kicad/pcbnew/drc/drc_rtree.h

473 lines
15 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2019 KiCad Developers, see AUTHORS.txt for contributors.
* Copyright (C) 2020 CERN
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-3.0.html
* or you may search the http://www.gnu.org website for the version 3 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef DRC_RTREE_H_
#define DRC_RTREE_H_
#include <eda_rect.h>
#include <class_board_item.h>
#include <class_track.h>
#include <class_zone.h>
#include <unordered_set>
#include <set>
#include <vector>
#include <geometry/rtree.h>
#include <math/vector2d.h>
/**
* DRC_RTREE -
* Implements an R-tree for fast spatial and layer indexing of connectable items.
* Non-owning.
*/
class DRC_RTREE
{
public:
struct ITEM_WITH_SHAPE
{
ITEM_WITH_SHAPE( BOARD_ITEM *aParent, SHAPE* aShape, std::shared_ptr<SHAPE> aParentShape = nullptr ) :
parent ( aParent ),
shape ( aShape ),
parentShape( aParentShape ) {};
BOARD_ITEM* parent;
SHAPE* shape;
std::shared_ptr<SHAPE> parentShape;
};
private:
using drc_rtree = RTree<ITEM_WITH_SHAPE*, int, 2, double>;
public:
DRC_RTREE()
{
for( int layer : LSET::AllLayersMask().Seq() )
m_tree[layer] = new drc_rtree();
m_count = 0;
}
~DRC_RTREE()
{
for( auto tree : m_tree )
delete tree;
}
/**
* Function Insert()
* Inserts an item into the tree. Item's bounding box is taken via its GetBoundingBox() method.
*/
void insert( BOARD_ITEM* aItem )
{
std::vector<SHAPE*> subshapes;
for( int layer : aItem->GetLayerSet().Seq() )
{
std::shared_ptr<SHAPE> itemShape = aItem->GetEffectiveShape( (PCB_LAYER_ID) layer );
if( itemShape->HasIndexableSubshapes() )
{
itemShape->GetIndexableSubshapes( subshapes );
}
else
{
subshapes.push_back( itemShape.get() );
}
for( auto subshape : subshapes )
{
const BOX2I& bbox = subshape->BBox();
const int mmin[2] = { bbox.GetX(), bbox.GetY() };
const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() };
m_tree[layer]->Insert( mmin, mmax, new ITEM_WITH_SHAPE( aItem, subshape, itemShape ) );
m_count++;
}
}
}
#if 0
/**
* Function Remove()
* Removes an item from the tree. Removal is done by comparing pointers, attempting
* to remove a copy of the item will fail.
*/
bool remove( BOARD_ITEM* aItem )
{
// First, attempt to remove the item using its given BBox
const EDA_RECT& bbox = aItem->GetBoundingBox();
const int mmin[2] = { bbox.GetX(), bbox.GetY() };
const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() };
bool removed = false;
for( auto layer : aItem->GetLayerSet().Seq() )
{
if( ZONE_CONTAINER* zone = dyn_cast<ZONE_CONTAINER*>( aItem ) )
{
// Continue removing the zone elements from the tree until they cannot be found
while( !m_tree[int( layer )]->Remove( mmin, mmax, aItem ) )
;
const int mmin2[2] = { INT_MIN, INT_MIN };
const int mmax2[2] = { INT_MAX, INT_MAX };
// If we are not successful ( true == not found ), then we expand
// the search to the full tree
while( !m_tree[int( layer )]->Remove( mmin2, mmax2, aItem ) )
;
// Loop to the next layer
continue;
}
// The non-zone search expects only a single element in the tree with the same
// pointer aItem
if( m_tree[int( layer )]->Remove( mmin, mmax, aItem ) )
{
// N.B. We must search the whole tree for the pointer to remove
// because the item may have been moved before we have the chance to
// delete it from the tree
const int mmin2[2] = { INT_MIN, INT_MIN };
const int mmax2[2] = { INT_MAX, INT_MAX };
if( m_tree[int( layer )]->Remove( mmin2, mmax2, aItem ) )
continue;
}
removed = true;
}
m_count -= int( removed );
return removed;
}
#endif
/**
* Function RemoveAll()
* Removes all items from the RTree
*/
void clear()
{
for( auto tree : m_tree )
tree->RemoveAll();
m_count = 0;
}
#if 0
/**
* Determine if a given item exists in the tree. Note that this does not search the full tree
* so if the item has been moved, this will return false when it should be true.
