kicad/3d-viewer/3d_rendering/raytracing/accelerators/bvh_pbrt.cpp

1255 lines
38 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 2015-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file cbvh_pbrt.cpp
* @brief This BVH implementation is based on the source code implementation
* from the book "Physically Based Rendering" (v2 and v3)
*
* Adaptions performed for KiCad:
* - Types and class types adapted to KiCad project
* - Convert some source to build in the C++ specification of KiCad
* - Code style to match KiCad
* - Asserts converted
* - Use compare functions/structures for std::partition and std::nth_element
*
* The original source code has the following license:
*
* "pbrt source code is Copyright(c) 1998-2015
* Matt Pharr, Greg Humphreys, and Wenzel Jakob.
*
* This file is part of pbrt.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."
*
*/
#include "bvh_pbrt.h"
#include "../../../3d_fastmath.h"
#include <macros.h>
#include <boost/range/algorithm/nth_element.hpp>
#include <boost/range/algorithm/partition.hpp>
#include <cstdlib>
#include <vector>
#include <stack>
#include <wx/debug.h>
#ifdef PRINT_STATISTICS_3D_VIEWER
#include <stdio.h>
#endif
// BVHAccel Local Declarations
struct BVHPrimitiveInfo
{
BVHPrimitiveInfo()
{
primitiveNumber = 0;
bounds.Reset();
centroid = SFVEC3F( 0.0f );
}
BVHPrimitiveInfo( int aPrimitiveNumber, const BBOX_3D& aBounds ) :
primitiveNumber( aPrimitiveNumber ),
bounds( aBounds ),
centroid( .5f * aBounds.Min() + .5f * aBounds.Max() ) {}
int primitiveNumber;
BBOX_3D bounds;
SFVEC3F centroid;
};
struct BVHBuildNode
{
// BVHBuildNode Public Methods
void InitLeaf( int first, int n, const BBOX_3D& b)
{
firstPrimOffset = first;
nPrimitives = n;
bounds = b;
children[0] = children[1] = nullptr;
}
void InitInterior( int axis, BVHBuildNode* c0, BVHBuildNode* c1 )
{
children[0] = c0;
children[1] = c1;
bounds.Set( c0->bounds );
bounds.Union( c1->bounds );
splitAxis = axis;
nPrimitives = 0;
}
BBOX_3D bounds;
BVHBuildNode* children[2];
int splitAxis, firstPrimOffset, nPrimitives;
};
struct MortonPrimitive
{
int primitiveIndex;
uint32_t mortonCode;
};
struct LBVHTreelet
{
int startIndex, numPrimitives;
BVHBuildNode *buildNodes;
};
// BVHAccel Utility Functions
inline uint32_t LeftShift3( uint32_t x )
{
wxASSERT( x <= (1 << 10) );
if( x == ( 1 << 10 ) )
--x;
x = ( x | ( x << 16 ) ) & 0b00000011000000000000000011111111;
// x = ---- --98 ---- ---- ---- ---- 7654 3210
x = ( x | ( x << 8 ) ) & 0b00000011000000001111000000001111;
// x = ---- --98 ---- ---- 7654 ---- ---- 3210
x = ( x | ( x << 4 ) ) & 0b00000011000011000011000011000011;
// x = ---- --98 ---- 76-- --54 ---- 32-- --10
x = ( x | ( x << 2 ) ) & 0b00001001001001001001001001001001;
// x = ---- 9--8 --7- -6-- 5--4 --3- -2-- 1--0
return x;
}
inline uint32_t EncodeMorton3( const SFVEC3F& v )
{
wxASSERT( v.x >= 0 && v.x <= ( 1 << 10 ) );
wxASSERT( v.y >= 0 && v.y <= ( 1 << 10 ) );
wxASSERT( v.z >= 0 && v.z <= ( 1 << 10 ) );
return ( LeftShift3( v.z ) << 2 ) | ( LeftShift3( v.y ) << 1 ) | LeftShift3( v.x );
}
static void RadixSort( std::vector<MortonPrimitive>* v )
{
std::vector<MortonPrimitive> tempVector( v->size() );
const int bitsPerPass = 6;
const int nBits = 30;
wxASSERT( ( nBits % bitsPerPass ) == 0 );
const int nPasses = nBits / bitsPerPass;
for( int pass = 0; pass < nPasses; ++pass )
{
// Perform one pass of radix sort, sorting _bitsPerPass_ bits
const int lowBit = pass * bitsPerPass;
// Set in and out vector pointers for radix sort pass
std::vector<MortonPrimitive>& in = ( pass & 1 ) ? tempVector : *v;
