ADDED: with cmake KICAD_MACOSX_APP_BUNDLE option the user can disable
the macOS app bundle creation when compiling on macOS. This permit to
use/install KiCad like any other *nix platform (/usr/bin, /usr/share,
ecc.). By default, cmake build the app bundle.
Also fixes some plot bugs with arcs.
Also moves polygonization of arcs (when required) in plotting code
from 5 degrees to calculated based on ARC_HIGH_DEF.
Fixes https://gitlab.com/kicad/code/kicad/issues/5017
ADDED arc, circle and rectangle shapes for schematic. Shapes support
line styles and fill colors.
CHANGED sheet background color in Edit Text & Graphics Properties to
fill color (and it now affects shapes).
Pushed STROKE_PARAMS down into common and moved all shapes to using it
for stroke descriptions.
We require API compatibility in the ngspice library because we
dynamically load the library and assign function pointers to specific
names/signatures. This should be consistent for all versions of the the
library until the soversion changes.
Fixes https://gitlab.com/kicad/code/kicad/issues/8878
This was leaking windows headers and partial wx headers to 1084 compilation units......
This also means math/util.h is leaking to 1084 compilation units which seems a bit high too.
This makes it easier to find all of the dialog code, has less files to
compile, and makes it easier to see the redundant code that could be
refactored.
ADDED Paste Special... action in pcbnew
CHANGED Additional options for Paste Special... in eeschema, including
"Assign unique reference designators to pasted instance"
REMOVED: Update schematic option from geographical annotation dialog due
to potential issues with incomplete and/or broken updates. Use "Update
Schematic from PCB" tool to update reference designation changes.
Forcing the footprint reference designator changes back to the schematic
without checking any other board changes in the schematic could leave the
schematic in a undefined state. The update schematic from board tool is
the correct method to sync any changes from the board.
Fixes https://gitlab.com/kicad/code/kicad/-/issues/8042
The BuildSteps folder now contains the CMake scripts that are
called during the build process as individual stages, while
the root CMakeModules directory contains the CMake files used
during the configuration phase.
1) Generalize SCH_ITEM owners (SCH_COMPONENT, SCH_SHEET, and now
SCH_GLOBALLABEL)
2) Generalize hypertext items
3) Use SCH_FIELD autoplace infrastructure for placing intersheet
references
4) Use textVar infrastructure for buildin intersheet references.
As an important side-effect this also fixes the undo issues with
intersheet refs.
Add missing plot and print changes for the new bus entry properties.
ADDED: Junction properties diameter and color can now be edited.
Fixes: https://gitlab.com/kicad/code/kicad/issues/4593
Set up a new lineage for SCH_ITEMS to get back to the SCHEMATIC
they live on: Items will all be parented to the SCH_SCREEN that
they are added to, and each SCH_SCREEN will point back to the
SCHEMATIC that it is part of. Note that this hierarchy is not
the same as the actual schematic hierarchy, which continues to
be managed through SCH_SHEETs and SCH_SHEET_PATHS.
Please note that the symbol cache is not embedded in the schematic file
to allow for round robin testing with the existing file format. Once
the parser round robin testing is complete, the symbol cache will be
embedded in the schematic file.
This implements all existing symbol library object support and the ability
to save and load symbol library files between file formats for round robin
testing.
CHANGES: Symbol library file format has been converted to s-expressions.
Add support code for picking apart symbols at some future junction that
will allow full inheritance conversion of existing symbol libraries. For
now, symbols arranged by unit and body style numbers are nested for round
robin testing of symbol libraries once the parser is complete.
CHANGED: Settings are now stored in versioned sub-directories
ADDED: First-run dialog for migrating settings from a previous version
CHANGED: Settings are now stored as JSON files instead of wxConfig-style INI files
CHANGED: Color settings are now all stored in a separate settings file
CHANGED: The symbol editor and footprint editor now have their own settings files
CHANGED: Color settings are no longer exposed through BOARD object
CHANGED: Page layout editor now uses Eeschema's color scheme
Settings are now managed through a central SETTINGS_MANAGER held by PGM_BASE.
Existing settings will be migrated from the wxConfig format on first run of each application.
Per-application settings are now stored in one class for each application.
ADDED: Back annotation algorithm,
eeschema back annotation dialog
CHANGED: added some minor helper methods to SCH_REFERENCE_LIST and SCH_REFERENCE,
split SCH_REFERENCE_LIST::CheckAnnotation on 2 parts to reuse code
The previous converter (maddy) is still available, during some time.
We therefore have the time to choose between them.
sundown is better to convert a md text, but is written to C
maddy has a few issues to convert a md text, but is written to C++
Both have no dependency.
