The start/end point plotting is not reliable for eeschema. We need to
preconvert to angles to get the correct winding as the default plotter
conversion in the PLOTTER class makes pcbnew-based assumptions
Fixes https://gitlab.com/kicad/code/kicad/issues/11885
Depending on plotter type and pad type, the plotted shapes were not always the outlines,
but a outline inside the pad shape (due to legacy reasons).
In many cases the plotted shape was in fact incorrect.
(only noticeable for very small pads)
Now the actual pad outlines are plotted without modification.
Fixes#11484https://gitlab.com/kicad/code/kicad/issues/11484
CHANGED: The text variable ${SHEETNAME} now always represents the name of the
sheet when used anywhere in the schematic editor, including the title block
ADDED: A new text variable ${SHEETPATH} which is replaced with the path to the
current sheet - e.g. "/Sheet 1/Sheet 2".
To ensure backward compatibility, the default drawing sheet now uses
${SHEETPATH}. Custom drawing sheets will need to be manually edited.
Only SVG can actually handle transparency, but we should at least mimic
the color value of other transparent fills by blending with a (presumed)
white paper.
Fixes https://gitlab.com/kicad/code/kicad/issues/11304
Previously, coordinates were clamped to +- 60 inches. It makes no sense to
clamp them at plotter level: max cooed depends on the editor (schematic/board...)
Rename MAX_PAGE_SIZE_MILS to MAX_PAGE_SIZE_EESCHEMA_MILS and use it only for Eeschema.
Fixes#11196https://gitlab.com/kicad/code/kicad/issues/11196
It avoid trying to calculate arc angles (start, end or arc angle) that
frequently create issues due to reverse Y axis, plot mirrored and/or
angle normalization with different criteria.
Fixes#10914https://gitlab.com/kicad/code/kicad/issues/10914
Also fixes some plot bugs with arcs.
Also moves polygonization of arcs (when required) in plotting code
from 5 degrees to calculated based on ARC_HIGH_DEF.
Fixes https://gitlab.com/kicad/code/kicad/issues/5017
Use 4 digits in mantissa as default and when exporting SVG.
Allow 0 as line width: this is the right value to draw filled shapes with no outline thickness.
Putting 1,000s of tiny triangles on a gerber file will cause mfg fits.
Instead, we use easy outline plotting for plots and triangulation for
everything else.
Also fixes a bug where outline fonts weren't being handled for footprint
text in 3D Viewer, and a copy/paste error in stroke font handling for
both PCB and footprint text in 3D Viewer.
Fixes https://gitlab.com/kicad/code/kicad/issues/10319
This one is primarily about pushing TEXT_ATTRIBUTES in to the GAL
API, but it also includes adding EDA_ANGLE signatures to some trig
routines to ease integration.
Also converts HPGL line types to fixed (rather than adaptive). Varying
the pattern to fit each segment is going to look bad most of the time,
but particularly when stroking arcs or circles where HPGL will try to
repeat it for each chord segment.
ADDED arc, circle and rectangle shapes for schematic. Shapes support
line styles and fill colors.
CHANGED sheet background color in Edit Text & Graphics Properties to
fill color (and it now affects shapes).
Pushed STROKE_PARAMS down into common and moved all shapes to using it
for stroke descriptions.
Changes a dot to be a square pixel (linewidth x linewidth). This allows
the removal of IU dependencies and ensures that a dot is always visible
on screen. Also makes sure that cairo is setting the current linewidth
during its stroke routines
Fixes https://gitlab.com/kicad/code/kicad/issues/9362
Unused variables in function calls can be commented out. Unused
return variables get a new routine `ignore_unused()` that silences the
warnings with zero overhead.
They don't define a KiCad string class, so the header file name was
somewhat misleading. But the fact that they didn't match definitely
made coding more difficult.
These aperture macros were previously used but only for chamfered round rect.
They are now also used for custom pads (previously drawn as regions).
They are also optimized, i.e. only one aperture macro is created for a given shape.
(previously, one aperture macro was created for each chamfered round rect pad.)
So now all pads are flashed.
