kicad/3d-viewer/3d_rendering/raytracing/shapes2D/round_segment_2d.cpp

336 lines
9.8 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file round_segment_2d.cpp
*/
#include "round_segment_2d.h"
#include <wx/debug.h>
ROUND_SEGMENT_2D::ROUND_SEGMENT_2D( const SFVEC2F& aStart, const SFVEC2F& aEnd, float aWidth,
const BOARD_ITEM& aBoardItem ) :
OBJECT_2D( OBJECT_2D_TYPE::ROUNDSEG, aBoardItem ),
m_segment( aStart, aEnd )
{
wxASSERT( aStart != aEnd );
m_radius = (aWidth / 2.0f);
m_radius_squared = m_radius * m_radius;
m_width = aWidth;
SFVEC2F leftRadiusOffset( -m_segment.m_Dir.y * m_radius, m_segment.m_Dir.x * m_radius );
m_leftStart = aStart + leftRadiusOffset;
m_leftEnd = aEnd + leftRadiusOffset;
m_leftEndMinusStart = m_leftEnd - m_leftStart;
m_leftDir = glm::normalize( m_leftEndMinusStart );
SFVEC2F rightRadiusOffset( -leftRadiusOffset.x, -leftRadiusOffset.y );
m_rightStart = aEnd + rightRadiusOffset;
m_rightEnd = aStart + rightRadiusOffset;
m_rightEndMinusStart = m_rightEnd - m_rightStart;
m_rightDir = glm::normalize( m_rightEndMinusStart );
m_bbox.Reset();
m_bbox.Set( aStart, aEnd );
m_bbox.Set( m_bbox.Min() - SFVEC2F( m_radius, m_radius ),
m_bbox.Max() + SFVEC2F( m_radius, m_radius ) );
m_bbox.ScaleNextUp();
m_centroid = m_bbox.GetCenter();
wxASSERT( m_bbox.IsInitialized() );
}
bool ROUND_SEGMENT_2D::Intersects( const BBOX_2D& aBBox ) const
{
if( !m_bbox.Intersects( aBBox ) )
return false;
if( ( aBBox.Max().x > m_bbox.Max().x ) && ( aBBox.Max().y > m_bbox.Max().y )
&& ( aBBox.Min().x < m_bbox.Min().x ) && ( aBBox.Min().y < m_bbox.Min().y ) )
return true;
SFVEC2F v[4];
v[0] = aBBox.Min();
v[1] = SFVEC2F( aBBox.Min().x, aBBox.Max().y );
v[2] = aBBox.Max();
v[3] = SFVEC2F( aBBox.Max().x, aBBox.Min().y );
// Test against the main rectangle segment
if( IntersectSegment( m_leftStart, m_leftEndMinusStart, v[0], v[1] - v[0] ) )
return true;
if( IntersectSegment( m_leftStart, m_leftEndMinusStart, v[1], v[2] - v[1] ) )
return true;
if( IntersectSegment( m_leftStart, m_leftEndMinusStart, v[2], v[3] - v[2] ) )
return true;
if( IntersectSegment( m_leftStart, m_leftEndMinusStart, v[3], v[0] - v[3] ) )
return true;
if( IntersectSegment( m_rightStart, m_rightEndMinusStart, v[0], v[1] - v[0] ) )
return true;
if( IntersectSegment( m_rightStart, m_rightEndMinusStart, v[1], v[2] - v[1] ) )
return true;
if( IntersectSegment( m_rightStart, m_rightEndMinusStart, v[2], v[3] - v[2] ) )
return true;
if( IntersectSegment( m_rightStart, m_rightEndMinusStart, v[3], v[0] - v[3] ) )
return true;
// Test the two circles
if( aBBox.Intersects( m_segment.m_Start, m_radius_squared ) )
return true;
if( aBBox.Intersects( m_segment.m_End, m_radius_squared ) )
return true;
return false;
}
bool ROUND_SEGMENT_2D::Overlaps( const BBOX_2D& aBBox ) const
{
// NOT IMPLEMENTED
return false;
}
bool ROUND_SEGMENT_2D::Intersect( const RAYSEG2D& aSegRay, float* aOutT, SFVEC2F* aNormalOut ) const
{
const bool start_is_inside = IsPointInside( aSegRay.m_Start );
const bool end_is_inside = IsPointInside( aSegRay.m_End );
// If segment if inside there are no hits
if( start_is_inside && end_is_inside )
return false;
bool hitted = false;
float closerHitT = FLT_MAX;
float farHitT = FLT_MAX;
SFVEC2F closerHitNormal;
SFVEC2F farHitNormal;
float leftSegT;
const bool leftSegmentHit =
aSegRay.IntersectSegment( m_leftStart, m_leftEndMinusStart, &leftSegT );
if( leftSegmentHit )
{
hitted = true;
closerHitT = leftSegT;
farHitT = leftSegT;
