kicad/3d-viewer/3d_rendering/raytracing/shapes2D/bbox_2d.cpp

322 lines
7.7 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file bbox_2d.cpp
* @brief 2D bounding box class definition.
*/
#include "3d_fastmath.h"
#include "bbox_2d.h"
#include "../ray.h"
#include <wx/debug.h>
BBOX_2D::BBOX_2D()
{
Reset();
}
BBOX_2D::BBOX_2D( const SFVEC2F& aPbInit )
{
m_min = aPbInit;
m_max = aPbInit;
}
BBOX_2D::BBOX_2D( const SFVEC2F& aPbMin, const SFVEC2F& aPbMax )
{
Set( aPbMin, aPbMax );
}
BBOX_2D::~BBOX_2D()
{
}
void BBOX_2D::Set( const SFVEC2F& aPbMin, const SFVEC2F& aPbMax )
{
m_min.x = fminf( aPbMin.x, aPbMax.x );
m_min.y = fminf( aPbMin.y, aPbMax.y );
m_max.x = fmaxf( aPbMin.x, aPbMax.x );
m_max.y = fmaxf( aPbMin.y, aPbMax.y );
}
void BBOX_2D::Set( const BBOX_2D& aBBox )
{
wxASSERT( aBBox.IsInitialized() );
Set( aBBox.Min(), aBBox.Max() );
}
bool BBOX_2D::IsInitialized() const
{
return !( ( FLT_MAX == m_min.x ) || ( FLT_MAX == m_min.y ) || ( -FLT_MAX == m_max.x )
|| ( -FLT_MAX == m_max.y ) );
}
void BBOX_2D::Reset()
{
m_min = SFVEC2F( FLT_MAX, FLT_MAX );
m_max = SFVEC2F( -FLT_MAX,-FLT_MAX );
}
void BBOX_2D::Union( const SFVEC2F& aPoint )
{
// get the minimum value between the added point and the existent bounding box
m_min.x = fminf( m_min.x, aPoint.x );
m_min.y = fminf( m_min.y, aPoint.y );
// get the maximum value between the added point and the existent bounding box
m_max.x = fmaxf( m_max.x, aPoint.x );
m_max.y = fmaxf( m_max.y, aPoint.y );
}
void BBOX_2D::Union( const BBOX_2D& aBBox )
{
// get the minimum value between the added bounding box and
// the existent bounding box
m_min.x = fminf( m_min.x, aBBox.m_min.x );
m_min.y = fminf( m_min.y, aBBox.m_min.y );
// get the maximum value between the added bounding box and
// the existent bounding box
m_max.x = fmaxf( m_max.x, aBBox.m_max.x );
m_max.y = fmaxf( m_max.y, aBBox.m_max.y );
}
SFVEC2F BBOX_2D::GetCenter() const
{
return ( m_max + m_min ) * 0.5f;
}
SFVEC2F BBOX_2D::GetExtent() const
{
return m_max - m_min;
}
unsigned int BBOX_2D::MaxDimension() const
{
unsigned int result = 0;
const SFVEC2F extent = GetExtent();
if( extent.y > extent.x ) result = 1;
return result;
}
float BBOX_2D::Perimeter() const
{
const SFVEC2F extent = GetExtent();
return 2.0f * ( extent.x + extent.y );
}
void BBOX_2D::Scale( float aScale )
{
wxASSERT( IsInitialized() );
const SFVEC2F scaleV( aScale, aScale );
const SFVEC2F centerV = GetCenter();
m_min = ( m_min - centerV ) * scaleV + centerV;
m_max = ( m_max - centerV ) * scaleV + centerV;
}
void BBOX_2D::ScaleNextUp()
{
m_min.x = NextFloatDown( m_min.x );
m_min.y = NextFloatDown( m_min.y );
m_max.x = NextFloatUp( m_max.x );
m_max.y = NextFloatUp( m_max.y );
}
void BBOX_2D::ScaleNextDown()
{
m_min.x = NextFloatUp( m_min.x );
m_min.y = NextFloatUp( m_min.y );
m_max.x = NextFloatDown( m_max.x );
m_max.y = NextFloatDown( m_max.y );
}
// http://goanna.cs.rmit.edu.au/~gl/teaching/rtr&3dgp/notes/intersection.pdf
// http://www.mrtc.mdh.se/projects/3Dgraphics/paperF.pdf
bool BBOX_2D::Intersects( const SFVEC2F& aCenter, float aRadiusSquared ) const
