The Gerber attribute deletion command (%TD,xxx) always cleared all attributes,
instead of clearing xxx attribute.
Therefore some attributes were not always displayed.
* Split up the thirdparty code into the thirdparty folder (#3637)
* Create a new kimath static library containing all the math functions
This is part of cleaning the build system for #1906.
The pin name defined in Eeschema is now available as pad info.
Useful for the board designer (the pin function is displayed in the message panel).
Needed for the Gerber P&P files.
Previously, the M and G00, G01, G02 and G03 commands were read, but nothing was actually done.
The current support is a bit rough, but it allows reading some drill files with routing commands.
A structured comment is a comment line starting by "G04 #@! " and in fact containing
a X2 attribute. It is used to create Gerber files contianing X2 metadata, but compatible
with X1 file format
- New GAL draw layers for GerbView
- Improved bounding boxes for Gerber shapes
- Switched to use of SHAPE_POLY_SET for polygons
- Add GAL methods to support selection and rendering
- Add GUI support of editing GAL options
- Rename get/setActiveLayer to Get/SetActiveLayer to match convention
In Gerber files the char 'X' is used as separator.
But when reading parameter values, the sequence "0xnnn" is a number in hexadecimal format, and the 'X' char is not seen as separator by usual strtod or strtol C functions.
This is now fixed.
If the image was being rotated by a valid amount but not 270 degrees due to the if statements it would already report that there was an invalid value.
Also due to the strnicmp only checking the first 2 characters which was valid for 0* but not the rest of the numbers, some values would be able to work that shouldn't
Fix an issue when a .kicad_pcb file contains an incorrect fpid ( containing a '/ ' in footprint section ) . After saving the board the file was no more readable, due to a broken fpid saved in file
(can happens in old .kicad_pcb files, coming from the bzr 4022 stable version, and/or in files converted from an other EDA tool like altium)
Fix 2 very minor coverity warnings.
Pcbnew already uses this attribute when creating Gerber files.
Because Gerber files using this attribute identify the board layers stackup, Gerbview (if this attribute is defined) can sort gerber images stach up like the board.
(in layer manager, just right click to access to the sort menu)
Other scaling factors (MILS_TO_IU_SCALING_FACTOR and DECIMILS_TO_IU_SCALING_FACTOR)
also defined only in convert_to_biu.h.
Allows different scaling value for Gerbview.
Needs more tests.
// This provides better project control over rounding to int from double
// than wxRound() did. This scheme provides better logging in Debug builds
// and it provides for compile time calculation of constants.
#include <stdio.h>
#include <assert.h>
#include <limits.h>
//-----<KiROUND KIT>------------------------------------------------------------
/**
* KiROUND
* rounds a floating point number to an int using
* "round halfway cases away from zero".
* In Debug build an assert fires if will not fit into an int.
*/
#if defined( DEBUG )
// DEBUG: a macro to capture line and file, then calls this inline
static inline int KiRound( double v, int line, const char* filename )
{
v = v < 0 ? v - 0.5 : v + 0.5;
if( v > INT_MAX + 0.5 )
{
printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v );
}
else if( v < INT_MIN - 0.5 )
{
printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v );
}
return int( v );
}
#define KiROUND( v ) KiRound( v, __LINE__, __FILE__ )
#else
// RELEASE: a macro so compile can pre-compute constants.
#define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 )
#endif
//-----</KiROUND KIT>-----------------------------------------------------------
// Only a macro is compile time calculated, an inline function causes a static constructor
// in a situation like this.
// Therefore the Release build is best done with a MACRO not an inline function.
int Computed = KiROUND( 14.3 * 8 );
int main( int argc, char** argv )
{
for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 )
{
int i = KiROUND( d );
printf( "t: %d %.16g\n", i, d );
}
return 0;
}