They're now used for bus definition control characters.
Also fixes the sheet pin edit dialog to correctly escape/unescape
netnames.
Fixes: lp:1840834
* https://bugs.launchpad.net/kicad/+bug/1840834
This changes make_lexer() so that it no longer generates a custom target
but instead attaches the generated files to an existing one (so the first
argument now is the name of an existing library or executable, and it needs
to come after the add_library/add_executable call).
The generated source is no longer listed in the project sources, as it is
added by the function. The files are generated in the build tree rather
than the source tree, and the directory is added to the include path for
the respective project as well as exported to projects linking against it.
Generated files in subdirectories are somewhat supported, but need to be
referenced with the same name as they were generated (i.e. including the
subdirectory name).
Fixes: lp:1831643
* https://bugs.launchpad.net/kicad/+bug/1831643
Fixes: lp:1832357
* https://bugs.launchpad.net/kicad/+bug/1832357
Fixes: lp:1833851
* https://bugs.launchpad.net/kicad/+bug/1833851
It's a bit of a hack because they're statically initialized and
so we can't make use of the _() macro. We do still want it in the
code, however, because the string harvesting is based off of it.
Fixes: lp:1833000
* https://bugs.launchpad.net/kicad/+bug/1833000
Return the EDA_DRAW_FRAME class back to common, whence it came (before it was
duplicated into legacy_wx and legacy_gal). Now there is only one
implementation (the GAL one), it doesn't need to be in a separate library.
This simplifies the dependencies for common lib users.
Building custom targets that depend on custom commands such as our
keyword lexer requires two layers of indirection to pick up changes
properly and not overwrite the same file in parallel builds.
Fixes: lp:1831643
* https://bugs.launchpad.net/kicad/+bug/1831643
This is done to allow access to the eeschema library
internals for purposes of test and script access, as the
DLL library has highly restrictive -fvisibility settings
that otherwise prevent the tests being able to access 99.9%
of the eeschema library functions (only a single function
is APIEXPORT'ed, therefore that's the only test we can do).
Using object libraries is a bit of a hack, and makes for
a slower link when done for multiple targets, but with the currently
supported CMake versions, it's about as good as we can get.
A better solution in the longer term may be to break eeschema_kiface(_objects)
into many smaller libraries, each of which has a much more defined scope,
rather than one big interlinked amorphous lump. This has the advantage that
each module is testable in isolation, and we get better organisation of
inter-dependencies in the codebase.
Then, the kiface DLL will gather these sub-libs and present what
is needed on the visible DLL API. Thus, we get both a testable
suite of library functions, and a restricted kiface DLL interface.
Redesignate the eagle test as eeschema tests and build
more like the other unit tests.
Enable as a test in Ctest now that the test executes without
crashing.
The loading of the file with the hardocded part is still
not enabled, as this needs more infrastructure to support it.
Bus upgrades: core new connectivity code
Bus upgrades: eeschema integration and modifications
Bus upgrades: eeschema dialogs
Bus upgrades: netlist export
Bus upgrades: file format changes
Libpolygon can provide its own includes via target_include_dirs PUBLIC.
This means any linking targets do not need to specifiy them manually.
As common requires polygon, the polygon dep is also now no longer
required downstream of libcommon, as it's transisitvely implied
by libcommon's target_link_libraries.
This resolves a circular dependency previously detected and also
simplifies CMakeLists.
The bitmap definitions (BITMAP_DEF and so on) do not
have any dependencies on other libs, including WX. This
means the bitmaps library can be isolated from the other
dependencies.
Common now depends on bitmaps, and libraries that depend
on common can pick it up from the common target_link_libraries,
as it is PUBLIC. This means a lot of targets no longer
need manual bitmap linkage.
This avoids a circular dependency that was previously reported
by static analysis.
Avoiding pulling in WX and other headers into the include
tree of each bitmap .cpp is a huge speed up (around 10x) in
compilation, and the generated static library is also 10x
smaller (20MB vs 200MB)
Add common as a link library to pnsrouter,connectivity.
THese library do still use common code (including bitmaps,
via base_screen.h) and this allows them to pick up the libcommon
includes correctly.
Factor out common dialog code from global symbol library table dialog for
loading initial library table.
Update global symbol library table code to user factored out common dialog
code.
This avoids having to manually specify include/legacy_gal
in and legacy GAL targets, and harominizes with legacy_wx.
This also means .cpp files in common/legacy_gal do not
need to specify the legacy_gal subdirectory, so they
will continue to work as needed when legacy_wx is removed.
Adds a link-time dependency for libngspice, so that other tools may
detect ngspice as a KiCad dependency.