They are used for chamfered round rect pads, and can be used for custom shaped pads.
No actual change currently, but the shape rotation of custom pads and chamfered rr pads
can be now used in gerber plots.
In some macros we are using a circle as primitive (primitive 1).
It needs 4 mandatory prms and one optional (not used by Kicad, always 0) prm.
This not used optional prm can create issues with old Gerber readers, so it is removed now.
Fixes#7047https://gitlab.com/kicad/code/kicad/issues/7047
This will later enable sorting the items for efficiency, which will then
facilitate things that would otherwise be impossibly slow (e.g.
switching pens)
The groundwork has now been laid for per sheet instance data. Initially
this only supports sheet page numbers but could be expanded to include
other per sheet instance information.
ADDED: Support for user defined schematic page numbers.
Setting a line thickness = 0 for graphic objects (circle, rect, line) is
allowed but creates issues for circles that were plotted a non filled shapes
but having a outline thickness = 0.
To avoid issues with broken Gerber readers use aperture macros with shapes
without rotation when more than one primitive is required.
In many gerber readers, rotation of a set of primitives is broken
(do not follow Gerber requirements)
plotter.h contains now only a header common to all plotters.
The code does not actually change, but it allows modifying a specific plotter
without recompiling most of kicad files.
1) For a while now we've been using a calculated seg count from a given
maxError, and a correction factor to push the radius out so that all
the error is outside the arc/circle. However, the second calculation
(which pre-dates the first) is pretty much just the inverse of the first
(and yields nothing more than maxError back). This is particularly
sub-optimal given the cost of trig functions.
2) There are a lot of old optimizations to reduce segcounts in certain
situations, someting that our error-based calculation compensates for
anyway. (Smaller radii need fewer segments to meet the maxError
condition.) But perhaps more importantly we now surface maxError in the
UI and we don't really want to call it "Max deviation except when it's
not".
3) We were also clamping the segCount twice: once in the calculation
routine and once in most of it's callers. Furthermore, the caller
clamping was inconsistent (both in being done and in the clamping
value). We now clamp only in the calculation routine.
4) There's no reason to use the correction factors in the 3Dviewer;
it's just a visualization and whether the polygonization error is
inside or outside the shape isn't really material.
5) The arc-correction-disabling stuff (used for solder mask layer) was
somewhat fragile in that it depended on the caller to turn it back on
afterwards. It's now only exposed as a RAII object which automatically
cleans up when it goes out of scope.
6) There were also bugs in a couple of the polygonization routines where
we'd accumulate round-off error in adding up the segments and end up with
an overly long last segment (which of course would voilate the error
max). This was the cause of the linked bug and also some issues with vias
that we had fudged in the past with extra clearance.
Fixes https://gitlab.com/kicad/code/kicad/issues/5567
We output a 0 opacity text in the SVG plotter to allow searching. When
this text is changed to 100 opacity, it can show up on the user screen
and so needs to be mirrored to match the stroke font output
Fixes https://gitlab.com/kicad/code/kicad/issues/5001
Add missing plot and print changes for the new bus entry properties.
ADDED: Junction properties diameter and color can now be edited.
Fixes: https://gitlab.com/kicad/code/kicad/issues/4593
Due to rounding issues, sometimes (especially for rotated pads) the region
(4 segments+4 arcs) was incorrectly closed (1 unit (nanometer) mismatch between
start point and end point.
Although it does not create bad shape, its breaks the round rect pad identification
in CAM tools.
start point and end point are now the same.
These pads were plotted as a segment. This is not the right way.
Pads must be flashed or plotted as regions, not painted.
They are now plotted as Gerber regions round rectangle pads.
These regions are similar to flashed pads.
Previously, the region was a usual polygon with arc approximated by segment.
Using a region with arcs is a better way because it allows CAM tools to
identify this region as a round-rect pad.
A side effect is a better shape and smaller files, however not really noticeable in fact.
Previously, for historical reasons, they were added only if
Include Netlist Attributes option was on.
But Aperture Attributes have nothing to do with Netlist Attributes, and good
Gerber files must include them.