This update replaces the existing uses of unique pointer creation with
the C++14 std::make_unique call that provides proper memory release in
event of an exception.
For custom pad shapes were were calculating cardinal points off
of the bounding box. However, the bounding box must be rotated
around the pad's position, rather than its shapePos -- which is
an issue since any thermal spokes will be rotated around the
shapePos.
Of course we don't really need to sort that out because we're
doing an intersection of the pad's boundary polygon with a vector
from the shapePos out to the cardianl point -- so we really just
need the cardinal point to be "out there". So I've changed it
to use use INT_MAX / 2.
Fixes: lp:1851703
* https://bugs.launchpad.net/kicad/+bug/1851703
Pads may include offsets that allow the user to shift the connection
point of the pad. This is captured by the pad m_Pos but not by
ShapePos(). When testing connectivity, we need to get the offset
position.
With pads, we should check available anchor points for each connection,
increasing probability of finding connection to match fill algorithm
Fixes: lp:1844661
* https://bugs.launchpad.net/kicad/+bug/1844661
Pads not on copper layers now do not have a netname, and are no longer taken in account in connectivity.
Especially it avoid creating useless rats-nests for these pads.
This end was not detected as connected by the IsDangling method.
Fix incorrect cleaning of dangling tracks in track cleaner.
Remove also a dead code.
The merge co-linear track segments is still full bugged in track cleaner.
The no-connect net (0) should never drive the net of a cluster.
Otherwise, tracks connecting between unconnected pads and connected pads
can acquire net 0 incorrectly.
Give the user the option of cancelling a file open if there are
segment zones; otherwise they're converted to polygon fills.
Fixes: lp:1823087
* https://bugs.launchpad.net/kicad/+bug/1823087
Commit 6006703798 fixed a crash but broke the filled zones changes detection.
Filled zones were always seen as not up to date due to the fact the filled areas were cleared too early.
The up to date detection is also optimized: the old filled polygons are no longer stored.
Instead of, the MD5_HASH is calculated and stored before clearing the filled polygons.
Libpolygon can provide its own includes via target_include_dirs PUBLIC.
This means any linking targets do not need to specifiy them manually.
As common requires polygon, the polygon dep is also now no longer
required downstream of libcommon, as it's transisitvely implied
by libcommon's target_link_libraries.
This resolves a circular dependency previously detected and also
simplifies CMakeLists.
The bitmap definitions (BITMAP_DEF and so on) do not
have any dependencies on other libs, including WX. This
means the bitmaps library can be isolated from the other
dependencies.
Common now depends on bitmaps, and libraries that depend
on common can pick it up from the common target_link_libraries,
as it is PUBLIC. This means a lot of targets no longer
need manual bitmap linkage.
This avoids a circular dependency that was previously reported
by static analysis.
Avoiding pulling in WX and other headers into the include
tree of each bitmap .cpp is a huge speed up (around 10x) in
compilation, and the generated static library is also 10x
smaller (20MB vs 200MB)
Add common as a link library to pnsrouter,connectivity.
THese library do still use common code (including bitmaps,
via base_screen.h) and this allows them to pick up the libcommon
includes correctly.
- Added ignore netcode option to CONNECTIVITY_DATA::GetConnectedItems()
- PlaceModule() now ensures the module added to the board (and thus to the connectivity database) has correct bounding box necessary for R-trees to work
- Use recursive connected pad search so that the new net is propagated to all pads
Fixes: lp:1787961
* https://bugs.launchpad.net/kicad/+bug/1787961
Rather than depend on proper unlocking for each exit, we move the
connectivity lock mutex into an RAII-type configuration that
automatically unlocks on exit.
Rather than duplicating the connectivity calculations in determining
whether a track is dangling, we utilize the current database to find the
number of connected items for an anchor item when feasible.
Multiple anchors such as tracks still need additional logic.
Fixes: lp:1805479
* https://bugs.launchpad.net/kicad/+bug/1805479
It is possible for an async thread to simply be deferred if not
specifically set to async. In which case, until the return value is
requested, the loop may simply wait.
By decoupling from std::thread, we can avoid the wait/sleep cycle in
checking the std::atomic completion variable. The std::future variables
are immediately returning without the additional atomic check cycle.
This minimizes the thread usage, particularly during online actions such
as moving items and routing.
UpdateRatsnest: Minimized the number of atomics by utilizing future
promise. Avoided updating node-less nets. Node-less nets are common in
the dynamic ratsnest because the net vector is created from the board
nets by value but only populated with a subset. So the dynamic ratsnest
calculation always saw every net as dirty and spun up extra threads.
searchConnections: ParallelThreadCount is no longer lower bounded.
Small item counts are handled inline rather than with a separate thread.
Some windows machines seem prone to sleeping for excessive times. When
called in the main thread, this may prevent the system from responding
to Windows 'Are you alive?' calls.
Rather than forcing each thread to iterate over the full nets list to
find the dirty items, we collect the dirty items first before asking the
threads to address them. This prevents thread spinning. We also
amortize the cost of calculating on an 8-net per thread basis rather
than 2.
Locks protect the std::set in each item. Devolving the mutex to the
CN_ITEM allows multiple threads to make simultaneous connections to
different items where they do not conflict.
The connectivity files were unwieldy. This separates them logically
into data, algo and items where the items classes are those that hold,
surprise, surprise, the items, lists and clusters.