kicad/include/geometry/shape_poly_set.h

390 lines
13 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015 CERN
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef __SHAPE_POLY_SET_H
#define __SHAPE_POLY_SET_H
#include <vector>
#include <cstdio>
#include <geometry/shape.h>
#include <geometry/shape_line_chain.h>
#include "clipper.hpp"
/**
* Class SHAPE_POLY_SET
*
* Represents a set of closed polygons. Polygons may be nonconvex, self-intersecting
* and have holes. Provides boolean operations (using Clipper library as the backend).
*
* TODO: add convex partitioning & spatial index
*/
class SHAPE_POLY_SET : public SHAPE
{
public:
///> represents a single polygon outline with holes. The first entry is the outline,
///> the remaining (if any), are the holes
typedef std::vector<SHAPE_LINE_CHAIN> POLYGON;
/**
* Class ITERATOR_TEMPLATE
*
* Base class for iterating over all vertices in a given SHAPE_POLY_SET
*/
template <class T>
class ITERATOR_TEMPLATE
{
public:
bool IsEndContour() const
{
return m_currentVertex + 1 == m_poly->CPolygon( m_currentOutline )[0].PointCount();
}
bool IsLastContour() const
{
return m_currentOutline == m_lastOutline;
}
operator bool() const
{
return m_currentOutline <= m_lastOutline;
}
void Advance()
{
m_currentVertex ++;
if( m_currentVertex >= m_poly->CPolygon( m_currentOutline )[0].PointCount() )
{
m_currentVertex = 0;
m_currentOutline++;
}
}
void operator++( int dummy )
{
Advance();
}
void operator++()
{
Advance();
}
T& Get()
{
return m_poly->Polygon( m_currentOutline )[0].Point( m_currentVertex );
}
T& operator*()
{
return Get();
}
T* operator->()
{
return &Get();
}
private:
friend class SHAPE_POLY_SET;
SHAPE_POLY_SET* m_poly;
int m_currentOutline;
int m_lastOutline;
int m_currentVertex;
};
typedef ITERATOR_TEMPLATE<VECTOR2I> ITERATOR;
typedef ITERATOR_TEMPLATE<const VECTOR2I> CONST_ITERATOR;
SHAPE_POLY_SET();
~SHAPE_POLY_SET();
///> Creates a new empty polygon in the set and returns its index
int NewOutline();
///> Creates a new hole in a given outline
int NewHole( int aOutline = -1 );
///> Adds a new outline to the set and returns its index
int AddOutline( const SHAPE_LINE_CHAIN& aOutline );
///> Adds a new hole to the given outline (default: last) and returns its index
int AddHole( const SHAPE_LINE_CHAIN& aHole, int aOutline = -1 );
///> Appends a vertex at the end of the given outline/hole (default: the last outline)
int Append( int x, int y, int aOutline = -1, int aHole = -1 );
///> Merges polygons from two sets.
void Append( const SHAPE_POLY_SET& aSet );
///> Appends a vertex at the end of the given outline/hole (default: the last outline)
void Append( const VECTOR2I& aP, int aOutline = -1, int aHole = -1 );
///> Returns the index-th vertex in a given hole outline within a given outline
VECTOR2I& Vertex( int index, int aOutline = -1, int aHole = -1 );
///> Returns the index-th vertex in a given hole outline within a given outline
const VECTOR2I& CVertex( int index, int aOutline = -1, int aHole = -1 ) const;
///> Returns true if any of the outlines is self-intersecting
bool IsSelfIntersecting();
///> Returns the number of outlines in the set
int OutlineCount() const { return m_polys.size(); }
///> Returns the number of vertices in a given outline/hole
int VertexCount( int aOutline = -1, int aHole = -1 ) const;
///> Returns the number of holes in a given outline
int HoleCount( int aOutline ) const
{
if( (aOutline > (int)m_polys.size()) || (m_polys[aOutline].size() < 2) )
return 0;
return m_polys[aOutline].size() - 1;
}
///> Returns the reference to aIndex-th outline in the set
SHAPE_LINE_CHAIN& Outline( int aIndex )
{
return m_polys[aIndex][0];
}
///> Returns the reference to aHole-th hole in the aIndex-th outline
SHAPE_LINE_CHAIN& Hole( int aOutline, int aHole )
{
return m_polys[aOutline][aHole + 1];
}
///> Returns the aIndex-th subpolygon in the set
POLYGON& Polygon( int aIndex )
{
return m_polys[aIndex];
}
const SHAPE_LINE_CHAIN& COutline( int aIndex ) const
{
return m_polys[aIndex][0];
}
const SHAPE_LINE_CHAIN& CHole( int aOutline, int aHole ) const
{
return m_polys[aOutline][aHole + 1];
}
const POLYGON& CPolygon( int aIndex ) const
{
return m_polys[aIndex];
}
///> Returns an iterator object, for iterating between aFirst and aLast outline.
ITERATOR Iterate( int aFirst, int aLast )
{
ITERATOR iter;
iter.m_poly = this;
iter.m_currentOutline = aFirst;
iter.m_lastOutline = aLast < 0 ? OutlineCount() - 1 : aLast;
iter.m_currentVertex = 0;
return iter;
}
///> Returns an iterator object, for iterating aOutline-th outline
ITERATOR Iterate( int aOutline )
{
return Iterate( aOutline, aOutline );
}
///> Returns an iterator object, for all outlines in the set (no holes)
ITERATOR Iterate()
{
return Iterate( 0, OutlineCount() - 1 );
}
CONST_ITERATOR CIterate( int aFirst, int aLast ) const
{
CONST_ITERATOR iter;
iter.m_poly = const_cast<SHAPE_POLY_SET*>( this );
iter.m_currentOutline = aFirst;
iter.m_lastOutline = aLast < 0 ? OutlineCount() - 1 : aLast;
iter.m_currentVertex = 0;
return iter;
}
CONST_ITERATOR CIterate( int aOutline ) const
{
return CIterate( aOutline, aOutline );
}
CONST_ITERATOR CIterate() const
{
return CIterate( 0, OutlineCount() - 1 );
}
/** operations on polygons use a aFastMode param
* if aFastMode is PM_FAST (true) the result can be a weak polygon
* if aFastMode is PM_STRICTLY_SIMPLE (false) (default) the result is (theorically) a strictly
* simple polygon, but calculations can be really significantly time consuming
* Most of time PM_FAST is preferable.
