %d\n", (int) height );
}
else
{
fprintf( fp, "# width: %.3f mm\n", width );
fprintf( fp, "# length: %.3f mm\n", length );
fprintf( fp, "# height: %.3f mm\n", height );
if( leaded )
{
fprintf( fp, "# wire dia: %.3f mm\n", wireDia );
fprintf( fp, "# pitch: %.3f mm\n", pitch );
}
else
{
fprintf( fp, "# chamfer: %.3f mm\n", chamfer );
}
fprintf( fp, ".ELECTRICAL\n" );
fprintf( fp, "\"RECT%sMM\" \"W%.3f_L%.3f_H%.3f_", leaded ? "L" : "",
width, length, height );
if( leaded )
fprintf( fp, "D%.3f_P%.3f\" ", wireDia, pitch );
else
fprintf( fp, "C%.3f\" ", chamfer );
fprintf( fp, "MM %.3f\n", height );
}
if( leaded )
writeLeaded( fp, width, length, height, wireDia, pitch, inch );
else
writeLeadless( fp, width, length, height, chamfer, inch );
fprintf( fp, ".END_ELECTRICAL\n" );
fclose( fp );
}
setlocale( LC_ALL, "" );
return 0;
}
void writeLeaded( FILE* fp, double width, double length,
double height, double wireDia, double pitch, bool inch )
{
if( inch )
{
int x1, x2, x3;
int y1, y2;
x1 = pitch / 2.0;
x2 = width / 2.0 - x1;
x3 = x2 - width;
y1 = wireDia / 2.0;
y2 = length / 2.0;
fprintf( fp, "0 %d %d 0\n", x1, y1 );
fprintf( fp, "0 %d %d 0\n", x2, y1 );
fprintf( fp, "0 %d %d 0\n", x2, y2 );
fprintf( fp, "0 %d %d 0\n", x3, y2 );
fprintf( fp, "0 %d %d 0\n", x3, -y2 );
fprintf( fp, "0 %d %d 0\n", x2, -y2 );
fprintf( fp, "0 %d %d 0\n", x2, -y1 );
fprintf( fp, "0 %d %d 0\n", x1, -y1 );
fprintf( fp, "0 %d %d 180\n", x1, y1 );
}
else
{
double x1, x2, x3;
double y1, y2;
x1 = pitch / 2.0;
x2 = width / 2.0 - x1;
x3 = x2 - width;
y1 = wireDia / 2.0;
y2 = length / 2.0;
fprintf( fp, "0 %.3f %.3f 0\n", x1, y1 );
fprintf( fp, "0 %.3f %.3f 0\n", x2, y1 );
fprintf( fp, "0 %.3f %.3f 0\n", x2, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x3, y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x3, -y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x2, -y2 );
fprintf( fp, "0 %.3f %.3f 0\n", x2, -y1 );
fprintf( fp, "0 %.3f %.3f 0\n", x1, -y1 );
fprintf( fp, "0 %.3f %.3f 180\n", x1, y1 );
}
return;
}
void writeLeadless( FILE* fp, double width, double length,
double height, double chamfer, bool inch )
{
if( chamfer < 0.001 )
{
if( inch )
{
int x = width / 2.0;
int y = length / 2.0;
fprintf( fp, "0 %d %d 0\n", x, y );
fprintf( fp, "0 %d %d 0\n", -x, y );
fprintf( fp, "0 %d %d 0\n", -x, -y );
fprintf( fp, "0 %d %d 0\n", x, -y );
fprintf( fp, "0 %d %d 0\n", x, y );
}
else
{
double x = width / 2.0;
double y = length / 2.0;
fprintf( fp, "0 %.3f %.3f 0\n", x, y );
fprintf( fp, "0 %.3f %.3f 0\n", -x, y );
fprintf( fp, "0 %.3f %.3f 0\n", -x, -y );
fprintf( fp, "0 %.3f %.3f 0\n", x, -y );
fprintf( fp, "0 %.3f %.3f 0\n", x, y );
}
return;
}
if( inch )
{
int x = width / 2.0;
int y = length / 2.0;
int x1 = x - chamfer;
int y1 = y - chamfer;
fprintf( fp, "0 %d %d 0\n", x, y );
fprintf( fp, "0 %d %d 0\n", -x1, y );
fprintf( fp, "0 %d %d 0\n", -x, y1 );
fprintf( fp, "0 %d %d 0\n", -x, -y );
fprintf( fp, "0 %d %d 0\n", x, -y );
fprintf( fp, "0 %d %d 0\n", x, y );
}
else
{
double x = width / 2.0;
double y = length / 2.0;
double x1 = x - chamfer;
double y1 = y - chamfer;
fprintf( fp, "0 %.3f %.3f 0\n", x, y );
fprintf( fp, "0 %.3f %.3f 0\n", -x1, y );
fprintf( fp, "0 %.3f %.3f 0\n", -x, y1 );
fprintf( fp, "0 %.3f %.3f 0\n", -x, -y );
fprintf( fp, "0 %.3f %.3f 0\n", x, -y );
fprintf( fp, "0 %.3f %.3f 0\n", x, y );
}
return;
}