This only tests the InterceptsPositiveX() and InterceptsNegativeX() used
for finding the midpoint of an arc.
Tidy up some of the trigo.h header Doxygen comments.
Replace SEVERITY_ERROR by RPT_SEVERITY_ERROR to avoid collision with a system definition.
Replace other SEVERITY_XXX by RPT_SEVERITY_XX for consistency.
Fix compil warnings and some other compil issues.
CHANGES: Symbol library file format has been converted to s-expressions.
Add support code for picking apart symbols at some future junction that
will allow full inheritance conversion of existing symbol libraries. For
now, symbols arranged by unit and body style numbers are nested for round
robin testing of symbol libraries once the parser is complete.
CHANGED: Settings are now stored in versioned sub-directories
ADDED: First-run dialog for migrating settings from a previous version
CHANGED: Settings are now stored as JSON files instead of wxConfig-style INI files
CHANGED: Color settings are now all stored in a separate settings file
CHANGED: The symbol editor and footprint editor now have their own settings files
CHANGED: Color settings are no longer exposed through BOARD object
CHANGED: Page layout editor now uses Eeschema's color scheme
Settings are now managed through a central SETTINGS_MANAGER held by PGM_BASE.
Existing settings will be migrated from the wxConfig format on first run of each application.
Per-application settings are now stored in one class for each application.
Scope: NETLIST_ITEM, CONNECTION_TYPE, ELECTRICAL_PINTYPE,
NET_CONNECTION, NETLIST_ITEM, GRAPHIC_PINSHAPE
Note, the pin type enum had PT_ added to the front to prevent
shadowing of the INPUT symbol on msys2 (see discussion at
c17c9960d8)
This also removes vector cover types which do nothing except obfuscate
the underlying implementation.
Mainly changes SCH_SHEET_PINS and CONFIG_PARAM_ARRAY (which will soon
be replaced by Jon's new stuff).
This moves EESchema DLIST structures to rtree. These changes are more
fundamental than the pcbnew changes from 9163ac543888c01d11d1877d7c1
and 961b22d60 as eeschema operations were more dependent on passing
drawing list references around with SCH_ITEM* objects.
* Split up the thirdparty code into the thirdparty folder (#3637)
* Create a new kimath static library containing all the math functions
This is part of cleaning the build system for #1906.
This is the first step to allowing non-segments in the line chain.
External routines cannot be allowed to change the line chain without
going through the internal routines. To accomplish this, we remove the
Vertex() and Point() access routines and only leave the const versions.
Transformations are given for both points as well as the chain itself.
This was re-introduced by 5d3e6e3d44
The crash happened b/c we have to manage list containers in each element
and minor adjustments cause the rest of the list to be lost. This
commit re-implements it using std::iterators and deque
Fixes#2623 | https://gitlab.com/kicad/code/kicad/issues/2623
This change completely removes the LIB_ALIAS design pattern an replaces
it by allowing LIB_PART objects to inherit from other LIB_PART objects.
The initial implementation only allows for single inheritance and only
supports the mandatory fields in the derived part because that is all
that the current symbol library file format will support. Once the new
file format is implemented and saving to the old file format is deprecated,
more complex inheritance will be added. The LIB_ALIAS information saved
in the document files was move into the LIB_PART object. This change
impacts virtually every part of the schematic and symbol library editor
code so this commit message is woefully incomplete.
REMOVE: Removed the symbol aliases concept from the schematic and symbol
editors and the symbol viewer.
NEW: Replace the symbol alias concept with simple inheritance that allows
a library symbol to be derived from another library symbol.
This update replaces the existing uses of unique pointer creation with
the C++14 std::make_unique call that provides proper memory release in
event of an exception.
The test_case_template.hpp header is deprecated in Boost, and the
latest Boost version is now throwing warnings during the build.
In Boost 1.59 (at least), this header is included transitively by the main
Boost test header, so this header is not needed by any supported Boost
version.
-Add a "wrap" option->Search results implemented as a nested list.
-Allow to go back with a "Find previous" button
-Remove the marker search option
-Fix a DLIST issue
-Add a result counter ("eg: hit(s): 1/3")
-Search history limited to 10
-Fix the search history order
-User can include or exclude references/values/texts from results
Fixes: lp:1845460
* https://bugs.launchpad.net/kicad/+bug/1845460
This means that utility programs no longer have to be manually
added to the COMBINED_UTILITY, they self-register their
information at static init time. This is basically the same concept
as the Boost test registration.
All utilities need to do now is register their UTILITY_PROGRAM info
struct with the UTILITY_REGISTRY::Register method. No headers required.
* Fix wildcard display in the file selector dialog (on GTK
it would show the regex to the user)
* Move the file extension comparison into a common function
Also rewrites the PCBNew Find dialog to make use of the above, including:
1) searching in user-defined footprint fields
2) searching in pcb text
3) a history list in the search popup
4) case sensitive searching
5) word sensitive searching
6) the ability to turn wildcard searching on/off
7) better placement of the result when the dialog obscures part of the
window
Fixes: lp:1838006
* https://bugs.launchpad.net/kicad/+bug/1838006
This changes make_lexer() so that it no longer generates a custom target
but instead attaches the generated files to an existing one (so the first
argument now is the name of an existing library or executable, and it needs
to come after the add_library/add_executable call).