std::vector<MortonPrimitive>& out = ( pass & 1 ) ? *v : tempVector;
// Count number of zero bits in array for current radix sort bit
const int nBuckets = 1 << bitsPerPass;
int bucketCount[nBuckets] = {0};
const int bitMask = ( 1 << bitsPerPass ) - 1;
for( uint32_t i = 0; i < in.size(); ++i )
{
const MortonPrimitive &mp = in[i];
int bucket = ( mp.mortonCode >> lowBit ) & bitMask;
wxASSERT( ( bucket >= 0 ) && ( bucket < nBuckets ) );
++bucketCount[bucket];
}
// Compute starting index in output array for each bucket
int startIndex[nBuckets];
startIndex[0] = 0;
for( int i = 1; i < nBuckets; ++i )
startIndex[i] = startIndex[i - 1] + bucketCount[i - 1];
// Store sorted values in output array
for( uint32_t i = 0; i < in.size(); ++i )
{
const MortonPrimitive& mp = in[i];
int bucket = (mp.mortonCode >> lowBit) & bitMask;
out[startIndex[bucket]++] = mp;
}
}
// Copy final result from _tempVector_, if needed
if( nPasses & 1 )
std::swap( *v, tempVector );
}
BVH_PBRT::BVH_PBRT( const CONTAINER_3D_BASE& aObjectContainer, int aMaxPrimsInNode,
SPLITMETHOD aSplitMethod ) :
m_maxPrimsInNode( std::min( 255, aMaxPrimsInNode ) ),
m_splitMethod( aSplitMethod )
{
if( aObjectContainer.GetList().empty() )
{
m_nodes = nullptr;
return;
}
// Initialize the indexes of ray packet for partition traversal
for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
{
m_I[i] = i;
}
// Convert the objects list to vector of objects
aObjectContainer.ConvertTo( m_primitives );
wxASSERT( aObjectContainer.GetList().size() == m_primitives.size() );
// Initialize _primitiveInfo_ array for primitives
std::vector<BVHPrimitiveInfo> primitiveInfo( m_primitives.size() );
for( size_t i = 0; i < m_primitives.size(); ++i )
{
wxASSERT( m_primitives[i]->GetBBox().IsInitialized() );
primitiveInfo[i] = BVHPrimitiveInfo( i, m_primitives[i]->GetBBox() );
}
// Build BVH tree for primitives using _primitiveInfo_
int totalNodes = 0;
CONST_VECTOR_OBJECT orderedPrims;
orderedPrims.clear();
orderedPrims.reserve( m_primitives.size() );
BVHBuildNode *root;
if( m_splitMethod == SPLITMETHOD::HLBVH )
root = HLBVHBuild( primitiveInfo, &totalNodes, orderedPrims );
else
root = recursiveBuild( primitiveInfo, 0, m_primitives.size(), &totalNodes, orderedPrims );
wxASSERT( m_primitives.size() == orderedPrims.size() );
m_primitives.swap( orderedPrims );
// Compute representation of depth-first traversal of BVH tree
m_nodes = static_cast<LinearBVHNode*>( malloc( sizeof( LinearBVHNode ) * totalNodes ) );
m_nodesToFree.push_back( m_nodes );
for( int i = 0; i < totalNodes; ++i )
{
m_nodes[i].bounds.Reset();
m_nodes[i].primitivesOffset = 0;
m_nodes[i].nPrimitives = 0;
m_nodes[i].axis = 0;
}
uint32_t offset = 0;
flattenBVHTree( root, &offset );
wxASSERT( offset == (unsigned int)totalNodes );
}
BVH_PBRT::~BVH_PBRT()
{
if( !m_nodesToFree.empty() )
{
for( std::list<void *>::iterator ii = m_nodesToFree.begin(); ii != m_nodesToFree.end();
++ii )
{
free( *ii );
*ii = nullptr;
}
}
m_nodesToFree.clear();
}
struct ComparePoints
{
explicit ComparePoints( int d ) { dim = d; }
int dim;
bool operator()( const BVHPrimitiveInfo& a, const BVHPrimitiveInfo& b ) const
{
return a.centroid[dim] < b.centroid[dim];
}
};
struct CompareToMid
{
explicit CompareToMid( int d, float m ) { dim = d; mid = m; }
int dim;
float mid;
bool operator()( const BVHPrimitiveInfo& a ) const
{
return a.centroid[dim] < mid;
}
};
struct CompareToBucket
{
CompareToBucket( int split, int num, int d, const BBOX_3D& b )
: centroidBounds( b )
{
splitBucket = split;
nBuckets = num;
dim = d;
}
bool operator()( const BVHPrimitiveInfo& p ) const;
