kicad/3d-viewer/3d_rendering/raytracing/shapes2D/filled_circle_2d.cpp

169 lines
5.1 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file filled_circle_2d.cpp
* @brief
*/
#include "filled_circle_2d.h"
#include "../ray.h"
#include <wx/debug.h>
FILLED_CIRCLE_2D::FILLED_CIRCLE_2D( const SFVEC2F& aCenter, float aRadius,
const BOARD_ITEM& aBoardItem ) :
OBJECT_2D( OBJECT_2D_TYPE::FILLED_CIRCLE, aBoardItem )
{
wxASSERT( aRadius > 0.0f ); // If that happens, it should be handled before create this circle
m_center = aCenter;
m_radius = aRadius;
m_radius_squared = aRadius * aRadius;
m_bbox.Reset();
m_bbox.Set( m_center - SFVEC2F( aRadius, aRadius ),
m_center + SFVEC2F( aRadius, aRadius ) );
m_bbox.ScaleNextUp();
m_centroid = m_bbox.GetCenter();
wxASSERT( m_bbox.IsInitialized() );
}
bool FILLED_CIRCLE_2D::Overlaps( const BBOX_2D& aBBox ) const
{
// NOT IMPLEMENTED, why?
return false;
}
bool FILLED_CIRCLE_2D::Intersects( const BBOX_2D& aBBox ) const
{
return aBBox.Intersects( m_center, m_radius_squared );
}
bool FILLED_CIRCLE_2D::Intersect( const RAYSEG2D& aSegRay, float* aOutT, SFVEC2F* aNormalOut ) const
{
// This code used directly from Steve Marschner's CS667 framework
// http://cs665pd.googlecode.com/svn/trunk/photon/sphere.cpp
// Compute some factors used in computation
const float qx = aSegRay.m_Start.x - m_center.x;
const float qy = aSegRay.m_Start.y - m_center.y;
const float qd = qx * aSegRay.m_Dir.x + qy * aSegRay.m_Dir.y;
const float qq = qx * qx + qy * qy;
// solving the quadratic equation for t at the pts of intersection
// dd*t^2 + (2*qd)*t + (qq-r^2) = 0
const float discriminantsqr = ( qd * qd - ( qq - m_radius_squared ) );
// If the discriminant is less than zero, there is no intersection
if( discriminantsqr < FLT_EPSILON )
return false;
// Otherwise check and make sure that the intersections occur on the ray (t > 0) and
// return the closer one.
const float discriminant = sqrt( discriminantsqr );
const float t1 = ( -qd - discriminant );
const float t2 = ( -qd + discriminant );
float t;
if( ( t1 > 0.0f ) && ( t1 < aSegRay.m_Length ) )
{
t = t1;
}
else
{
if( ( t2 > 0.0f ) && ( t2 < aSegRay.m_Length ) )
t = t2;
else
return false; // Neither intersection was in the ray's half line.
}
wxASSERT( ( t > 0.0f ) && ( t <= aSegRay.m_Length ) );
// Convert the intersection to a normalized 0.0 .. 1.0
if( aOutT )
*aOutT = t / aSegRay.m_Length;
const SFVEC2F hitPoint = aSegRay.at( t );
if( aNormalOut )
*aNormalOut = (hitPoint - m_center) / m_radius;
return true;
}
INTERSECTION_RESULT FILLED_CIRCLE_2D::IsBBoxInside( const BBOX_2D& aBBox ) const
{
if( !m_bbox.Intersects( aBBox ) )
return INTERSECTION_RESULT::MISSES;
SFVEC2F v[4];
v[0] = aBBox.Min() - m_center;
v[1] = aBBox.Max() - m_center;
v[2] = SFVEC2F( aBBox.Min().x, aBBox.Max().y ) - m_center;
v[3] = SFVEC2F( aBBox.Max().x, aBBox.Min().y ) - m_center;
float s[4];
s[0] = v[0].x * v[0].x + v[0].y * v[0].y;
s[1] = v[1].x * v[1].x + v[1].y * v[1].y;
s[2] = v[2].x * v[2].x + v[2].y * v[2].y;
s[3] = v[3].x * v[3].x + v[3].y * v[3].y;
bool isInside[4];
isInside[0] = s[0] <= m_radius_squared;
isInside[1] = s[1] <= m_radius_squared;
isInside[2] = s[2] <= m_radius_squared;
isInside[3] = s[3] <= m_radius_squared;
// Check if all points are inside the circle
if( isInside[0] && isInside[1] && isInside[2] && isInside[3] )
return INTERSECTION_RESULT::FULL_INSIDE;
// Check if any point is inside the circle
if( isInside[0] || isInside[1] || isInside[2] || isInside[3] )
return INTERSECTION_RESULT::INTERSECTS;
return INTERSECTION_RESULT::MISSES;
}
bool FILLED_CIRCLE_2D::IsPointInside( const SFVEC2F& aPoint ) const
{
const SFVEC2F v = m_center - aPoint;
if( ( v.x * v.x + v.y * v.y ) <= m_radius_squared )
return true;
return false;
}