* PM_STRICTLY_SIMPLE can be used in critical cases (Gerber output for instance)
*/
enum POLYGON_MODE
{
PM_FAST = true,
PM_STRICTLY_SIMPLE = false
};
///> Performs boolean polyset union
///> For aFastMode meaning, see function booleanOp
void BooleanAdd( const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode );
///> Performs boolean polyset difference
///> For aFastMode meaning, see function booleanOp
void BooleanSubtract( const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode );
///> Performs boolean polyset intersection
///> For aFastMode meaning, see function booleanOp
void BooleanIntersection( const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode );
///> Performs boolean polyset union between a and b, store the result in it self
///> For aFastMode meaning, see function booleanOp
void BooleanAdd( const SHAPE_POLY_SET& a, const SHAPE_POLY_SET& b,
POLYGON_MODE aFastMode );
///> Performs boolean polyset difference between a and b, store the result in it self
///> For aFastMode meaning, see function booleanOp
void BooleanSubtract( const SHAPE_POLY_SET& a, const SHAPE_POLY_SET& b,
POLYGON_MODE aFastMode );
///> Performs boolean polyset intersection between a and b, store the result in it self
///> For aFastMode meaning, see function booleanOp
void BooleanIntersection( const SHAPE_POLY_SET& a, const SHAPE_POLY_SET& b,
POLYGON_MODE aFastMode );
///> Performs outline inflation/deflation, using round corners.
void Inflate( int aFactor, int aCircleSegmentsCount );
///> Converts a set of polygons with holes to a singe outline with "slits"/"fractures" connecting the outer ring
///> to the inner holes
///> For aFastMode meaning, see function booleanOp
void Fracture( POLYGON_MODE aFastMode );
///> Converts a set of slitted polygons to a set of polygons with holes
void Unfracture();
///> Returns true if the polygon set has any holes.
bool HasHoles() const;
///> Simplifies the polyset (merges overlapping polys, eliminates degeneracy/self-intersections)
///> For aFastMode meaning, see function booleanOp
void Simplify( POLYGON_MODE aFastMode );
/// @copydoc SHAPE::Format()
const std::string Format() const override;
/// @copydoc SHAPE::Parse()
bool Parse( std::stringstream& aStream ) override;
/// @copydoc SHAPE::Move()
void Move( const VECTOR2I& aVector ) override;
/// @copydoc SHAPE::IsSolid()
bool IsSolid() const override
{
return true;
}
const BOX2I BBox( int aClearance = 0 ) const override;
// fixme: add collision support
bool Collide( const VECTOR2I& aP, int aClearance = 0 ) const override { return false; }
bool Collide( const SEG& aSeg, int aClearance = 0 ) const override { return false; }
///> Returns true is a given subpolygon contains the point aP. If aSubpolyIndex < 0 (default value),
///> checks all polygons in the set
bool Contains( const VECTOR2I& aP, int aSubpolyIndex = -1 ) const;
///> Returns true if the set is empty (no polygons at all)
bool IsEmpty() const
{
return m_polys.size() == 0;
}
///> Removes all outlines & holes (clears) the polygon set.
void RemoveAllContours();
///> Returns total number of vertices stored in the set.
int TotalVertices() const;
///> Deletes aIdx-th polygon from the set
void DeletePolygon( int aIdx );
private:
SHAPE_LINE_CHAIN& getContourForCorner( int aCornerId, int& aIndexWithinContour );
VECTOR2I& vertex( int aCornerId );
const VECTOR2I& cvertex( int aCornerId ) const;
void fractureSingle( POLYGON& paths );
void importTree( ClipperLib::PolyTree* tree );
/** Function booleanOp
* this is the engine to execute all polygon boolean transforms
* (AND, OR, ... and polygon simplification (merging overlaping polygons)
* @param aType is the transform type ( see ClipperLib::ClipType )
* @param aOtherShape is the SHAPE_LINE_CHAIN to combine with me.
* @param aFastMode is an option to choose if the result can be a weak polygon
* or a stricty simple polygon.
* if aFastMode is PM_FAST the result can be a weak polygon
* if aFastMode is PM_STRICTLY_SIMPLE (default) the result is (theorically) a strictly
* simple polygon, but calculations can be really significantly time consuming
*/
void booleanOp( ClipperLib::ClipType aType,
const SHAPE_POLY_SET& aOtherShape, POLYGON_MODE aFastMode );
void booleanOp( ClipperLib::ClipType aType,
const SHAPE_POLY_SET& aShape,
const SHAPE_POLY_SET& aOtherShape, POLYGON_MODE aFastMode );
bool pointInPolygon( const VECTOR2I& aP, const SHAPE_LINE_CHAIN& aPath ) const;
const ClipperLib::Path convertToClipper( const SHAPE_LINE_CHAIN& aPath, bool aRequiredOrientation );
const SHAPE_LINE_CHAIN convertFromClipper( const ClipperLib::Path& aPath );
typedef std::vector<POLYGON> Polyset;
Polyset m_polys;
};
#endif