kicad/pcbnew/router/pns_shove.cpp

1423 lines
34 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2014 CERN
* Copyright (C) 2016 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define PNS_DEBUG
#include <deque>
#include <cassert>
#include "range.h"
#include "pns_line.h"
#include "pns_node.h"
#include "pns_walkaround.h"
#include "pns_shove.h"
#include "pns_solid.h"
#include "pns_optimizer.h"
#include "pns_via.h"
#include "pns_utils.h"
#include "pns_router.h"
#include "pns_shove.h"
#include "pns_utils.h"
#include "pns_topology.h"
#include "time_limit.h"
#include <profile.h>
namespace PNS {
void SHOVE::replaceItems( ITEM* aOld, std::unique_ptr< ITEM > aNew )
{
OPT_BOX2I changed_area = ChangedArea( aOld, aNew.get() );
if( changed_area )
{
m_affectedAreaSum = m_affectedAreaSum ? m_affectedAreaSum->Merge( *changed_area ) : *changed_area;
}
m_currentNode->Replace( aOld, std::move( aNew ) );
}
void SHOVE::replaceLine( LINE& aOld, LINE& aNew )
{
OPT_BOX2I changed_area = ChangedArea( aOld, aNew );
if( changed_area )
{
m_affectedAreaSum = m_affectedAreaSum ? m_affectedAreaSum->Merge( *changed_area ) : *changed_area;
}
m_currentNode->Replace( aOld, aNew );
}
int SHOVE::getClearance( const ITEM* aA, const ITEM* aB ) const
{
if( m_forceClearance >= 0 )
return m_forceClearance;
return m_currentNode->GetClearance( aA, aB );
}
void SHOVE::sanityCheck( LINE* aOld, LINE* aNew )
{
assert( aOld->CPoint( 0 ) == aNew->CPoint( 0 ) );
assert( aOld->CPoint( -1 ) == aNew->CPoint( -1 ) );
}
SHOVE::SHOVE( NODE* aWorld, ROUTER* aRouter ) :
ALGO_BASE( aRouter )
{
m_forceClearance = -1;
m_root = aWorld;
m_currentNode = aWorld;
// Initialize other temporary variables:
m_draggedVia = NULL;
m_iter = 0;
m_multiLineMode = false;
}
SHOVE::~SHOVE()
{
}
LINE SHOVE::assembleLine( const SEGMENT* aSeg, int* aIndex )
{
return m_currentNode->AssembleLine( const_cast<SEGMENT*>( aSeg ), aIndex, true );
}
// A dumb function that checks if the shoved line is shoved the right way, e.g.
// visually "outwards" of the line/via applying pressure on it. Unfortunately there's no
// mathematical concept of orientation of an open curve, so we use some primitive heuristics:
// if the shoved line wraps around the start of the "pusher", it's likely shoved in wrong direction.
bool SHOVE::checkBumpDirection( const LINE& aCurrent, const LINE& aShoved ) const
{
const SEG& ss = aCurrent.CSegment( 0 );
int dist = getClearance( &aCurrent, &aShoved ) + PNS_HULL_MARGIN;
dist += aCurrent.Width() / 2;
dist += aShoved.Width() / 2;
const VECTOR2I ps = ss.A - ( ss.B - ss.A ).Resize( dist );
return !aShoved.CLine().PointOnEdge( ps );
}
SHOVE::SHOVE_STATUS SHOVE::walkaroundLoneVia( LINE& aCurrent, LINE& aObstacle,
LINE& aShoved )
{
int clearance = getClearance( &aCurrent, &aObstacle );
const SHAPE_LINE_CHAIN hull = aCurrent.Via().Hull( clearance, aObstacle.Width() );
SHAPE_LINE_CHAIN path_cw, path_ccw;
if( ! aObstacle.Walkaround( hull, path_cw, true ) )
return SH_INCOMPLETE;
if( ! aObstacle.Walkaround( hull, path_ccw, false ) )
return SH_INCOMPLETE;
const SHAPE_LINE_CHAIN& shortest = path_ccw.Length() < path_cw.Length() ? path_ccw : path_cw;
if( shortest.PointCount() < 2 )
return SH_INCOMPLETE;
if( aObstacle.CPoint( -1 ) != shortest.CPoint( -1 ) )
return SH_INCOMPLETE;
if( aObstacle.CPoint( 0 ) != shortest.CPoint( 0 ) )
return SH_INCOMPLETE;
aShoved.SetShape( shortest );
if( m_currentNode->CheckColliding( &aShoved, &aCurrent ) )
return SH_INCOMPLETE;
return SH_OK;
}
SHOVE::SHOVE_STATUS SHOVE::processHullSet( LINE& aCurrent, LINE& aObstacle,
