kicad/3d-viewer/3d_rendering/raytracing/shapes2D/4pt_polygon_2d.cpp

156 lines
4.1 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file 4pt_polygon_2d.cpp
*/
#include "4pt_polygon_2d.h"
#include <wx/debug.h>
#include "../ray.h"
POLYGON_4PT_2D::POLYGON_4PT_2D( const SFVEC2F& v1, const SFVEC2F& v2, const SFVEC2F& v3,
const SFVEC2F& v4, const BOARD_ITEM& aBoardItem ) :
OBJECT_2D( OBJECT_2D_TYPE::POLYGON4PT, aBoardItem )
{
m_segments[0] = v1;
m_segments[1] = v4;
m_segments[2] = v3;
m_segments[3] = v2;
unsigned int i;
unsigned int j = 4 - 1;
for( i = 0; i < 4; j = i++ )
{
SFVEC2F slope = m_segments[j] - m_segments[i];
m_precalc_slope[i] = slope;
m_seg_normal[i] = glm::normalize( SFVEC2F( -slope.y, +slope.x ) );
}
m_bbox.Reset();
m_bbox.Union( v1 );
m_bbox.Union( v2 );
m_bbox.Union( v3 );
m_bbox.Union( v4 );
m_bbox.ScaleNextUp();
m_bbox.ScaleNextUp();
m_bbox.ScaleNextUp();
m_bbox.ScaleNextUp();
m_bbox.ScaleNextUp();
m_centroid = m_bbox.GetCenter();
wxASSERT( m_bbox.IsInitialized() );
}
bool POLYGON_4PT_2D::Intersects( const BBOX_2D& aBBox ) const
{
return m_bbox.Intersects( aBBox );
}
bool POLYGON_4PT_2D::Overlaps( const BBOX_2D& aBBox ) const
{
// NOT IMPLEMENTED
return true;
}
bool POLYGON_4PT_2D::Intersect( const RAYSEG2D& aSegRay, float* aOutT, SFVEC2F* aNormalOut ) const
{
bool hited = false;
unsigned int hitIndex;
float bestHitT;
for( unsigned int i = 0; i < 4; i++ )
{
float t;
if( aSegRay.IntersectSegment( m_segments[i], m_precalc_slope[i], &t ) )
{
if( ( hited == false ) || ( t < bestHitT ) )
{
hited = true;
hitIndex = i;
bestHitT = t;
}
}
}
if( hited )
{
wxASSERT( ( bestHitT >= 0.0f ) && ( bestHitT <= 1.0f ) );
if( aOutT )
*aOutT = bestHitT;
if( aNormalOut )
*aNormalOut = m_seg_normal[hitIndex];
return true;
}
return false;
}
INTERSECTION_RESULT POLYGON_4PT_2D::IsBBoxInside( const BBOX_2D& aBBox ) const
{
// !TODO:
return INTERSECTION_RESULT::MISSES;
}
bool POLYGON_4PT_2D::IsPointInside( const SFVEC2F& aPoint ) const
{
unsigned int i;
unsigned int j = 4 - 1;
bool oddNodes = false;
for( i = 0; i < 4; j = i++ )
{
const float polyJY = m_segments[j].y;
const float polyIY = m_segments[i].y;
if( ( ( polyIY <= aPoint.y ) && ( polyJY >= aPoint.y ) )
|| ( ( polyJY <= aPoint.y ) && ( polyIY >= aPoint.y ) ) )
{
const float polyJX = m_segments[j].x;
const float polyIX = m_segments[i].x;
if( ( polyIX <= aPoint.x ) || ( polyJX <= aPoint.x ) )
{
oddNodes ^= ( ( polyIX + ( ( aPoint.y - polyIY ) / ( polyJY - polyIY ) )
* ( polyJX - polyIX ) )
< aPoint.x );
}
}
}
return oddNodes;
}