kicad/3d-viewer/3d_rendering/raytracing/shapes3D/layer_item_3d.cpp

517 lines
17 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2022 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "layer_item_3d.h"
#include "3d_fastmath.h"
#include <wx/debug.h>
#include <advanced_config.h>
extern float g_BevelThickness3DU;
LAYER_ITEM::LAYER_ITEM( const OBJECT_2D* aObject2D, float aZMin, float aZMax ) :
OBJECT_3D( OBJECT_3D_TYPE::LAYERITEM ),
m_object2d( aObject2D )
{
wxASSERT( aObject2D );
BBOX_2D bbox2d = m_object2d->GetBBox();
bbox2d.ScaleNextUp();
bbox2d.ScaleNextUp();
m_bbox.Reset();
m_bbox.Set( SFVEC3F( bbox2d.Min().x, bbox2d.Min().y, aZMin ),
SFVEC3F( bbox2d.Max().x, bbox2d.Max().y, aZMax ) );
m_bbox.ScaleNextUp();
m_bbox.Scale( 1.0001f );
m_centroid = SFVEC3F( aObject2D->GetCentroid().x, aObject2D->GetCentroid().y,
( aZMax + aZMin ) * 0.5f );
}
bool LAYER_ITEM::Intersect( const RAY& aRay, HITINFO& aHitInfo ) const
{
float tBBoxStart;
float tBBoxEnd;
if( !m_bbox.Intersect( aRay, &tBBoxStart, &tBBoxEnd ) )
return false;
if( tBBoxStart >= aHitInfo.m_tHit )
return false;
if( fabs( tBBoxStart - tBBoxEnd ) <= FLT_EPSILON )
return false;
const bool startedInside = m_bbox.Inside( aRay.m_Origin );
if( !startedInside )
{
float tTop = FLT_MAX;
float tBot = FLT_MAX;
bool hit_top = false;
bool hit_bot = false;
if( (float) fabs( aRay.m_Dir.z ) > FLT_EPSILON )
{
tBot = ( m_bbox.Min().z - aRay.m_Origin.z ) * aRay.m_InvDir.z;
tTop = ( m_bbox.Max().z - aRay.m_Origin.z ) * aRay.m_InvDir.z;
float tBBoxStartAdjusted = NextFloatUp( tBBoxStart );
if( tBot > FLT_EPSILON )
{
hit_bot = tBot <= tBBoxStartAdjusted;
tBot = NextFloatDown( tBot );
}
if( tTop > FLT_EPSILON )
{
hit_top = tTop <= tBBoxStartAdjusted;
tTop = NextFloatDown( tTop );
}
}
SFVEC2F topHitPoint2d;
SFVEC2F botHitPoint2d;
if( hit_top )
topHitPoint2d = SFVEC2F( aRay.m_Origin.x + aRay.m_Dir.x * tTop,
aRay.m_Origin.y + aRay.m_Dir.y * tTop );
if( hit_bot )
botHitPoint2d = SFVEC2F( aRay.m_Origin.x + aRay.m_Dir.x * tBot,
aRay.m_Origin.y + aRay.m_Dir.y * tBot );
if( hit_top && hit_bot )
{
if( tBot < tTop )
{
if( m_object2d->IsPointInside( botHitPoint2d ) )
{
if( tBot < aHitInfo.m_tHit )
{
aHitInfo.m_tHit = tBot;
aHitInfo.m_HitPoint = aRay.at( tBot );
aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, -1.0f );
aHitInfo.pHitObject = this;
m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
return true;
}
return false;
}
}
else
{
if( m_object2d->IsPointInside( topHitPoint2d ) )
{
if( tTop < aHitInfo.m_tHit )
{
aHitInfo.m_tHit = tTop;
aHitInfo.m_HitPoint = aRay.at( tTop );
aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, 1.0f );
aHitInfo.pHitObject = this;
m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
return true;
}
return false;
}
}
}
else
{
if( hit_top )
{
if( tTop < tBot )
{
if( m_object2d->IsPointInside( topHitPoint2d ) )
{
if( tTop < aHitInfo.m_tHit )
{
aHitInfo.m_tHit = tTop;
aHitInfo.m_HitPoint = aRay.at( tTop );
aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, 1.0f );
aHitInfo.pHitObject = this;
m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
return true;
}
return false;
}
}
}
else
{
if( hit_bot )
{
if( tBot < tTop )
{
if( m_object2d->IsPointInside( botHitPoint2d ) )
{
if( tBot < aHitInfo.m_tHit )
{
aHitInfo.m_tHit = tBot;
aHitInfo.m_HitPoint = aRay.at( tBot );
aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, -1.0f );
aHitInfo.pHitObject = this;
m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
return true;
}
return false;
}
}
}
else
{
// At this point, the ray miss the two planes but it still
// hits the box. It means that the rays are "(almost)parallel"
// to the planes, so must calc the intersection
}
}
}
SFVEC3F boxHitPointStart = aRay.at( tBBoxStart );
SFVEC3F boxHitPointEnd = aRay.at( tBBoxEnd );
SFVEC2F boxHitPointStart2D( boxHitPointStart.x, boxHitPointStart.y );
SFVEC2F boxHitPointEnd2D( boxHitPointEnd.x, boxHitPointEnd.y );
float tOut;
SFVEC2F outNormal;
RAYSEG2D raySeg( boxHitPointStart2D, boxHitPointEnd2D );
if( m_object2d->Intersect( raySeg, &tOut, &outNormal ) )
{
// The hitT is a hit value for the segment length 'start' - 'end',
// so it ranges from 0.0 - 1.0. We now convert it to a 3D hit position
// and calculate the real hitT of the ray.
