517 lines
17 KiB
C++
517 lines
17 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2015-2022 Mario Luzeiro <mrluzeiro@ua.pt>
|
|
* Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include "layer_item_3d.h"
|
|
#include "3d_fastmath.h"
|
|
#include <wx/debug.h>
|
|
#include <advanced_config.h>
|
|
|
|
|
|
extern float g_BevelThickness3DU;
|
|
|
|
|
|
LAYER_ITEM::LAYER_ITEM( const OBJECT_2D* aObject2D, float aZMin, float aZMax ) :
|
|
OBJECT_3D( OBJECT_3D_TYPE::LAYERITEM ),
|
|
m_object2d( aObject2D )
|
|
{
|
|
wxASSERT( aObject2D );
|
|
|
|
BBOX_2D bbox2d = m_object2d->GetBBox();
|
|
bbox2d.ScaleNextUp();
|
|
bbox2d.ScaleNextUp();
|
|
|
|
m_bbox.Reset();
|
|
m_bbox.Set( SFVEC3F( bbox2d.Min().x, bbox2d.Min().y, aZMin ),
|
|
SFVEC3F( bbox2d.Max().x, bbox2d.Max().y, aZMax ) );
|
|
m_bbox.ScaleNextUp();
|
|
m_bbox.Scale( 1.0001f );
|
|
|
|
m_centroid = SFVEC3F( aObject2D->GetCentroid().x, aObject2D->GetCentroid().y,
|
|
( aZMax + aZMin ) * 0.5f );
|
|
}
|
|
|
|
|
|
bool LAYER_ITEM::Intersect( const RAY& aRay, HITINFO& aHitInfo ) const
|
|
{
|
|
float tBBoxStart;
|
|
float tBBoxEnd;
|
|
|
|
if( !m_bbox.Intersect( aRay, &tBBoxStart, &tBBoxEnd ) )
|
|
return false;
|
|
|
|
if( tBBoxStart >= aHitInfo.m_tHit )
|
|
return false;
|
|
|
|
if( fabs( tBBoxStart - tBBoxEnd ) <= FLT_EPSILON )
|
|
return false;
|
|
|
|
const bool startedInside = m_bbox.Inside( aRay.m_Origin );
|
|
|
|
if( !startedInside )
|
|
{
|
|
float tTop = FLT_MAX;
|
|
float tBot = FLT_MAX;
|
|
bool hit_top = false;
|
|
bool hit_bot = false;
|
|
|
|
if( (float) fabs( aRay.m_Dir.z ) > FLT_EPSILON )
|
|
{
|
|
tBot = ( m_bbox.Min().z - aRay.m_Origin.z ) * aRay.m_InvDir.z;
|
|
tTop = ( m_bbox.Max().z - aRay.m_Origin.z ) * aRay.m_InvDir.z;
|
|
|
|
float tBBoxStartAdjusted = NextFloatUp( tBBoxStart );
|
|
|
|
if( tBot > FLT_EPSILON )
|
|
{
|
|
hit_bot = tBot <= tBBoxStartAdjusted;
|
|
tBot = NextFloatDown( tBot );
|
|
}
|
|
|
|
if( tTop > FLT_EPSILON )
|
|
{
|
|
hit_top = tTop <= tBBoxStartAdjusted;
|
|
tTop = NextFloatDown( tTop );
|
|
}
|
|
}
|
|
|
|
SFVEC2F topHitPoint2d;
|
|
SFVEC2F botHitPoint2d;
|
|
|
|
if( hit_top )
|
|
topHitPoint2d = SFVEC2F( aRay.m_Origin.x + aRay.m_Dir.x * tTop,
|
|
aRay.m_Origin.y + aRay.m_Dir.y * tTop );
|
|
|
|
if( hit_bot )
|
|
botHitPoint2d = SFVEC2F( aRay.m_Origin.x + aRay.m_Dir.x * tBot,
|
|
aRay.m_Origin.y + aRay.m_Dir.y * tBot );
|
|
|
|
if( hit_top && hit_bot )
|
|
{
|
|
if( tBot < tTop )
|
|
{
|
|
if( m_object2d->IsPointInside( botHitPoint2d ) )
|
|
{
|
|
if( tBot < aHitInfo.m_tHit )
|
|
{
|
|
aHitInfo.m_tHit = tBot;
|
|
aHitInfo.m_HitPoint = aRay.at( tBot );
|
|
aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, -1.0f );
|
|
aHitInfo.pHitObject = this;
|
|
|
|
m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( m_object2d->IsPointInside( topHitPoint2d ) )
|
|
{
|
|
if( tTop < aHitInfo.m_tHit )
|
|
{
|
|
aHitInfo.m_tHit = tTop;
|
|
aHitInfo.m_HitPoint = aRay.at( tTop );
|
|
aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, 1.0f );
|
|
aHitInfo.pHitObject = this;
|
|
|
|
m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( hit_top )
|
|
{
|
|
if( tTop < tBot )
|
|
{
|
|
if( m_object2d->IsPointInside( topHitPoint2d ) )
|
|
{
|
|
if( tTop < aHitInfo.m_tHit )
|
|
{
|
|
aHitInfo.m_tHit = tTop;