LINE& aShoved, const HULL_SET& aHulls )
{
const SHAPE_LINE_CHAIN& obs = aObstacle.CLine();
int attempt;
for( attempt = 0; attempt < 4; attempt++ )
{
bool invertTraversal = ( attempt >= 2 );
bool clockwise = attempt % 2;
int vFirst = -1, vLast = -1;
SHAPE_LINE_CHAIN path;
LINE l( aObstacle );
for( int i = 0; i < (int) aHulls.size(); i++ )
{
const SHAPE_LINE_CHAIN& hull = aHulls[invertTraversal ? aHulls.size() - 1 - i : i];
if( ! l.Walkaround( hull, path, clockwise ) )
return SH_INCOMPLETE;
path.Simplify();
l.SetShape( path );
}
for( int i = 0; i < std::min( path.PointCount(), obs.PointCount() ); i++ )
{
if( path.CPoint( i ) != obs.CPoint( i ) )
{
vFirst = i;
break;
}
}
int k = obs.PointCount() - 1;
for( int i = path.PointCount() - 1; i >= 0 && k >= 0; i--, k-- )
{
if( path.CPoint( i ) != obs.CPoint( k ) )
{
vLast = i;
break;
}
}
if( ( vFirst < 0 || vLast < 0 ) && !path.CompareGeometry( aObstacle.CLine() ) )
{
wxLogTrace( "PNS", "attempt %d fail vfirst-last", attempt );
continue;
}
if( path.CPoint( -1 ) != obs.CPoint( -1 ) || path.CPoint( 0 ) != obs.CPoint( 0 ) )
{
wxLogTrace( "PNS", "attempt %d fail vend-start\n", attempt );
continue;
}
if( !checkBumpDirection( aCurrent, l ) )
{
wxLogTrace( "PNS", "attempt %d fail direction-check", attempt );
aShoved.SetShape( l.CLine() );
continue;
}
if( path.SelfIntersecting() )
{
wxLogTrace( "PNS", "attempt %d fail self-intersect", attempt );
continue;
}
bool colliding = m_currentNode->CheckColliding( &l, &aCurrent, ITEM::ANY_T, m_forceClearance );
if( ( aCurrent.Marker() & MK_HEAD ) && !colliding )
{
JOINT* jtStart = m_currentNode->FindJoint( aCurrent.CPoint( 0 ), &aCurrent );
for( ITEM* item : jtStart->LinkList() )
{
if( m_currentNode->CheckColliding( item, &l ) )
colliding = true;
}
}
if( colliding )
{
wxLogTrace( "PNS", "attempt %d fail coll-check", attempt );
continue;
}
aShoved.SetShape( l.CLine() );
return SH_OK;
}
return SH_INCOMPLETE;
}
SHOVE::SHOVE_STATUS SHOVE::ProcessSingleLine( LINE& aCurrent, LINE& aObstacle,
LINE& aShoved )
{
aShoved.ClearSegmentLinks();
bool obstacleIsHead = false;
for( SEGMENT* s : aObstacle.LinkedSegments() )
{
if( s->Marker() & MK_HEAD )
{
obstacleIsHead = true;
break;
}
}
SHOVE_STATUS rv;
bool viaOnEnd = aCurrent.EndsWithVia();
if( viaOnEnd && ( !aCurrent.LayersOverlap( &aObstacle ) || aCurrent.SegmentCount() == 0 ) )
{
rv = walkaroundLoneVia( aCurrent, aObstacle, aShoved );
}
else
{
int w = aObstacle.Width();
int n_segs = aCurrent.SegmentCount();
int clearance = getClearance( &aCurrent, &aObstacle ) + 1;
HULL_SET hulls;
hulls.reserve( n_segs + 1 );
for( int i = 0; i < n_segs; i++ )
{
SEGMENT seg( aCurrent, aCurrent.CSegment( i ) );
SHAPE_LINE_CHAIN hull = seg.Hull( clearance, w );
hulls.push_back( hull );
}
if( viaOnEnd )
hulls.push_back( aCurrent.Via().Hull( clearance, w ) );
rv = processHullSet( aCurrent, aObstacle, aShoved, hulls );
}
if( obstacleIsHead )
aShoved.Mark( aShoved.Marker() | MK_HEAD );
return rv;
}
SHOVE::SHOVE_STATUS SHOVE::onCollidingSegment( LINE& aCurrent, SEGMENT* aObstacleSeg )
{
int segIndex;
LINE obstacleLine = assembleLine( aObstacleSeg, &segIndex );
LINE shovedLine( obstacleLine );
SEGMENT tmp( *aObstacleSeg );
if( obstacleLine.HasLockedSegments() )
return SH_TRY_WALK;
SHOVE_STATUS rv = ProcessSingleLine( aCurrent, obstacleLine, shovedLine );
const double extensionWalkThreshold = 1.0;
double obsLen = obstacleLine.CLine().Length();
double shovedLen = shovedLine.CLine().Length();
double extensionFactor = 0.0;
if( obsLen != 0.0f )
extensionFactor = shovedLen / obsLen - 1.0;