*
* @param aItem Item that may potentially exist in the tree
* @param aRobust If true, search the whole tree, not just the bounding box
* @return true if the item definitely exists, false if it does not exist within bbox
*/
bool contains( BOARD_ITEM* aItem, bool aRobust = false )
{
const EDA_RECT& bbox = aItem->GetBoundingBox();
const int mmin[2] = { bbox.GetX(), bbox.GetY() };
const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() };
bool found = false;
auto search = [&found, &aItem]( const ITEM_WITH_SHAPE* aSearchItem ) {
if( aSearchItem->parent == aItem )
{
found = true;
return false;
}
return true;
};
for( int layer : aItem->GetLayerSet().Seq() )
{
m_tree[layer]->Search( mmin, mmax, search );
if( found )
break;
}
if( !found && aRobust )
{
for( int layer : LSET::AllCuMask().Seq() )
{
// N.B. We must search the whole tree for the pointer to remove
// because the item may have been moved. We do not expand the item
// layer search as this should not change.
const int mmin2[2] = { INT_MIN, INT_MIN };
const int mmax2[2] = { INT_MAX, INT_MAX };
m_tree[layer]->Search( mmin2, mmax2, search );
if( found )
break;
}
}
return found;
}
#endif
int QueryColliding( BOARD_ITEM* aRefItem,
PCB_LAYER_ID aRefLayer,
PCB_LAYER_ID aTargetLayer,
std::function<bool( BOARD_ITEM*)> aFilter,
std::function<bool( BOARD_ITEM*, int)> aVisitor,
int aClearance
)
{
// keep track of BOARD_ITEMs that have been already found to collide (some items
// might be build of COMPOUND/triangulated shapes and a single subshape collision
// means we have a hit)
std::unordered_set<BOARD_ITEM*> collidingCompounds;
EDA_RECT box = aRefItem->GetBoundingBox();
box.Inflate( aClearance );
int min[2] = { box.GetX(), box.GetY() };
int max[2] = { box.GetRight(), box.GetBottom() };
std::shared_ptr<SHAPE> refShape = aRefItem->GetEffectiveShape( aRefLayer );
auto visit = [&] ( ITEM_WITH_SHAPE* aItem ) -> bool
{
if( collidingCompounds.find( aItem->parent ) != collidingCompounds.end() )
return true;
if( !aFilter( aItem->parent ) )
return true;
int actual;
bool colliding = refShape->Collide( aItem->shape, aClearance, &actual );
if( colliding )
{
collidingCompounds.insert( aItem->parent );
return aVisitor( aItem->parent, actual );
}
return true;
};
this->m_tree[aTargetLayer]->Search( min, max, visit );
return 0;
}
typedef std::pair<PCB_LAYER_ID, PCB_LAYER_ID> LAYER_PAIR;
int QueryCollidingPairs( DRC_RTREE* aRefTree,
std::vector<LAYER_PAIR> aLayers,
std::function<bool( const LAYER_PAIR&, ITEM_WITH_SHAPE*, ITEM_WITH_SHAPE* )> aVisitor,
// std::function<bool( const LAYER_PAIR&, BOARD_ITEM*, BOARD_ITEM*, int&, DRC_CONSTRAINT& )> aResolver,
// std::function<bool( BOARD_ITEM*, BOARD_ITEM*, int, int&, DRC_CONSTRAINT&)> aVisitor,
int aMaxClearance
)
{
// keep track of BOARD_ITEMs pairs that have been already found to collide (some items
// might be build of COMPOUND/triangulated shapes and a single subshape collision
// means we have a hit)
std::set< std::pair<BOARD_ITEM*, BOARD_ITEM*>> collidingCompounds;
for( auto refLayerIter : aLayers )
{
const PCB_LAYER_ID refLayer = refLayerIter.first;
const PCB_LAYER_ID targetLayer = refLayerIter.second;
for( auto refItem : aRefTree->OnLayer( refLayer ) )
{
BOX2I box = refItem->shape->BBox();
box.Inflate( aMaxClearance );
int min[2] = { box.GetX(), box.GetY() };
int max[2] = { box.GetRight(), box.GetBottom() };