|
|
aHitInfo.m_HitPoint = aRay.at( tTop );
|
|
aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, 1.0f );
|
|
aHitInfo.pHitObject = this;
|
|
|
|
m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( hit_bot )
|
|
{
|
|
if( tBot < tTop )
|
|
{
|
|
if( m_object2d->IsPointInside( botHitPoint2d ) )
|
|
{
|
|
if( tBot < aHitInfo.m_tHit )
|
|
{
|
|
aHitInfo.m_tHit = tBot;
|
|
aHitInfo.m_HitPoint = aRay.at( tBot );
|
|
aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, -1.0f );
|
|
aHitInfo.pHitObject = this;
|
|
|
|
m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// At this point, the ray miss the two planes but it still
|
|
// hits the box. It means that the rays are "(almost)parallel"
|
|
// to the planes, so must calc the intersection
|
|
}
|
|
}
|
|
}
|
|
|
|
SFVEC3F boxHitPointStart = aRay.at( tBBoxStart );
|
|
SFVEC3F boxHitPointEnd = aRay.at( tBBoxEnd );
|
|
|
|
SFVEC2F boxHitPointStart2D( boxHitPointStart.x, boxHitPointStart.y );
|
|
SFVEC2F boxHitPointEnd2D( boxHitPointEnd.x, boxHitPointEnd.y );
|
|
|
|
float tOut;
|
|
SFVEC2F outNormal;
|
|
RAYSEG2D raySeg( boxHitPointStart2D, boxHitPointEnd2D );
|
|
|
|
if( m_object2d->Intersect( raySeg, &tOut, &outNormal ) )
|
|
{
|
|
// The hitT is a hit value for the segment length 'start' - 'end',
|
|
// so it ranges from 0.0 - 1.0. We now convert it to a 3D hit position
|
|
// and calculate the real hitT of the ray.
|
|
SFVEC3F hitPoint = boxHitPointStart + ( boxHitPointEnd - boxHitPointStart ) * tOut;
|
|
|
|
const float t = glm::length( hitPoint - aRay.m_Origin );
|
|
|
|
if( t < aHitInfo.m_tHit )
|
|
{
|
|
aHitInfo.m_tHit = t;
|
|
aHitInfo.m_HitPoint = hitPoint;
|
|
aHitInfo.pHitObject = this;
|
|
|
|
const float zNormalDir = hit_top?1.0f:hit_bot?-1.0f:0.0f;
|
|
|
|
if( ( outNormal.x == 0.0f ) && ( outNormal.y == 0.0f ) )
|
|
{
|
|
aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, zNormalDir );
|
|
}
|
|
else
|
|
{
|
|
// Calculate smooth bevel normal
|
|
float zBend = 0.0f;
|
|
|
|
if( hit_top || hit_bot )
|
|
{
|
|
float zDistanceToTopOrBot;
|
|
|
|
// Calculate the distance from hitpoint z to the Max/Min z of the layer
|
|
if( hit_top )
|
|
{
|
|
zDistanceToTopOrBot = ( m_bbox.Max().z - hitPoint.z );
|
|
}
|
|
else
|
|
{
|
|
zDistanceToTopOrBot = ( hitPoint.z - m_bbox.Min().z );
|
|
}
|
|
|
|
// For items that are > than g_BevelThickness3DU
|
|
// (eg on board vias / plated holeS) use a factor based on m_bbox.GetExtent().z
|
|
const float bevelThickness = glm::max( g_BevelThickness3DU,
|
|
m_bbox.GetExtent().z *
|
|
(float)ADVANCED_CFG::GetCfg().m_3DRT_BevelExtentFactor );
|
|
|
|
if( ( zDistanceToTopOrBot > 0.0f ) && ( zDistanceToTopOrBot < bevelThickness ) )
|
|
{
|
|
// Invert and Normalize the distance 0..1
|
|
zBend = ( bevelThickness - zDistanceToTopOrBot ) / bevelThickness;
|
|
}
|
|
}
|
|
|
|
const SFVEC3F normalLateral = SFVEC3F( outNormal.x, outNormal.y, 0.0f );
|
|
const SFVEC3F normalTopBot = SFVEC3F( 0.0f, 0.0f, zNormalDir );
|
|
|
|
// Interpolate between the regular lateral normal and the top/bot normal
|
|
aHitInfo.m_HitNormal = glm::mix( normalLateral, normalTopBot, zBend );
|
|
}
|
|
|
|
m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
/// @todo Either fix the code below or get rid of it.
