The plan goes like this:
- eeschema still uses int in decidegrees
- all the other things internally use double in decidegrees (or radians
in temporaries)
- in pcbnew UI the unit is *still* int in decidegrees
The idea is to have better precision everywhere while keeping the user with int i
angles. Hopefully, if a fractional angle doesn't come in from the outside, everything
should *look* like an integer angle (unless I forgot something and it broke)
When the time comes, simply updating the UI for allowing doubles from the user should
be enough to get arbitrary angles in pcbnew.
- Removed spurious int casts (these are truncated anyway and will break
doubles)
- Applied the Distance, GetLineLength, EuclideanNorm, DEG2RAD, RAD2DEG
ArcTangente and NORMALIZE* functions where possible
- ArcTangente now returns double and handles the 0,0 case like atan2, so
it's no longer necessary to check for it before calling
- Small functions in trigo moved as inline
* Create separate NETLIST object to hold contents of netlist files.
* Read entire netlist and footprint link files before making applying
changes to board.
* Add BOARD::ReplaceNetlist() function to eliminate the calls between the
NETLIST_READER, PCB_EDIT_FRAME, and BOARD objects.
* Change placement of new components below the center of the current board
or in the center of the page if the BOARD is empty.
* Add dry run option to netlist dialog to print changes to message control
without making changes.
* Add button to netlist dialog to allow saving contents of message control
to a file.
* Eliminate the need to compile netlist_reader_*.cpp in both CvPcb and Pcbnew.
* Add netlist_reader_*.cpp to the pcbcommon library.
* Remove redundant load component link file code from CvPcb.
* Modify CvPcb new to work with the new NETLIST_READER object.
* Add compare() function and < and == operators to FPID object.
* Add REPORTER class to hide an underlying string writing implementation for
use in low level objects. Thank you Dick for the idea.
* Lots of minor coding policy, Doxygen comment, and missing license fixes.
New classes:
- VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.)
- VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes).
- EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL).
- GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries.
- WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc.
- PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods.
- STROKE_FONT - Implements stroke font drawing using GAL methods.
Most important changes to Kicad original code:
* EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects.
* EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime.
* There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew)
* Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom.
* Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime.
* Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods.
* Removed tools/class_painter.h, as now it is extended and included in source code.
Build changes:
* GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL.
* When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required.
* GAL-related code is compiled into a static library (common/libgal).
* Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad
Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS).
More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
* Add check for pad type and force drill size to zero if pad is surface
mount in PCB_PARSER.
* Modify the D_PAD SetAttribute method to clear drill size if pad type is
set to surface mount.
* Fixed spacing issue in pad properties dialog.
* Remove wxSHAPED flag from pad drawing panel to prevent assertion in
wxSizer.
* Used sane default pad size and drill size settings to prevent wxRound
assertions.
* Add license to class_board_design_settings.cpp.
* Improve MSG_PANEL_ITEM to handle message panel information.
* Create containers for passing message panel items between objects and
the message panel.
* Rename EDA_ITEM::DisplayInfo to EDA_ITEM::GetMsgPanelInfo.
* Remove all direct manipulation of EDA_DRAW_FRAME from all objects derived
from EDA_ITEM.
* If this param is set to 0, the previous behavior is used.
* Else the solder mask is plotted as polygon, with shapes near than this min width value are merged.
Pcbnew in nanometer version: fix a serious rounding issue due to the fact dialogs were using 4 digits for mantissa.
* This is not enough for nanometer coordinates ( 8 are needed to display a value in inches),
* so sometimes after closing a dialog, some coordinates were modified, although no new value was entered.
Minor other bug fixed.
* Move board item object Format() functions into PCB_IO object.
* Change file format to use layer names instead of numbers.
* Change file extension to kicad_pcb.
// This provides better project control over rounding to int from double
// than wxRound() did. This scheme provides better logging in Debug builds
// and it provides for compile time calculation of constants.
#include <stdio.h>
#include <assert.h>
#include <limits.h>
//-----<KiROUND KIT>------------------------------------------------------------
/**
* KiROUND
* rounds a floating point number to an int using
* "round halfway cases away from zero".
* In Debug build an assert fires if will not fit into an int.
*/
#if defined( DEBUG )
// DEBUG: a macro to capture line and file, then calls this inline
static inline int KiRound( double v, int line, const char* filename )
{
v = v < 0 ? v - 0.5 : v + 0.5;
if( v > INT_MAX + 0.5 )
{
printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v );
}
else if( v < INT_MIN - 0.5 )
{
printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v );
}
return int( v );
}
#define KiROUND( v ) KiRound( v, __LINE__, __FILE__ )
#else
// RELEASE: a macro so compile can pre-compute constants.
#define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 )
#endif
//-----</KiROUND KIT>-----------------------------------------------------------
// Only a macro is compile time calculated, an inline function causes a static constructor
// in a situation like this.
// Therefore the Release build is best done with a MACRO not an inline function.
int Computed = KiROUND( 14.3 * 8 );
int main( int argc, char** argv )
{
for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 )
{
int i = KiROUND( d );
printf( "t: %d %.16g\n", i, d );
}
return 0;
}
* Move EDA_TEXT object into separate header and source file.
* Compile EDA_TEXT class separately for BOARD_ITEM and SCH_ITEM units.
* Compile PAGE_INFO class separately for BOARD_ITEM and SCH_ITEM units.
* Minor formatting tweaks to Pcbnew s-expression file.
* Move internal unit formatting functions into BOARD_ITEM and SCH_ITEM.
* Save dialog now supports saving boards to new file format.
* Add CMake option to build s-expression file save.
* Add check to main CMakeList.txt file to make sure nanometers are
enables when the new file format is built.
* Minor tweaks to object format functions for improved output.
* Rename kicad_plugin.h/cpp to legacy_plugin.h/cpp.
* Add s-expression Format() function to all objects derived from
BOARD_ITEM.
* Add s-expression Format() function to base objects as required.
* Add functions to convert coordinates from base internal units
(nanometers) to millimeter string for writing to s-expression
file.
* Add temporary dummy conversion functions to prevent link errors
until schematic and board object and action code can be separated
into DSO/DLL.
* Add CMake build option to build Pcbnew with nanometer internal
units.
* All objects derived from EDA_ITEM now have consistent hit test method
definitions.
* Remove double function calls from all classes derived from SCH_ITEM.
* Lots of Doxygen comment fixes.
* Remove unnecessary copy constructors from board and module library
objects.
* Add doClone() method to board and library objects.
* Add comment to class definitions where the default copy constructor
generated by the compiler was adequate.
* Replace copy method with clone method where applicable.
* Remove DuplicateStruct() function.
* Remove track object copy function.
In common.cpp GetTimeStamp is renamed GetNewTimeStamp (a better name).
Pcbnew: prepare work to calculate connections between pads that inteserct and therefore can be connected without any track (composite pads).