if( extensionFactor > extensionWalkThreshold )
return SH_TRY_WALK;
assert( obstacleLine.LayersOverlap( &shovedLine ) );
#ifdef DEBUG
m_logger.NewGroup( "on-colliding-segment", m_iter );
m_logger.Log( &tmp, 0, "obstacle-segment" );
m_logger.Log( &aCurrent, 1, "current-line" );
m_logger.Log( &obstacleLine, 2, "obstacle-line" );
m_logger.Log( &shovedLine, 3, "shoved-line" );
#endif
if( rv == SH_OK )
{
if( shovedLine.Marker() & MK_HEAD )
{
if( m_multiLineMode )
return SH_INCOMPLETE;
m_newHead = shovedLine;
}
int rank = aCurrent.Rank();
shovedLine.SetRank( rank - 1 );
sanityCheck( &obstacleLine, &shovedLine );
replaceLine( obstacleLine, shovedLine );
if( !pushLine( shovedLine ) )
rv = SH_INCOMPLETE;
}
return rv;
}
SHOVE::SHOVE_STATUS SHOVE::onCollidingLine( LINE& aCurrent, LINE& aObstacle )
{
LINE shovedLine( aObstacle );
SHOVE_STATUS rv = ProcessSingleLine( aCurrent, aObstacle, shovedLine );
#ifdef DEBUG
m_logger.NewGroup( "on-colliding-line", m_iter );
m_logger.Log( &aObstacle, 0, "obstacle-line" );
m_logger.Log( &aCurrent, 1, "current-line" );
m_logger.Log( &shovedLine, 3, "shoved-line" );
#endif
if( rv == SH_OK )
{
if( shovedLine.Marker() & MK_HEAD )
{
if( m_multiLineMode )
return SH_INCOMPLETE;
m_newHead = shovedLine;
}
sanityCheck( &aObstacle, &shovedLine );
replaceLine( aObstacle, shovedLine );
int rank = aObstacle.Rank();
shovedLine.SetRank( rank - 1 );
if( !pushLine( shovedLine ) )
{
rv = SH_INCOMPLETE;
}
}
return rv;
}
SHOVE::SHOVE_STATUS SHOVE::onCollidingSolid( LINE& aCurrent, ITEM* aObstacle )
{
WALKAROUND walkaround( m_currentNode, Router() );
LINE walkaroundLine( aCurrent );
if( aCurrent.EndsWithVia() )
{
VIA vh = aCurrent.Via();
VIA* via = NULL;
JOINT* jtStart = m_currentNode->FindJoint( vh.Pos(), &aCurrent );
if( !jtStart )
return SH_INCOMPLETE;
for( ITEM* item : jtStart->LinkList() )
{
if( item->OfKind( ITEM::VIA_T ) )
{
via = (VIA*) item;
break;
}
}
if( via && m_currentNode->CheckColliding( via, aObstacle ) )
return onCollidingVia( aObstacle, via );
}
TOPOLOGY topo( m_currentNode );
std::set<ITEM*> cluster = topo.AssembleCluster( aObstacle, aCurrent.Layers().Start() );
#ifdef DEBUG
m_logger.NewGroup( "on-colliding-solid-cluster", m_iter );
for( ITEM* item : cluster )
{
m_logger.Log( item, 0, "cluster-entry" );
}
#endif
walkaround.SetSolidsOnly( false );
walkaround.RestrictToSet( true, cluster );
walkaround.SetIterationLimit( 16 ); // fixme: make configurable
int currentRank = aCurrent.Rank();
int nextRank;
bool success = false;
for( int attempt = 0; attempt < 2; attempt++ )
{
if( attempt == 1 || Settings().JumpOverObstacles() )
{
nextRank = currentRank - 1;
walkaround.SetSingleDirection( true );
}
else
{
nextRank = currentRank + 10000;
walkaround.SetSingleDirection( false );
}
WALKAROUND::WALKAROUND_STATUS status = walkaround.Route( aCurrent, walkaroundLine, false );
if( status != WALKAROUND::DONE )
continue;
walkaroundLine.ClearSegmentLinks();
walkaroundLine.Unmark();
walkaroundLine.Line().Simplify();
if( walkaroundLine.HasLoops() )
continue;
if( aCurrent.Marker() & MK_HEAD )
{
walkaroundLine.Mark( MK_HEAD );
if( m_multiLineMode )
continue;
m_newHead = walkaroundLine;
}
sanityCheck( &aCurrent, &walkaroundLine );
if( !m_lineStack.empty() )
{
LINE lastLine = m_lineStack.front();
if( m_currentNode->CheckColliding( &lastLine, &walkaroundLine ) )
{
LINE dummy( lastLine );
if( ProcessSingleLine( walkaroundLine, lastLine, dummy ) == SH_OK )
{
success = true;
break;
}
} else {
success = true;
break;
}
}
}
if(!success)
return SH_INCOMPLETE;