|
|
// Disabled due to refraction artifacts
|
|
// this will mostly happen inside the board body
|
|
#if 0
|
|
// Started inside
|
|
const SFVEC3F boxHitPointStart = aRay.at( tBBoxStart );
|
|
const SFVEC3F boxHitPointEnd = aRay.at( tBBoxEnd );
|
|
|
|
const SFVEC2F boxHitPointStart2D( boxHitPointStart.x, boxHitPointStart.y );
|
|
|
|
const SFVEC2F boxHitPointEnd2D( boxHitPointEnd.x, boxHitPointEnd.y );
|
|
|
|
if( !( m_object2d->IsPointInside( boxHitPointStart2D ) &&
|
|
m_object2d->IsPointInside( boxHitPointEnd2D ) ) )
|
|
return false;
|
|
|
|
float tOut;
|
|
SFVEC2F outNormal;
|
|
RAYSEG2D raySeg( boxHitPointStart2D, boxHitPointEnd2D );
|
|
|
|
if( ( m_object2d->IsPointInside( boxHitPointStart2D ) &&
|
|
m_object2d->IsPointInside( boxHitPointEnd2D ) ) )
|
|
{
|
|
if( tBBoxEnd < aHitInfo.m_tHit )
|
|
{
|
|
aHitInfo.m_tHit = tBBoxEnd;
|
|
aHitInfo.m_HitPoint = aRay.at( tBBoxEnd );
|
|
aHitInfo.pHitObject = this;
|
|
|
|
if( aRay.m_Dir.z > 0.0f )
|
|
aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, -1.0f );
|
|
else
|
|
aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, 1.0f );
|
|
|
|
m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
|
|
|
|
return true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( m_object2d->Intersect( raySeg, &tOut, &outNormal ) )
|
|
{
|
|
// The hitT is a hit value for the segment length 'start' - 'end',
|
|
// so it ranges from 0.0 - 1.0. We now convert it to a 3D hit position
|
|
// and calculate the real hitT of the ray.
|
|
const SFVEC3F hitPoint = boxHitPointStart +
|
|
( boxHitPointEnd - boxHitPointStart ) * tOut;
|
|
|
|
const float t = glm::length( hitPoint - aRay.m_Origin );
|
|
|
|
if( t < aHitInfo.m_tHit )
|
|
{
|
|
aHitInfo.m_tHit = t;
|
|
aHitInfo.m_HitPoint = hitPoint;
|
|
aHitInfo.m_HitNormal = SFVEC3F( outNormal.x, outNormal.y, 0.0f );
|
|
aHitInfo.pHitObject = this;
|
|
|
|
m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
|
|
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool LAYER_ITEM::IntersectP( const RAY& aRay, float aMaxDistance ) const
|
|
{
|
|
float tBBoxStart;
|
|
float tBBoxEnd;
|
|
|
|
if( !m_bbox.Intersect( aRay, &tBBoxStart, &tBBoxEnd ) )
|
|
return false;
|
|
|
|
if( ( tBBoxStart > aMaxDistance ) || ( fabs( tBBoxStart - tBBoxEnd ) < FLT_EPSILON ) )
|
|
return false;
|
|
|
|
float tTop = FLT_MAX;
|
|
float tBot = FLT_MAX;
|
|
bool hit_top = false;
|
|
bool hit_bot = false;
|
|
|
|
if( (float)fabs( aRay.m_Dir.z ) > FLT_EPSILON )
|
|
{
|
|
tBot = ( m_bbox.Min().z - aRay.m_Origin.z ) * aRay.m_InvDir.z;
|
|
tTop = ( m_bbox.Max().z - aRay.m_Origin.z ) * aRay.m_InvDir.z;
|
|
|
|
const float tBBoxStartAdjusted = NextFloatUp( tBBoxStart );
|
|
|
|
if( tBot > FLT_EPSILON )
|
|
{
|
|
hit_bot = tBot <= tBBoxStartAdjusted;
|
|
tBot = NextFloatDown( tBot );
|
|
}
|
|
|
|
if( tTop > FLT_EPSILON )
