Connecting zone-to-zone, we need to allow for the stroke-width in
old-style polygons.
Also, speed up the calculation by skipping zone points that do not fall
inside the matching BBox
Fixes https://gitlab.com/kicad/code/kicad/issues/5043
Intrusive lists made the connectivity search not thread-safe. Using
iterators for item deletion provides the same order performance while
keeping the container thread-localized
- CN_CONNECTIVITY_ALGO::ForEachItem
move implementation to header, so that a lambda can be inlined by the
compiler. improves iteration performance x2
- CN_ITEM::Net
move implementation to header, so that it can be inlined by the
compiler.
- CONNECTIVITY_DATA::GetNetItems
don't use std::set to filter out duplicates. use std::unique on sorted
vector. use a bitset to perform type check.
This update replaces the existing uses of unique pointer creation with
the C++14 std::make_unique call that provides proper memory release in
event of an exception.
The no-connect net (0) should never drive the net of a cluster.
Otherwise, tracks connecting between unconnected pads and connected pads
can acquire net 0 incorrectly.
Rather than duplicating the connectivity calculations in determining
whether a track is dangling, we utilize the current database to find the
number of connected items for an anchor item when feasible.
Multiple anchors such as tracks still need additional logic.
Fixes: lp:1805479
* https://bugs.launchpad.net/kicad/+bug/1805479
Locks protect the std::set in each item. Devolving the mutex to the
CN_ITEM allows multiple threads to make simultaneous connections to
different items where they do not conflict.
The connectivity files were unwieldy. This separates them logically
into data, algo and items where the items classes are those that hold,
surprise, surprise, the items, lists and clusters.