SFVEC3F hitPoint = boxHitPointStart + ( boxHitPointEnd - boxHitPointStart ) * tOut;
const float t = glm::length( hitPoint - aRay.m_Origin );
if( t < aHitInfo.m_tHit )
{
aHitInfo.m_tHit = t;
aHitInfo.m_HitPoint = hitPoint;
aHitInfo.pHitObject = this;
const float zNormalDir = hit_top?1.0f:hit_bot?-1.0f:0.0f;
if( ( outNormal.x == 0.0f ) && ( outNormal.y == 0.0f ) )
{
aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, zNormalDir );
}
else
{
// Calculate smooth bevel normal
float zBend = 0.0f;
if( hit_top || hit_bot )
{
float zDistanceToTopOrBot;
// Calculate the distance from hitpoint z to the Max/Min z of the layer
if( hit_top )
{
zDistanceToTopOrBot = ( m_bbox.Max().z - hitPoint.z );
}
else
{
zDistanceToTopOrBot = ( hitPoint.z - m_bbox.Min().z );
}
// For items that are > than g_BevelThickness3DU
// (eg on board vias / plated holeS) use a factor based on m_bbox.GetExtent().z
const float bevelThickness = glm::max( g_BevelThickness3DU,
m_bbox.GetExtent().z *
(float)ADVANCED_CFG::GetCfg().m_3DRT_BevelExtentFactor );
if( ( zDistanceToTopOrBot > 0.0f ) && ( zDistanceToTopOrBot < bevelThickness ) )
{
// Invert and Normalize the distance 0..1
zBend = ( bevelThickness - zDistanceToTopOrBot ) / bevelThickness;
}
}
const SFVEC3F normalLateral = SFVEC3F( outNormal.x, outNormal.y, 0.0f );
const SFVEC3F normalTopBot = SFVEC3F( 0.0f, 0.0f, zNormalDir );
// Interpolate between the regular lateral normal and the top/bot normal
aHitInfo.m_HitNormal = glm::mix( normalLateral, normalTopBot, zBend );
}
m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
return true;
}
}
return false;
}
else
{
/// @todo Either fix the code below or get rid of it.
// Disabled due to refraction artifacts
// this will mostly happen inside the board body
#if 0
// Started inside
const SFVEC3F boxHitPointStart = aRay.at( tBBoxStart );
const SFVEC3F boxHitPointEnd = aRay.at( tBBoxEnd );
const SFVEC2F boxHitPointStart2D( boxHitPointStart.x, boxHitPointStart.y );
const SFVEC2F boxHitPointEnd2D( boxHitPointEnd.x, boxHitPointEnd.y );
if( !( m_object2d->IsPointInside( boxHitPointStart2D ) &&
m_object2d->IsPointInside( boxHitPointEnd2D ) ) )
return false;
float tOut;
SFVEC2F outNormal;
RAYSEG2D raySeg( boxHitPointStart2D, boxHitPointEnd2D );
if( ( m_object2d->IsPointInside( boxHitPointStart2D ) &&
m_object2d->IsPointInside( boxHitPointEnd2D ) ) )
{
if( tBBoxEnd < aHitInfo.m_tHit )
{
aHitInfo.m_tHit = tBBoxEnd;
aHitInfo.m_HitPoint = aRay.at( tBBoxEnd );
aHitInfo.pHitObject = this;
if( aRay.m_Dir.z > 0.0f )
aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, -1.0f );
else
aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, 1.0f );
m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
return true;
}
}
else
{
if( m_object2d->Intersect( raySeg, &tOut, &outNormal ) )
{
// The hitT is a hit value for the segment length 'start' - 'end',
// so it ranges from 0.0 - 1.0. We now convert it to a 3D hit position
// and calculate the real hitT of the ray.