|
|
{
|
|
hit_top = tTop <= tBBoxStartAdjusted;
|
|
tTop = NextFloatDown( tTop );
|
|
}
|
|
}
|
|
|
|
tBBoxStart = NextFloatDown( tBBoxStart );
|
|
tBBoxEnd = NextFloatUp( tBBoxEnd );
|
|
|
|
SFVEC2F topHitPoint2d;
|
|
SFVEC2F botHitPoint2d;
|
|
|
|
if( hit_top )
|
|
topHitPoint2d = SFVEC2F( aRay.m_Origin.x + aRay.m_Dir.x * tTop,
|
|
aRay.m_Origin.y + aRay.m_Dir.y * tTop );
|
|
|
|
if( hit_bot )
|
|
botHitPoint2d = SFVEC2F( aRay.m_Origin.x + aRay.m_Dir.x * tBot,
|
|
aRay.m_Origin.y + aRay.m_Dir.y * tBot );
|
|
|
|
if( hit_top && hit_bot )
|
|
{
|
|
if( tBot < tTop )
|
|
{
|
|
if( m_object2d->IsPointInside( botHitPoint2d ) )
|
|
{
|
|
if( tBot < aMaxDistance )
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( m_object2d->IsPointInside( topHitPoint2d ) )
|
|
{
|
|
if( tTop < aMaxDistance )
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( hit_top )
|
|
{
|
|
if( tTop < tBot )
|
|
{
|
|
if( m_object2d->IsPointInside( topHitPoint2d ) )
|
|
{
|
|
if( tTop < aMaxDistance )
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( hit_bot )
|
|
{
|
|
if( tBot < tTop )
|
|
{
|
|
if( m_object2d->IsPointInside( botHitPoint2d ) )
|
|
{
|
|
if( tBot < aMaxDistance )
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// At this point, the ray miss the two planes but it still
|
|
// hits the box. It means that the rays are "(almost)parallel"
|
|
// to the planes, so must calc the intersection
|
|
}
|
|
}
|
|
}
|
|
|
|
SFVEC3F boxHitPointStart = aRay.at( tBBoxStart );
|
|
SFVEC3F boxHitPointEnd = aRay.at( tBBoxEnd );
|
|
|
|
SFVEC2F boxHitPointStart2D( boxHitPointStart.x, boxHitPointStart.y );
|
|
|
|
SFVEC2F boxHitPointEnd2D( boxHitPointEnd.x, boxHitPointEnd.y );
|
|
|
|
float tOut;
|
|
SFVEC2F outNormal;
|
|
RAYSEG2D raySeg( boxHitPointStart2D, boxHitPointEnd2D );
|
|
|
|
if( m_object2d->Intersect( raySeg, &tOut, &outNormal ) )
|
|
{
|
|
//if( (tOut > FLT_EPSILON) && (tOut < 1.0f) )
|
|
{
|
|
// The hitT is a hit value for the segment length 'start' - 'end',
|
|
// so it ranges from 0.0 - 1.0. We now convert it to a 3D hit position
|
|
// and calculate the real hitT of the ray.
|
|
const SFVEC3F hitPoint = boxHitPointStart +
|
|
( boxHitPointEnd - boxHitPointStart ) * tOut;
|
|
const float t = glm::length( hitPoint - aRay.m_Origin );
|
|
|
|
if( ( t < aMaxDistance ) && ( t > FLT_EPSILON ) )
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool LAYER_ITEM::Intersects( const BBOX_3D& aBBox ) const
|
|
{
|
|
if( !m_bbox.Intersects( aBBox ) )
|
|
return false;
|
|
|
|
const BBOX_2D bbox2D( SFVEC2F( aBBox.Min().x, aBBox.Min().y ),
|
|
SFVEC2F( aBBox.Max().x, aBBox.Max().y ) );
|
|
|
|
return m_object2d->Intersects( bbox2D );
|
|
}
|
|
|
|
|
|
SFVEC3F LAYER_ITEM::GetDiffuseColor( const HITINFO& /* aHitInfo */ ) const
|
|
{
|
|
return m_diffusecolor;
|
|
}
|