replaceLine( aCurrent, walkaroundLine );
walkaroundLine.SetRank( nextRank );
#ifdef DEBUG
m_logger.NewGroup( "on-colliding-solid", m_iter );
m_logger.Log( aObstacle, 0, "obstacle-solid" );
m_logger.Log( &aCurrent, 1, "current-line" );
m_logger.Log( &walkaroundLine, 3, "walk-line" );
#endif
popLine();
if( !pushLine( walkaroundLine ) )
return SH_INCOMPLETE;
return SH_OK;
}
bool SHOVE::reduceSpringback( const ITEM_SET& aHeadSet )
{
bool rv = false;
while( !m_nodeStack.empty() )
{
SPRINGBACK_TAG spTag = m_nodeStack.back();
if( !spTag.m_node->CheckColliding( aHeadSet ) )
{
rv = true;
delete spTag.m_node;
m_nodeStack.pop_back();
}
else
break;
}
return rv;
}
bool SHOVE::pushSpringback( NODE* aNode, const ITEM_SET& aHeadItems,
const COST_ESTIMATOR& aCost, const OPT_BOX2I& aAffectedArea )
{
SPRINGBACK_TAG st;
OPT_BOX2I prev_area;
if( !m_nodeStack.empty() )
prev_area = m_nodeStack.back().m_affectedArea;
st.m_node = aNode;
st.m_cost = aCost;
st.m_headItems = aHeadItems;
if( aAffectedArea )
{
if( prev_area )
st.m_affectedArea = prev_area->Merge( *aAffectedArea );
else
st.m_affectedArea = aAffectedArea;
} else
st.m_affectedArea = prev_area;
m_nodeStack.push_back( st );
return true;
}
SHOVE::SHOVE_STATUS SHOVE::pushVia( VIA* aVia, const VECTOR2I& aForce, int aCurrentRank, bool aDryRun )
{
LINE_PAIR_VEC draggedLines;
VECTOR2I p0( aVia->Pos() );
JOINT* jt = m_currentNode->FindJoint( p0, aVia );
VECTOR2I p0_pushed( p0 + aForce );
if( !jt )
{
wxLogTrace( "PNS", "weird, can't find the center-of-via joint\n" );
return SH_INCOMPLETE;
}
if( aVia->IsLocked() )
return SH_TRY_WALK;
if( jt->IsLocked() )
return SH_INCOMPLETE;
// nothing to push...
if ( aForce.x == 0 && aForce.y == 0 )
return SH_OK;
while( aForce.x != 0 || aForce.y != 0 )
{
JOINT* jt_next = m_currentNode->FindJoint( p0_pushed, aVia );
if( !jt_next )
break;
p0_pushed += aForce.Resize( 2 ); // make sure pushed via does not overlap with any existing joint
}
std::unique_ptr< VIA > pushedVia = Clone( *aVia );
pushedVia->SetPos( p0_pushed );
pushedVia->Mark( aVia->Marker() );
for( ITEM* item : jt->LinkList() )
{
if( SEGMENT* seg = dyn_cast<SEGMENT*>( item ) )
{
LINE_PAIR lp;
int segIndex;
lp.first = assembleLine( seg, &segIndex );
if( lp.first.HasLockedSegments() )
return SH_TRY_WALK;
assert( segIndex == 0 || ( segIndex == ( lp.first.SegmentCount() - 1 ) ) );
if( segIndex == 0 )
lp.first.Reverse();
lp.second = lp.first;
lp.second.ClearSegmentLinks();
lp.second.DragCorner( p0_pushed, lp.second.CLine().Find( p0 ) );
lp.second.AppendVia( *pushedVia );
draggedLines.push_back( lp );
if( aVia->Marker() & MK_HEAD )
m_draggedViaHeadSet.Add( lp.second );
}
}
m_draggedViaHeadSet.Add( pushedVia.get() );
if( aDryRun )
return SH_OK;
#ifdef DEBUG
m_logger.Log( aVia, 0, "obstacle-via" );
#endif
pushedVia->SetRank( aCurrentRank - 1 );
#ifdef DEBUG
m_logger.Log( pushedVia.get(), 1, "pushed-via" );
#endif
if( aVia->Marker() & MK_HEAD )
{
m_draggedVia = pushedVia.get();
m_draggedViaHeadSet.Clear();
}
replaceItems( aVia, std::move( pushedVia ) );
for( LINE_PAIR lp : draggedLines )
{
if( lp.first.Marker() & MK_HEAD )
{
lp.second.Mark( MK_HEAD );
if( m_multiLineMode )
return SH_INCOMPLETE;
m_newHead = lp.second;
}
unwindStack( &lp.first );
if( lp.second.SegmentCount() )
{
replaceLine( lp.first, lp.second );
lp.second.SetRank( aCurrentRank - 1 );
if( !pushLine( lp.second, true ) )
return SH_INCOMPLETE;
}
else
{
m_currentNode->Remove( lp.first );
}
#ifdef DEBUG
m_logger.Log( &lp.first, 2, "fan-pre" );
m_logger.Log( &lp.second, 3, "fan-post" );
#endif