The generated source is no longer listed in the project sources, as it is
added by the function. The files are generated in the build tree rather
than the source tree, and the directory is added to the include path for
the respective project as well as exported to projects linking against it.
Generated files in subdirectories are somewhat supported, but need to be
referenced with the same name as they were generated (i.e. including the
subdirectory name).
Fixes: lp:1831643
* https://bugs.launchpad.net/kicad/+bug/1831643
Fixes: lp:1832357
* https://bugs.launchpad.net/kicad/+bug/1832357
Fixes: lp:1833851
* https://bugs.launchpad.net/kicad/+bug/1833851
The QA objects link to the direct kiface objects, which creates a second
dependency on the generated lexer files. To ensure that the primary
apps are finished building them in a (potentially) different thread, we
set a false dependency on the final build product in the qa CMake.
Fixes: lp:1833851
* https://bugs.launchpad.net/kicad/+bug/1833851
The returns of KiCad file extensions on GTK contain basic regex matching
case-insensitive file extensions. We need to match these in the
provider and tests
It's a bit of a hack because they're statically initialized and
so we can't make use of the _() macro. We do still want it in the
code, however, because the string harvesting is based off of it.
Fixes: lp:1833000
* https://bugs.launchpad.net/kicad/+bug/1833000
SCOPED_TIMER is a QA-only simpler version of PROF_COUNTER.
Extend PROF_COUNTER to allow access to the std::chrono::duration
for more flexibility.
Wrap PROF_COUNTER in SCOPED_PROF_COUNTER for RAII duration
output (for the same effect as SCOPED_TIMER).
Return the EDA_DRAW_FRAME class back to common, whence it came (before it was
duplicated into legacy_wx and legacy_gal). Now there is only one
implementation (the GAL one), it doesn't need to be in a separate library.
This simplifies the dependencies for common lib users.
The dynamic ratsnest is shown while moving items but this needs to be
hidden after cancelling. Previously this was handled by the
SelectionClear event but we've changed this to (correctly) keep the
previous selection when canceling.
Fixes: lp:1831350
* https://bugs.launchpad.net/kicad/+bug/1831350
The InOutString function is not really useful, in most cases it can
be done more simple with string operator+. This function is causing
issues on MSVC (perhaps the template param names) anyway.
For some reason, older WXs on Linux (e.g. Ubuntu 16.04) would
segfault on loading the 4-tile test image. Change one tile to
a circle to fix this (presumably an old and fixed image library
function).
The bitmap pointer is not checked at copy construct. This is
an instant segfault if you copy an empty bitmap.
Fix the constructor and remove the expected test failure, from the
previous commit.
By making the caller use the "namespace" keyword, the formatter
is given the right indentation hints.
Also makes it clearer synatactically. One day, this will be a
namespace alias (needs GCC 7).
This adds a few tests on:
* LIB_PART
* SCH_PIN
* SCH_SHEET
* SCH_SHEET_PATH
These tests exercise some of the basic code paths in these classes
and show some of the expected behaviours.
None of these tests are particularly ground-breaking, but they
provide a starting point to build out further tests, and to ensure
the already-covered behaviour is stable.
It does expose some places where SCH_SHEET could probably use const.
This is done to allow access to the eeschema library
internals for purposes of test and script access, as the
DLL library has highly restrictive -fvisibility settings
that otherwise prevent the tests being able to access 99.9%
of the eeschema library functions (only a single function
is APIEXPORT'ed, therefore that's the only test we can do).
Using object libraries is a bit of a hack, and makes for
a slower link when done for multiple targets, but with the currently
supported CMake versions, it's about as good as we can get.
A better solution in the longer term may be to break eeschema_kiface(_objects)
into many smaller libraries, each of which has a much more defined scope,
rather than one big interlinked amorphous lump. This has the advantage that
each module is testable in isolation, and we get better organisation of
inter-dependencies in the codebase.
Then, the kiface DLL will gather these sub-libs and present what
is needed on the visible DLL API. Thus, we get both a testable
suite of library functions, and a restricted kiface DLL interface.
This removes the remaining hard-coded segments counts and replaces them
with the relative error calculation where the segments per arc is
determined by the maximum error we allow (smaller arcs = fewer segments)
Remove the axis numbering code from ARRAY_OPTIONS
and place in a new class, ARRAY_AXIS. This keeps
the logic for the array item numbering separate from
the logic for the array item geometry.
This simplifies the logic in the ARRAY_OPTIONS class, which
no longer has to deal with the numbering of each axis.
It was confusing that the primary frames registered their tools
differently than the other frames. In addition, since the other
frames also added their own tools, foo_actions::RegisterAllTools()
didn't really register all tool but rather those used by the
principal frame (PCB_EDIT_FRAME, SCH_EDIT_FRAME, etc.)