const SFVEC3F hitPoint = boxHitPointStart +
( boxHitPointEnd - boxHitPointStart ) * tOut;
const float t = glm::length( hitPoint - aRay.m_Origin );
if( t < aHitInfo.m_tHit )
{
aHitInfo.m_tHit = t;
aHitInfo.m_HitPoint = hitPoint;
aHitInfo.m_HitNormal = SFVEC3F( outNormal.x, outNormal.y, 0.0f );
aHitInfo.pHitObject = this;
m_material->Generate( aHitInfo.m_HitNormal, aRay, aHitInfo );
return true;
}
}
}
#endif
}
return false;
}
bool LAYER_ITEM::IntersectP( const RAY& aRay, float aMaxDistance ) const
{
float tBBoxStart;
float tBBoxEnd;
if( !m_bbox.Intersect( aRay, &tBBoxStart, &tBBoxEnd ) )
return false;
if( ( tBBoxStart > aMaxDistance ) || ( fabs( tBBoxStart - tBBoxEnd ) < FLT_EPSILON ) )
return false;
float tTop = FLT_MAX;
float tBot = FLT_MAX;
bool hit_top = false;
bool hit_bot = false;
if( (float)fabs( aRay.m_Dir.z ) > FLT_EPSILON )
{
tBot = ( m_bbox.Min().z - aRay.m_Origin.z ) * aRay.m_InvDir.z;
tTop = ( m_bbox.Max().z - aRay.m_Origin.z ) * aRay.m_InvDir.z;
const float tBBoxStartAdjusted = NextFloatUp( tBBoxStart );
if( tBot > FLT_EPSILON )
{
hit_bot = tBot <= tBBoxStartAdjusted;
tBot = NextFloatDown( tBot );
}
if( tTop > FLT_EPSILON )
{
hit_top = tTop <= tBBoxStartAdjusted;
tTop = NextFloatDown( tTop );
}
}
tBBoxStart = NextFloatDown( tBBoxStart );
tBBoxEnd = NextFloatUp( tBBoxEnd );
SFVEC2F topHitPoint2d;
SFVEC2F botHitPoint2d;
if( hit_top )
topHitPoint2d = SFVEC2F( aRay.m_Origin.x + aRay.m_Dir.x * tTop,
aRay.m_Origin.y + aRay.m_Dir.y * tTop );
if( hit_bot )
botHitPoint2d = SFVEC2F( aRay.m_Origin.x + aRay.m_Dir.x * tBot,
aRay.m_Origin.y + aRay.m_Dir.y * tBot );
if( hit_top && hit_bot )
{
if( tBot < tTop )
{
if( m_object2d->IsPointInside( botHitPoint2d ) )
{
if( tBot < aMaxDistance )
return true;
return false;
}
}
else
{
if( m_object2d->IsPointInside( topHitPoint2d ) )
{
if( tTop < aMaxDistance )
return true;
return false;
}
}
}
else
{
if( hit_top )
{
if( tTop < tBot )
{
if( m_object2d->IsPointInside( topHitPoint2d ) )
{
if( tTop < aMaxDistance )
return true;
return false;
}
}
}
else
{
if( hit_bot )
{
if( tBot < tTop )
{
if( m_object2d->IsPointInside( botHitPoint2d ) )
{
if( tBot < aMaxDistance )
return true;
return false;
}
}
}
else
{
// At this point, the ray miss the two planes but it still
// hits the box. It means that the rays are "(almost)parallel"
// to the planes, so must calc the intersection
}
}
}
SFVEC3F boxHitPointStart = aRay.at( tBBoxStart );
SFVEC3F boxHitPointEnd = aRay.at( tBBoxEnd );
SFVEC2F boxHitPointStart2D( boxHitPointStart.x, boxHitPointStart.y );
SFVEC2F boxHitPointEnd2D( boxHitPointEnd.x, boxHitPointEnd.y );
float tOut;
SFVEC2F outNormal;
RAYSEG2D raySeg( boxHitPointStart2D, boxHitPointEnd2D );
if( m_object2d->Intersect( raySeg, &tOut, &outNormal ) )
{
//if( (tOut > FLT_EPSILON) && (tOut < 1.0f) )
{
// The hitT is a hit value for the segment length 'start' - 'end',
// so it ranges from 0.0 - 1.0. We now convert it to a 3D hit position
// and calculate the real hitT of the ray.
const SFVEC3F hitPoint = boxHitPointStart +
( boxHitPointEnd - boxHitPointStart ) * tOut;
const float t = glm::length( hitPoint - aRay.m_Origin );
if( ( t < aMaxDistance ) && ( t > FLT_EPSILON ) )
return true;
}
}
return false;
}
bool LAYER_ITEM::Intersects( const BBOX_3D& aBBox ) const
{
if( !m_bbox.Intersects( aBBox ) )
return false;
const BBOX_2D bbox2D( SFVEC2F( aBBox.Min().x, aBBox.Min().y ),
SFVEC2F( aBBox.Max().x, aBBox.Max().y ) );
return m_object2d->Intersects( bbox2D );
}
SFVEC3F LAYER_ITEM::GetDiffuseColor( const HITINFO& /* aHitInfo */ ) const
{
return m_diffusecolor;
}