This is based on the notion that in Kicad the start and end-points
are far more important (as they usually connect to other segments)
than the center is.
... and GetMsgPanelInfo.
Step 4 in the g_UserUnit eradication effort.
Also removes a couple of conversion routines that were close
enough to extinction.
(cherry picked from commit c75da51)
1) Edit Symbol gets similar fix as Place Symbol
2) progress dialog updating reduced to once every 50ms
3) SearchText gets lazy normalization
4) TypeNames get lazy translation
5) default fieldNames get translated a single time per language change
These fixes reduce first-load-time of both Edit Symbol and Place Symbol
by about 2/3, and second-load-time of Edit Symbol to near-instantaneous.
This is the last of the object save/load code that was not moved into
the SCH_LEGACY_PLUGIN object. All schematic and library I/O is now
performed in the SCH_LEGACY_PLUGIN object and as been removed from the
schematic and library objects.
The old single symbol file format has been replaced with the normal
symbol library file format since there was no difference between them
except the SYMBOL token. The SYMBOL token was no longer being read
since the introduction of the SCH_LEGACY_PLUGIN symbol library loader.
Update the Doxygen comments in all of the modified files.
eeschema now supports arbitrary colors for all object types, and
pcbnew does in GAL canvas. When switching from GAL to legacy canvas,
pcbnew will convert colors to the nearest legacy color.
bitmaps.h was included in nearly every file in the project due to it
being included by base_struct.h
Only about 130 files actually use the XPM definitions defined there, and
many of those already included bitmaps.h themselves, or via
menu_helpers.h. However, touching bitmaps.h would result in over 400
rebuilt files for pcbnew alone.
This commit moves the bitmap-related types like BITMAT_DEF out to a new
header, which is still included by base_struct.h, which is less
avoidable for now, it's it's used in the interface.
The icon list is still in bitmaps.h. This has the side effect that's
it's now easier to automatically generate this file.
Many classes in pcbnew and eeschema needed some functions moved
to the implementaitons from the headers too.
Now all are calculated using the top to bottom draw Y axis. This is perhaps not a good idea, but at least it will be easy to change, later.
Code cleaning relative to these bounding boxes.
* Make title capitalization consistant.
* Replace some instances of module with footprint.
* Use angle instead of orientation where appropriate.
* Remove abbreviations where it made sense.
* Coding policy fixes.
*) When kicad.exe closes a project, close any open KIFACEs so that they cannot
get disassociated from their true PROJECT.
*) Allow loading eeschema library editor from kicad.exe
*) Allow loading pcbnew library editor from kicad.exe
*) Rename LIB_COMPONENT to LIB_PART.
*) Add class PART_LIBS, and PART_LIB.
*) Make PART_LIBS non-global, i.e. PROJECT specific.
*) Implement "data on demand" for PART_LIBS
*) Implement "data on demand" for schematic SEARCH_STACK.
*) Use RSTRINGs to retain eeschema editor's notion of last library and part being edited.
*) Get rid of library search on every SCH_COMPONENT::Draw() call, instead use
a weak pointer.
*) Remove all chdir() calls so projects don't need to be CWD.
*) Romove APPEND support from OpenProjectFiles().
*) Make OpenProjectFiles() robust, even for creating new projects.
*) Load EESCHEMA colors in the KIWAY::OnKiwayStart() rather in window open,
and save them in the .eeschema config file, not in the project file.
*) Fix bug with wxDir() while accessing protected dirs in kicad.exe
*) Consolidate template copying into PROJECT class, not in kicad.exe source.
*) Generally untangle eeschema, making its libraries not global but rather
held in the PROJECT.
2) LIB_RECTANGLE and related classes sscanf data read from a file using "%s"
without field limits, which can cause problems with malformed/really long
inputs.
3) If some of the optional fields in a lib line are missing, "tmp" can remain
uninitialized.
! The initial testing of this commit should be done using a Debug build so that
all the wxASSERT()s are enabled. Also, be sure and keep enabled the
USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it
off is senseless anyways. If you want stable code, go back to a prior version,
the one tagged with "stable".
* Relocate all functionality out of the wxApp derivative into more finely
targeted purposes:
a) DLL/DSO specific
b) PROJECT specific
c) EXE or process specific
d) configuration file specific data
e) configuration file manipulations functions.
All of this functionality was blended into an extremely large wxApp derivative
and that was incompatible with the desire to support multiple concurrently
loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects.
An amazing amount of organization come from simply sorting each bit of
functionality into the proper box.
* Switch to wxConfigBase from wxConfig everywhere except instantiation.
* Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD,
PGM_SINGLE_TOP,
* Remove "Return" prefix on many function names.
* Remove obvious comments from CMakeLists.txt files, and from else() and endif()s.
* Fix building boost for use in a DSO on linux.
* Remove some of the assumptions in the CMakeLists.txt files that windows had
to be the host platform when building windows binaries.
* Reduce the number of wxStrings being constructed at program load time via
static construction.
* Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that
these functions are useful even when the wxConfigBase comes from another
source, as is the case in the KICAD_MANAGER_FRAME.
* Move the setting of the KIPRJMOD environment variable into class PROJECT,
so that it can be moved into a project variable soon, and out of FP_LIB_TABLE.
* Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all
its child wxFrames and wxDialogs now have a Kiway() member function which
returns a KIWAY& that that window tree branch is in support of. This is like
wxWindows DNA in that child windows get this member with proper value at time
of construction.
* Anticipate some of the needs for milestones B) and C) and make code
adjustments now in an effort to reduce work in those milestones.
* No testing has been done for python scripting, since milestone C) has that
being largely reworked and re-thought-out.
* Allow to select units in components that have more than one right in the
component chooser dialog.
* Keep chosen unit in history.
* Show preview of current component unit as thumbnail image next to the
description box.
* Fixes lp:1280567
Pcbnew: Code cleaning and bug fix in autoplace functions
Dialog exchange footprints has now a separate button to update the .cmp file, only on request.
The plan goes like this:
- eeschema still uses int in decidegrees
- all the other things internally use double in decidegrees (or radians
in temporaries)
- in pcbnew UI the unit is *still* int in decidegrees
The idea is to have better precision everywhere while keeping the user with int i
angles. Hopefully, if a fractional angle doesn't come in from the outside, everything
should *look* like an integer angle (unless I forgot something and it broke)
When the time comes, simply updating the UI for allowing doubles from the user should
be enough to get arbitrary angles in pcbnew.
- Removed spurious int casts (these are truncated anyway and will break
doubles)
- Applied the Distance, GetLineLength, EuclideanNorm, DEG2RAD, RAD2DEG
ArcTangente and NORMALIZE* functions where possible
- ArcTangente now returns double and handles the 0,0 case like atan2, so
it's no longer necessary to check for it before calling
- Small functions in trigo moved as inline
In particular the new mechanism for handling extended color palettes is in place,
included renaming the ini keys and saving the color name instead of its index; this means better forward compatibility with palette changes.
Since ini keys are changed, colors will be reset