{
float fDistSq = 0.0f;
for( unsigned int i = 0; i < 2; i++ )
{
if( aCenter[i] < m_min[i] )
{
const float fDist = aCenter[i] - m_min[i];
fDistSq += fDist * fDist;
}
else
{
if( aCenter[i] > m_max[i] )
{
const float fDist = aCenter[i] - m_max[i];
fDistSq += fDist * fDist;
}
}
}
return ( fDistSq <= aRadiusSquared );
}
bool BBOX_2D::Intersects( const BBOX_2D& aBBox ) const
{
wxASSERT( IsInitialized() );
wxASSERT( aBBox.IsInitialized() );
const bool x = ( m_max.x >= aBBox.m_min.x ) && ( m_min.x <= aBBox.m_max.x );
const bool y = ( m_max.y >= aBBox.m_min.y ) && ( m_min.y <= aBBox.m_max.y );
return ( x && y );
}
bool BBOX_2D::Inside( const SFVEC2F& aPoint ) const
{
wxASSERT( IsInitialized() );
return ( ( aPoint.x >= m_min.x ) && ( aPoint.x <= m_max.x ) &&
( aPoint.y >= m_min.y ) && ( aPoint.y <= m_max.y ) );
}
bool BBOX_2D::Inside( const BBOX_2D& aBBox ) const
{
wxASSERT( IsInitialized() );
wxASSERT( aBBox.IsInitialized() );
return Inside( aBBox.Min() ) &&
Inside( aBBox.Max() );
}
float BBOX_2D::Area() const
{
SFVEC2F extent = GetExtent();
return extent.x * extent.y;
}
// http://tavianator.com/fast-branchless-raybounding-box-intersections/
bool BBOX_2D::Intersect( const RAY2D& aRay, float* t ) const
{
wxASSERT( t );
const float tx1 = ( m_min.x - aRay.m_Origin.x ) * aRay.m_InvDir.x;
const float tx2 = ( m_max.x - aRay.m_Origin.x ) * aRay.m_InvDir.x;
float tmin = glm::min( tx1, tx2 );
float tmax = glm::max( tx1, tx2 );
const float ty1 = ( m_min.y - aRay.m_Origin.y ) * aRay.m_InvDir.y;
const float ty2 = ( m_max.y - aRay.m_Origin.y ) * aRay.m_InvDir.y;
tmin = glm::max( tmin, glm::min( ty1, ty2 ) );
tmax = glm::min( tmax, glm::max( ty1, ty2 ) );
if( tmin > 0.0f )
*t = tmin;
else
*t = tmax;
return (tmax >= 0.0f) && (tmax >= tmin);
}
bool BBOX_2D::Intersect( const RAYSEG2D& aRaySeg ) const
{
const float tx1 = (m_min.x - aRaySeg.m_Start.x) * aRaySeg.m_InvDir.x;
const float tx2 = (m_max.x - aRaySeg.m_Start.x) * aRaySeg.m_InvDir.x;
float tmin = glm::min( tx1, tx2 );
float tmax = glm::max( tx1, tx2 );
const float ty1 = (m_min.y - aRaySeg.m_Start.y) * aRaySeg.m_InvDir.y;
const float ty2 = (m_max.y - aRaySeg.m_Start.y) * aRaySeg.m_InvDir.y;
tmin = glm::max( tmin, glm::min( ty1, ty2 ) );
tmax = glm::min( tmax, glm::max( ty1, ty2 ) );
if( (tmax >= 0.0f) && (tmax >= tmin) )
{
const float t = (tmin > 0.0f)?tmin:tmax;
return ( t < aRaySeg.m_Length );
}
return false;
}
bool BBOX_2D::Intersect( const RAY2D& aRay, float* aOutHitT0, float* aOutHitT1 ) const
{
wxASSERT( aOutHitT0 );
wxASSERT( aOutHitT1 );
const float tx1 = ( m_min.x - aRay.m_Origin.x ) * aRay.m_InvDir.x;
const float tx2 = ( m_max.x - aRay.m_Origin.x ) * aRay.m_InvDir.x;
float tmin = glm::min( tx1, tx2 );
float tmax = glm::max( tx1, tx2 );
const float ty1 = ( m_min.y - aRay.m_Origin.y ) * aRay.m_InvDir.y;
const float ty2 = ( m_max.y - aRay.m_Origin.y ) * aRay.m_InvDir.y;
tmin = glm::max( tmin, glm::min( ty1, ty2 ) );
tmax = glm::min( tmax, glm::max( ty1, ty2 ) );
*aOutHitT0 = ( tmin > 0.0f ) ? tmin : 0.0f;
*aOutHitT1 = tmax;
return ( tmax >= 0.0f ) && ( tmax >= tmin );
}