}
return SH_OK;
}
SHOVE::SHOVE_STATUS SHOVE::onCollidingVia( ITEM* aCurrent, VIA* aObstacleVia )
{
int clearance = getClearance( aCurrent, aObstacleVia ) ;
LINE_PAIR_VEC draggedLines;
bool colLine = false, colVia = false;
LINE* currentLine = NULL;
VECTOR2I mtvLine, mtvVia, mtv, mtvSolid;
int rank = -1;
if( aCurrent->OfKind( ITEM::LINE_T ) )
{
#ifdef DEBUG
m_logger.NewGroup( "push-via-by-line", m_iter );
m_logger.Log( aCurrent, 4, "current" );
#endif
currentLine = (LINE*) aCurrent;
colLine = CollideShapes( aObstacleVia->Shape(), currentLine->Shape(),
clearance + currentLine->Width() / 2 + PNS_HULL_MARGIN,
true, mtvLine );
if( currentLine->EndsWithVia() )
colVia = CollideShapes( currentLine->Via().Shape(), aObstacleVia->Shape(),
clearance + PNS_HULL_MARGIN, true, mtvVia );
if( !colLine && !colVia )
return SH_OK;
if( colLine && colVia )
mtv = mtvVia.EuclideanNorm() > mtvLine.EuclideanNorm() ? mtvVia : mtvLine;
else if( colLine )
mtv = mtvLine;
else
mtv = mtvVia;
rank = currentLine->Rank();
}
else if( aCurrent->OfKind( ITEM::SOLID_T ) )
{
CollideShapes( aObstacleVia->Shape(), aCurrent->Shape(),
clearance + PNS_HULL_MARGIN, true, mtvSolid );
mtv = -mtvSolid;
rank = aCurrent->Rank() + 10000;
}
return pushVia( aObstacleVia, mtv, rank );
}
SHOVE::SHOVE_STATUS SHOVE::onReverseCollidingVia( LINE& aCurrent, VIA* aObstacleVia )
{
int n = 0;
LINE cur( aCurrent );
cur.ClearSegmentLinks();
JOINT* jt = m_currentNode->FindJoint( aObstacleVia->Pos(), aObstacleVia );
LINE shoved( aCurrent );
shoved.ClearSegmentLinks();
cur.RemoveVia();
unwindStack( &aCurrent );
for( ITEM* item : jt->LinkList() )
{
if( item->OfKind( ITEM::SEGMENT_T ) && item->LayersOverlap( &aCurrent ) )
{
SEGMENT* seg = (SEGMENT*) item;
LINE head = assembleLine( seg );
head.AppendVia( *aObstacleVia );
SHOVE_STATUS st = ProcessSingleLine( head, cur, shoved );
if( st != SH_OK )
{
#ifdef DEBUG
m_logger.NewGroup( "on-reverse-via-fail-shove", m_iter );
m_logger.Log( aObstacleVia, 0, "the-via" );
m_logger.Log( &aCurrent, 1, "current-line" );
m_logger.Log( &shoved, 3, "shoved-line" );
#endif
return st;
}
cur.SetShape( shoved.CLine() );
n++;
}
}
if( !n )
{
#ifdef DEBUG
m_logger.NewGroup( "on-reverse-via-fail-lonevia", m_iter );
m_logger.Log( aObstacleVia, 0, "the-via" );
m_logger.Log( &aCurrent, 1, "current-line" );
#endif
LINE head( aCurrent );
head.Line().Clear();
head.AppendVia( *aObstacleVia );
head.ClearSegmentLinks();
SHOVE_STATUS st = ProcessSingleLine( head, aCurrent, shoved );
if( st != SH_OK )
return st;
cur.SetShape( shoved.CLine() );
}
if( aCurrent.EndsWithVia() )
shoved.AppendVia( aCurrent.Via() );
#ifdef DEBUG
m_logger.NewGroup( "on-reverse-via", m_iter );
m_logger.Log( aObstacleVia, 0, "the-via" );
m_logger.Log( &aCurrent, 1, "current-line" );
m_logger.Log( &shoved, 3, "shoved-line" );
#endif
int currentRank = aCurrent.Rank();
replaceLine( aCurrent, shoved );
if( !pushLine( shoved ) )
return SH_INCOMPLETE;
shoved.SetRank( currentRank );
return SH_OK;
}
void SHOVE::unwindStack( SEGMENT* aSeg )
{
for( std::vector<LINE>::iterator i = m_lineStack.begin(); i != m_lineStack.end() ; )
{
if( i->ContainsSegment( aSeg ) )
i = m_lineStack.erase( i );
else
i++;
}
for( std::vector<LINE>::iterator i = m_optimizerQueue.begin(); i != m_optimizerQueue.end() ; )
{
if( i->ContainsSegment( aSeg ) )
i = m_optimizerQueue.erase( i );
else
i++;
}
}
void SHOVE::unwindStack( ITEM* aItem )
{
if( aItem->OfKind( ITEM::SEGMENT_T ) )
unwindStack( static_cast<SEGMENT*>( aItem ) );
else if( aItem->OfKind( ITEM::LINE_T ) )
{