auto visit = [&] ( ITEM_WITH_SHAPE* aItemToTest ) -> bool
{
const std::pair<BOARD_ITEM*, BOARD_ITEM*> chkCompoundPair( refItem->parent, aItemToTest->parent );
// don't report multiple collisions for compound or triangulated shapes
if( collidingCompounds.find( chkCompoundPair ) != collidingCompounds.end() )
return true;
// don't collide items against themselves
if( refLayer == targetLayer && aItemToTest->parent == refItem->parent )
return true;
bool colliding = aVisitor( refLayerIter, refItem, aItemToTest );
if( colliding )
{
collidingCompounds.insert( chkCompoundPair );
}
return true;
};
this->m_tree[targetLayer]->Search( min, max, visit );
};
}
return 0;
}
#if 0
std::vector<std::pair<int, BOARD_ITEM*>> GetNearest( const wxPoint &aPoint,
PCB_LAYER_ID aLayer,
int aLimit )
{
const int point[2] = { aPoint.x, aPoint.y };
auto result = m_tree[int( aLayer )]->NearestNeighbors( point,
[aLimit]( std::size_t a_count, int a_maxDist ) -> bool
{
return a_count >= aLimit;
},
[]( BOARD_ITEM* aElement) -> bool
{
// Don't remove any elements from the list
return false;
},
[aLayer]( const int* a_point, BOARD_ITEM* a_data ) -> int
{
switch( a_data->Type() )
{
case PCB_TRACE_T:
{
TRACK* track = static_cast<TRACK*>( a_data );
SEG seg( track->GetStart(), track->GetEnd() );
return seg.Distance( VECTOR2I( a_point[0], a_point[1] ) ) -
( track->GetWidth() + 1 ) / 2;
}
case PCB_VIA_T:
{
VIA* via = static_cast<VIA*>( a_data );
return ( VECTOR2I( via->GetPosition() ) -
VECTOR2I( a_point[0], a_point[1] ) ).EuclideanNorm() -
( via->GetWidth() + 1 ) / 2;
}
default:
{
VECTOR2I point( a_point[0], a_point[1] );
int dist = 0;
auto shape = a_data->GetEffectiveShape( aLayer );
// Here we use a hack to get the distance by colliding with a large area
// However, we can't use just MAX_INT because we will overflow the collision calculations
shape->Collide( point, std::numeric_limits<int>::max() / 2, &dist);
return dist;
}
}
return 0;
});
return result;
}
#endif
/**
* Returns the number of items in the tree
* @return number of elements in the tree;
*/
size_t size()
{
return m_count;
}
bool empty()
{
return m_count == 0;
}
using iterator = typename drc_rtree::Iterator;
/**
* The DRC_LAYER struct provides a layer-specific auto-range iterator to the RTree. Using
* this struct, one can write lines like:
*
* for( auto item : rtree.OnLayer( In1_Cu ) )
*
* and iterate over only the RTree items that are on In1
*/
struct DRC_LAYER
{
DRC_LAYER( drc_rtree* aTree ) : layer_tree( aTree )
{
m_rect = { { INT_MIN, INT_MIN }, { INT_MAX, INT_MAX } };
};
DRC_LAYER( drc_rtree* aTree, const EDA_RECT aRect ) : layer_tree( aTree )
{
m_rect = { { aRect.GetX(), aRect.GetY() },
{ aRect.GetRight(), aRect.GetBottom() } };
};
drc_rtree::Rect m_rect;
drc_rtree* layer_tree;
iterator begin()
{
return layer_tree->begin( m_rect );
}
iterator end()
{
return layer_tree->end( m_rect );
}
};
DRC_LAYER OnLayer( PCB_LAYER_ID aLayer )
{
return DRC_LAYER( m_tree[int( aLayer )] );
}
DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const wxPoint& aPoint, int aAccuracy = 0 )
{
EDA_RECT rect( aPoint, wxSize( 0, 0 ) );
rect.Inflate( aAccuracy );
return DRC_LAYER( m_tree[int( aLayer )], rect );
}
DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const EDA_RECT& aRect )
{
return DRC_LAYER( m_tree[int( aLayer )], aRect );
}
private:
drc_rtree* m_tree[PCB_LAYER_ID_COUNT];
size_t m_count;
};
#endif /* DRC_RTREE_H_ */