closerHitNormal = SFVEC2F( -m_leftDir.y, m_leftDir.x );
farHitNormal = SFVEC2F( -m_leftDir.y, m_leftDir.x );
}
float rightSegT;
const bool rightSegmentHit =
aSegRay.IntersectSegment( m_rightStart, m_rightEndMinusStart, &rightSegT );
if( rightSegmentHit )
{
if( !start_is_inside )
{
if( ( hitted == false ) || ( rightSegT < closerHitT ) )
{
closerHitT = rightSegT;
closerHitNormal = SFVEC2F( -m_rightDir.y, m_rightDir.x );
}
}
else
{
if( ( hitted == false ) || ( rightSegT > farHitT ) )
{
farHitT = rightSegT;
farHitNormal = SFVEC2F( -m_rightDir.y, m_rightDir.x );
}
}
hitted = true;
}
float circleStart_T0;
float circleStart_T1;
SFVEC2F circleStart_N0;
SFVEC2F circleStart_N1;
const bool startCircleHit = aSegRay.IntersectCircle( m_segment.m_Start, m_radius,
&circleStart_T0, &circleStart_T1,
&circleStart_N0, &circleStart_N1 );
if( startCircleHit )
{
if( circleStart_T0 > 0.0f )
{
if( !start_is_inside )
{
if( ( hitted == false ) || ( circleStart_T0 < closerHitT ) )
{
closerHitT = circleStart_T0;
closerHitNormal = circleStart_N0;
}
}
else
{
if( ( hitted == false ) || ( circleStart_T1 > farHitT ) )
{
farHitT = circleStart_T1;
farHitNormal = circleStart_N1;
}
}
}
else
{
// This can only happen if the ray starts inside
if( ( hitted == false ) || ( circleStart_T1 > farHitT ) )
{
farHitT = circleStart_T1;
farHitNormal = circleStart_N1;
}
}
hitted = true;
}
float circleEnd_T0;
float circleEnd_T1;
SFVEC2F circleEnd_N0;
SFVEC2F circleEnd_N1;
const bool rightCircleHit = aSegRay.IntersectCircle( m_segment.m_End, m_radius,
&circleEnd_T0, &circleEnd_T1,
&circleEnd_N0, &circleEnd_N1 );
if( rightCircleHit )
{
if( circleEnd_T0 > 0.0f )
{
if( !start_is_inside )
{
if( ( hitted == false ) || ( circleEnd_T0 < closerHitT ) )
{
closerHitT = circleEnd_T0;
closerHitNormal = circleEnd_N0;
}
}
else
{
if( ( hitted == false ) || ( circleEnd_T1 > farHitT ) )
{
farHitT = circleEnd_T1;
farHitNormal = circleEnd_N1;
}
}
}
else
{
// This can only happen if the ray starts inside
if( ( hitted == false ) || ( circleEnd_T1 > farHitT ) )
{
farHitT = circleEnd_T1;
farHitNormal = circleEnd_N1;
}
}
hitted = true;
}
if( hitted )
{
if( !start_is_inside )
{
if( aOutT )
*aOutT = closerHitT;
//wxASSERT( (closerHitT > 0.0f) && (closerHitT <= 1.0f) );
if( aNormalOut )
*aNormalOut = closerHitNormal;
}
else
{
wxASSERT( (farHitT >= 0.0f) && (farHitT <= 1.0f) );
if( aOutT )
*aOutT = farHitT;
if( aNormalOut )
*aNormalOut = -farHitNormal; // the normal started inside, so invert it
}
}
return hitted;
}
INTERSECTION_RESULT ROUND_SEGMENT_2D::IsBBoxInside( const BBOX_2D &aBBox ) const
{
if( !m_bbox.Intersects( aBBox ) )
return INTERSECTION_RESULT::MISSES;
SFVEC2F v[4];
v[0] = aBBox.Min();
v[1] = aBBox.Max();
v[2] = SFVEC2F( aBBox.Min().x, aBBox.Max().y );
v[3] = SFVEC2F( aBBox.Max().x, aBBox.Min().y );
bool isInside[4];
isInside[0] = IsPointInside( v[0] );
isInside[1] = IsPointInside( v[1] );
isInside[2] = IsPointInside( v[2] );
isInside[3] = IsPointInside( v[3] );
// Check if all points are inside the circle
if( isInside[0] && isInside[1] && isInside[2] && isInside[3] )
return INTERSECTION_RESULT::FULL_INSIDE;
// Check if any point is inside the circle
if( isInside[0] || isInside[1] || isInside[2] || isInside[3] )
return INTERSECTION_RESULT::INTERSECTS;
return INTERSECTION_RESULT::MISSES;
}
bool ROUND_SEGMENT_2D::IsPointInside( const SFVEC2F& aPoint ) const
{
float dSquared = m_segment.DistanceToPointSquared( aPoint );
if( dSquared <= m_radius_squared )
return true;
return false;
}