LINE* l = static_cast<LINE*>( aItem );
for( SEGMENT* seg : l->LinkedSegments() )
unwindStack( seg );
}
}
bool SHOVE::pushLine( const LINE& aL, bool aKeepCurrentOnTop )
{
if( !aL.IsLinkedChecked() && aL.SegmentCount() != 0 )
return false;
if( aKeepCurrentOnTop && m_lineStack.size() > 0)
{
m_lineStack.insert( m_lineStack.begin() + m_lineStack.size() - 1, aL );
}
else
{
m_lineStack.push_back( aL );
}
m_optimizerQueue.push_back( aL );
return true;
}
void SHOVE::popLine( )
{
LINE& l = m_lineStack.back();
for( std::vector<LINE>::iterator i = m_optimizerQueue.begin(); i != m_optimizerQueue.end(); )
{
bool found = false;
for( SEGMENT *s : l.LinkedSegments() )
{
if( i->ContainsSegment( s ) )
{
i = m_optimizerQueue.erase( i );
found = true;
break;
}
}
if( !found )
i++;
}
m_lineStack.pop_back();
}
SHOVE::SHOVE_STATUS SHOVE::shoveIteration( int aIter )
{
LINE currentLine = m_lineStack.back();
NODE::OPT_OBSTACLE nearest;
SHOVE_STATUS st = SH_NULL;
ITEM::PnsKind search_order[] = { ITEM::SOLID_T, ITEM::VIA_T, ITEM::SEGMENT_T };
for( int i = 0; i < 3; i++ )
{
nearest = m_currentNode->NearestObstacle( &currentLine, search_order[i] );
if( nearest )
break;
}
if( !nearest )
{
m_lineStack.pop_back();
return SH_OK;
}
ITEM* ni = nearest->m_item;
unwindStack( ni );
if( !ni->OfKind( ITEM::SOLID_T ) && ni->Rank() >= 0 && ni->Rank() > currentLine.Rank() )
{
switch( ni->Kind() )
{
case ITEM::VIA_T:
{
VIA* revVia = (VIA*) ni;
wxLogTrace( "PNS", "iter %d: reverse-collide-via", aIter );
if( currentLine.EndsWithVia() && m_currentNode->CheckColliding( &currentLine.Via(), revVia ) )
{
st = SH_INCOMPLETE;
}
else
{
st = onReverseCollidingVia( currentLine, revVia );
}
break;
}
case ITEM::SEGMENT_T:
{
SEGMENT* seg = (SEGMENT*) ni;
wxLogTrace( "PNS", "iter %d: reverse-collide-segment ", aIter );
LINE revLine = assembleLine( seg );
popLine();
st = onCollidingLine( revLine, currentLine );
if( !pushLine( revLine ) )
return SH_INCOMPLETE;
break;
}
default:
assert( false );
}
}
else
{ // "forward" collisions
switch( ni->Kind() )
{
case ITEM::SEGMENT_T:
wxLogTrace( "PNS", "iter %d: collide-segment ", aIter );
st = onCollidingSegment( currentLine, (SEGMENT*) ni );
if( st == SH_TRY_WALK )
{
st = onCollidingSolid( currentLine, ni );
}
break;
case ITEM::VIA_T:
wxLogTrace( "PNS", "iter %d: shove-via ", aIter );
st = onCollidingVia( &currentLine, (VIA*) ni );
if( st == SH_TRY_WALK )
{
st = onCollidingSolid( currentLine, ni );
}
break;
case ITEM::SOLID_T:
wxLogTrace( "PNS", "iter %d: walk-solid ", aIter );
st = onCollidingSolid( currentLine, (SOLID*) ni );
break;
default:
break;
}
}
return st;
}
SHOVE::SHOVE_STATUS SHOVE::shoveMainLoop()
{
SHOVE_STATUS st = SH_OK;
m_affectedAreaSum = OPT_BOX2I();
wxLogTrace( "PNS", "ShoveStart [root: %d jts, current: %d jts]", m_root->JointCount(),
m_currentNode->JointCount() );
int iterLimit = Settings().ShoveIterationLimit();
TIME_LIMIT timeLimit = Settings().ShoveTimeLimit();
m_iter = 0;
timeLimit.Restart();
while( !m_lineStack.empty() )
{
st = shoveIteration( m_iter );
m_iter++;
if( st == SH_INCOMPLETE || timeLimit.Expired() || m_iter >= iterLimit )
{
st = SH_INCOMPLETE;
break;
}
}
return st;
}
OPT_BOX2I SHOVE::totalAffectedArea() const
{
OPT_BOX2I area;
if( !m_nodeStack.empty() )
area = m_nodeStack.back().m_affectedArea;
if( area )
{
if( m_affectedAreaSum )
area->Merge( *m_affectedAreaSum );
} else
area = m_affectedAreaSum;
return area;
}
SHOVE::SHOVE_STATUS SHOVE::ShoveLines( const LINE& aCurrentHead )
{
SHOVE_STATUS st = SH_OK;
m_multiLineMode = false;
// empty head? nothing to shove...