The library is still loaded with dlopen() as it gives a way to reload it
in case of problems. The DLL name is recognized during CMake
configuration and used to load the library at runtime.
Split antialiasing options out from display options. Move
antialiasing to common. Duplicate the rest of display options
for Eeschema.
Implement OnSelectGrid and hookup GAL canvas refresh to
SetPresetGrid.
Add Grid Settings... to View menu and move Show Grid from
preferences to View Menu to match Pcbnew.
All of the schematic object load and save code is implemented in the
legacy schematic plugin so it is no longer required.
Remove unused file with old schematic file loader.
Doxygen comment cleaning.
Remove all symbol libraries from the project file after remapping to
prevent symbols that should be loaded from the cache being loaded from
a library further up the search order. Save the project file to clear
all of the libraries so they never get reloaded again.
Remove the symbol library management dialog and menu entries.
Rename the symbol library table dialog menu entry.
Remove all symbol libraries from default project file to prevent clashes
with the cache library.
Fix illegal symbol naming in Eagle plugin.
- !! Eeschema uses Eagle plugin for loading schematics (i.e. it does not
use KiCad format anymore)
- Fixed build errors
- Fixed a few crashes
- Code formatting
Instead of keeping all items in a boost::ptr_vector(), LIB_ITEMs are now
stored in an integer (KICAD_T) to LIB_ITEMS map.
The map allows to quickly access a subset of items of given type.
As the items are stored per type, there is no need to call
LIB_ITEMS::sort() to assure the correct drawing order. As a result,
libraries load faster.
To retain the old interface, there is a LIB_ITEMS_LIST wrapper for
the map, allowing the developers to access the items as if it was a flat
list-like structure.
Create a new dialog to edit global and project specific symbol library
tables.
Add menu entries for new symbol library table editor in schematic editor
and symbol library editor main frame menus.
Add command event handler for symbol library table editor dialog to
SCH_BASE_FRAME so it is accessible from derived frames.
Fix bug in default environment variables initialization. A test for
existing user defined environment variables was preventing any new
default environment variables added to the list from being initialized.
Create a dialog to give the user options to configure the global symbol
library table the first time Eeschema is run when no global symbol library
table exists.
- Removed ability to generate BOM to file
- Removed Save/Cancel window when closing table
- No longer updates table <after> table is closed
- Bugfix for field names (previously comparison was case insensitive)
- Allows grouping of matched components
- Bulk edit of components in a spreadsheet window
- User can choose to save / undo changes
- All changes are pushed to the undo stack in a single operation
- Export table to HTML / CSV output
Create dialog and code to allow legacy schematic symbols to be remapped
from the old library path look up method to the new symbol library table
method by using the following steps:
1) Create a project symbol library table containing all of the symbol
libraries defined in the old library look up list not found in the
global symbol library table.
2) Map each symbol to the correct symbol in the symbol library table
if possible.
Recreate library link to symbols so look up method can be converted to
symbol library table properly.
Add function to SCH_COMPONENT to link library symbols using the symbol
library table.
This refactors COMPONENT_TREE_SEARCH_CONTAINER into a Model-View-Adapter
architecture comprising:
- eeschema/cmp_tree_model.h
- CMP_TREE_NODE: Base class representing a searchable library
set with scoring and sorting
- CMP_TREE_NODE_UNIT
- CMP_TREE_NODE_ALIAS
- CMP_TREE_NODE_LIB
- CMP_TREE_NODE_ROOT
- eeschema/cmp_tree_model_adapter.h
- CMP_TREE_MODEL_ADAPTER: mediator between wxDataViewCtrl (via
wxDataViewModel) and CMP_TREE_NODE*
+---+ +------------------+
+---+ Generates | A | | VIEW |
| M | from libs | D | wxDataViewModel |------------------|
| O | <---------- | A | <------------------> | wxDataViewCtrl |
| D | | P | |------------------|
| E | <---------> | T | <------------------- | wxTextCtrl |
| L | UpdateScore | E | UpdateSearchString() |------------------|
+---+ | R | | |
+---+ +------------------+
Representing the data with a proper model allows the wxDataViewCtrl to
be updated in bulk, which is significantly faster than the old method of
populating it one item at a time. This also adds flexibility if more
data is to be added in the future (which may come in handy with the
upcoming .sweet format, as that adds more ways components can be related
to each other).
Replacing the wxTreeListCtrl with a wxDataViewCtrl also significantly
reduces the general GUI quirkiness, as wxDataViewCtrl is much more well
behaved.
eeschema now supports arbitrary colors for all object types, and
pcbnew does in GAL canvas. When switching from GAL to legacy canvas,
pcbnew will convert colors to the nearest legacy color.