if( !aCurrentHead.SegmentCount() && !aCurrentHead.EndsWithVia() )
return SH_INCOMPLETE;
LINE head( aCurrentHead );
head.ClearSegmentLinks();
m_lineStack.clear();
m_optimizerQueue.clear();
m_newHead = OPT_LINE();
m_logger.Clear();
ITEM_SET headSet;
headSet.Add( aCurrentHead );
reduceSpringback( headSet );
NODE* parent = m_nodeStack.empty() ? m_root : m_nodeStack.back().m_node;
m_currentNode = parent->Branch();
m_currentNode->ClearRanks();
m_currentNode->Add( head );
m_currentNode->LockJoint( head.CPoint(0), &head, true );
if( !head.EndsWithVia() )
m_currentNode->LockJoint( head.CPoint( -1 ), &head, true );
head.Mark( MK_HEAD );
head.SetRank( 100000 );
m_logger.NewGroup( "initial", 0 );
m_logger.Log( &head, 0, "head" );
if( head.EndsWithVia() )
{
std::unique_ptr< VIA >headVia = Clone( head.Via() );
headVia->Mark( MK_HEAD );
headVia->SetRank( 100000 );
m_logger.Log( headVia.get(), 0, "head-via" );
m_currentNode->Add( std::move( headVia ) );
}
if( !pushLine( head ) )
{
delete m_currentNode;
m_currentNode = parent;
return SH_INCOMPLETE;
}
st = shoveMainLoop();
if( st == SH_OK )
{
runOptimizer( m_currentNode );
if( m_newHead )
st = m_currentNode->CheckColliding( &( *m_newHead ) ) ? SH_INCOMPLETE : SH_HEAD_MODIFIED;
else
st = m_currentNode->CheckColliding( &head ) ? SH_INCOMPLETE : SH_OK;
}
m_currentNode->RemoveByMarker( MK_HEAD );
wxLogTrace( "PNS", "Shove status : %s after %d iterations",
( ( st == SH_OK || st == SH_HEAD_MODIFIED ) ? "OK" : "FAILURE"), m_iter );
if( st == SH_OK || st == SH_HEAD_MODIFIED )
{
pushSpringback( m_currentNode, headSet, COST_ESTIMATOR(), m_affectedAreaSum );
}
else
{
delete m_currentNode;
m_currentNode = parent;
m_newHead = OPT_LINE();
}
if(m_newHead)
m_newHead->Unmark();
if( m_newHead && head.EndsWithVia() )
{
VIA v = head.Via();
v.SetPos( m_newHead->CPoint( -1 ) );
m_newHead->AppendVia(v);
}
return st;
}
SHOVE::SHOVE_STATUS SHOVE::ShoveMultiLines( const ITEM_SET& aHeadSet )
{
SHOVE_STATUS st = SH_OK;
m_multiLineMode = true;
ITEM_SET headSet;
for( const ITEM* item : aHeadSet.CItems() )
{
const LINE* headOrig = static_cast<const LINE*>( item );
// empty head? nothing to shove...
if( !headOrig->SegmentCount() )
return SH_INCOMPLETE;
headSet.Add( *headOrig );
}
m_lineStack.clear();
m_optimizerQueue.clear();
m_logger.Clear();
reduceSpringback( headSet );
NODE* parent = m_nodeStack.empty() ? m_root : m_nodeStack.back().m_node;
m_currentNode = parent->Branch();
m_currentNode->ClearRanks();
int n = 0;
for( const ITEM* item : aHeadSet.CItems() )
{
const LINE* headOrig = static_cast<const LINE*>( item );
LINE head( *headOrig );
head.ClearSegmentLinks();
m_currentNode->Add( head );
head.Mark( MK_HEAD );
head.SetRank( 100000 );
n++;
if( !pushLine( head ) )
return SH_INCOMPLETE;
if( head.EndsWithVia() )
{
std::unique_ptr< VIA > headVia = Clone( head.Via() );
headVia->Mark( MK_HEAD );
headVia->SetRank( 100000 );
m_logger.Log( headVia.get(), 0, "head-via" );
m_currentNode->Add( std::move( headVia ) );
}
}
m_logger.NewGroup( "initial", 0 );
//m_logger.Log( head, 0, "head" );
st = shoveMainLoop();
if( st == SH_OK )
runOptimizer( m_currentNode );
m_currentNode->RemoveByMarker( MK_HEAD );
wxLogTrace( "PNS", "Shove status : %s after %d iterations",
( st == SH_OK ? "OK" : "FAILURE"), m_iter );
if( st == SH_OK )
{
pushSpringback( m_currentNode, ITEM_SET(), COST_ESTIMATOR(), m_affectedAreaSum );
}
else
{
delete m_currentNode;
m_currentNode = parent;
}
return st;
}
SHOVE::SHOVE_STATUS SHOVE::ShoveDraggingVia( VIA* aVia, const VECTOR2I& aWhere,
VIA** aNewVia )
{
SHOVE_STATUS st = SH_OK;
m_lineStack.clear();
m_optimizerQueue.clear();
m_newHead = OPT_LINE();
m_draggedVia = NULL;
m_draggedViaHeadSet.Clear();
NODE* parent = m_nodeStack.empty() ? m_root : m_nodeStack.back().m_node;
m_currentNode = parent;
parent = m_nodeStack.empty() ? m_root : m_nodeStack.back().m_node;
m_currentNode = parent->Branch();
m_currentNode->ClearRanks();
aVia->Mark( MK_HEAD );
st = pushVia( aVia, ( aWhere - aVia->Pos() ), 0 );
st = shoveMainLoop();
if( st == SH_OK )
runOptimizer( m_currentNode );
if( st == SH_OK || st == SH_HEAD_MODIFIED )
{
if( aNewVia )
{
wxLogTrace( "PNS","setNewV %p", m_draggedVia );
*aNewVia = m_draggedVia;
}
pushSpringback( m_currentNode, m_draggedViaHeadSet, COST_ESTIMATOR(), m_affectedAreaSum );
}
else
{
if( aNewVia )
{
*aNewVia = nullptr;
}
delete m_currentNode;
m_currentNode = parent;
}
return st;
}
void SHOVE::runOptimizer( NODE* aNode )
{
OPTIMIZER optimizer( aNode );
int optFlags = 0, n_passes = 0;
PNS_OPTIMIZATION_EFFORT effort = Settings().OptimizerEffort();
OPT_BOX2I area = totalAffectedArea();
int maxWidth = 0;
for( std::vector<LINE>::iterator i = m_optimizerQueue.begin();
i != m_optimizerQueue.end(); ++i )
{
maxWidth = std::max( i->Width(), maxWidth );
}
if( area )
{
area->Inflate( 10 * maxWidth );
}
switch( effort )
{
case OE_LOW:
optFlags = OPTIMIZER::MERGE_OBTUSE;
n_passes = 1;
break;
case OE_MEDIUM:
optFlags = OPTIMIZER::MERGE_SEGMENTS;
if( area )
optimizer.SetRestrictArea( *area );
n_passes = 2;
break;
case OE_FULL:
optFlags = OPTIMIZER::MERGE_SEGMENTS;
n_passes = 2;
break;
default:
break;
}
if( Settings().SmartPads() )
optFlags |= OPTIMIZER::SMART_PADS;
optimizer.SetEffortLevel( optFlags );
optimizer.SetCollisionMask( ITEM::ANY_T );
for( int pass = 0; pass < n_passes; pass++ )
{
std::reverse( m_optimizerQueue.begin(), m_optimizerQueue.end() );
for( std::vector<LINE>::iterator i = m_optimizerQueue.begin();
i != m_optimizerQueue.end(); ++i )
{
LINE& line = *i;
if( !( line.Marker() & MK_HEAD ) )
{
LINE optimized;
if( optimizer.Optimize( &line, &optimized ) )
{
aNode->Remove( line );
line.SetShape( optimized.CLine() );
aNode->Add( line );
}
}
}
}
}
NODE* SHOVE::CurrentNode()
{
return m_nodeStack.empty() ? m_root : m_nodeStack.back().m_node;
}
const LINE SHOVE::NewHead() const
{
assert( m_newHead );
return *m_newHead;
}
void SHOVE::SetInitialLine( LINE& aInitial )
{
m_root = m_root->Branch();
m_root->Remove( aInitial );
}
}