int splitBucket, nBuckets, dim;
const BBOX_3D& centroidBounds;
};
bool CompareToBucket::operator()( const BVHPrimitiveInfo& p ) const
{
const float centroid = p.centroid[dim];
int b = nBuckets *
// Computes the offset (0.0 - 1.0) for one axis
( ( centroid - centroidBounds.Min()[dim] ) /
( centroidBounds.Max()[dim] - centroidBounds.Min()[dim] ) );
if( b == nBuckets )
b = nBuckets - 1;
wxASSERT( ( b >= 0 ) && ( b < nBuckets ) );
return b <= splitBucket;
}
struct HLBVH_SAH_Evaluator
{
HLBVH_SAH_Evaluator( int split, int num, int d, const BBOX_3D& b )
: centroidBounds(b)
{
minCostSplitBucket = split;
nBuckets = num; dim = d;
}
bool operator()( const BVHBuildNode* node ) const;
int minCostSplitBucket, nBuckets, dim;
const BBOX_3D& centroidBounds;
};
bool HLBVH_SAH_Evaluator::operator()( const BVHBuildNode* node ) const
{
const float centroid = node->bounds.GetCenter( dim );
int b = nBuckets *
// Computes the offset (0.0 - 1.0) for one axis
( ( centroid - centroidBounds.Min()[dim] ) /
( centroidBounds.Max()[dim] - centroidBounds.Min()[dim] ) );
if( b == nBuckets )
b = nBuckets - 1;
wxASSERT( b >= 0 && b < nBuckets );
return b <= minCostSplitBucket;
}
struct BucketInfo
{
int count;
BBOX_3D bounds;
};
BVHBuildNode *BVH_PBRT::recursiveBuild ( std::vector<BVHPrimitiveInfo>& primitiveInfo,
int start, int end, int* totalNodes,
CONST_VECTOR_OBJECT& orderedPrims )
{
wxASSERT( totalNodes != nullptr );
wxASSERT( start >= 0 );
wxASSERT( end >= 0 );
wxASSERT( start != end );
wxASSERT( start < end );
wxASSERT( start <= (int)primitiveInfo.size() );
wxASSERT( end <= (int)primitiveInfo.size() );
(*totalNodes)++;
// !TODO: implement an memory Arena
BVHBuildNode *node = static_cast<BVHBuildNode *>( malloc( sizeof( BVHBuildNode ) ) );
m_nodesToFree.push_back( node );
node->bounds.Reset();
node->firstPrimOffset = 0;
node->nPrimitives = 0;
node->splitAxis = 0;
node->children[0] = nullptr;
node->children[1] = nullptr;
// Compute bounds of all primitives in BVH node
BBOX_3D bounds;
bounds.Reset();
for( int i = start; i < end; ++i )
bounds.Union( primitiveInfo[i].bounds );
int nPrimitives = end - start;
if( nPrimitives == 1 )
{
// Create leaf _BVHBuildNode_
int firstPrimOffset = orderedPrims.size();
for( int i = start; i < end; ++i )
{
int primitiveNr = primitiveInfo[i].primitiveNumber;
wxASSERT( primitiveNr < (int)m_primitives.size() );
orderedPrims.push_back( m_primitives[ primitiveNr ] );
}
node->InitLeaf( firstPrimOffset, nPrimitives, bounds );
}
else
{
// Compute bound of primitive centroids, choose split dimension _dim_
BBOX_3D centroidBounds;
centroidBounds.Reset();
for( int i = start; i < end; ++i )
centroidBounds.Union( primitiveInfo[i].centroid );
const int dim = centroidBounds.MaxDimension();
// Partition primitives into two sets and build children
int mid = (start + end) / 2;
if( fabs( centroidBounds.Max()[dim] -
centroidBounds.Min()[dim] ) < (FLT_EPSILON + FLT_EPSILON) )
{
// Create leaf _BVHBuildNode_
const int firstPrimOffset = orderedPrims.size();
for( int i = start; i < end; ++i )
{
int primitiveNr = primitiveInfo[i].primitiveNumber;
wxASSERT( ( primitiveNr >= 0 ) && ( primitiveNr < (int) m_primitives.size() ) );
const OBJECT_3D* obj = static_cast<const OBJECT_3D*>( m_primitives[ primitiveNr ] );
wxASSERT( obj != nullptr );
orderedPrims.push_back( obj );
}
node->InitLeaf( firstPrimOffset, nPrimitives, bounds );
}
else
{
// Partition primitives based on _splitMethod_
switch( m_splitMethod )
{
case SPLITMETHOD::MIDDLE:
{
// Partition primitives through node's midpoint
float pmid = centroidBounds.GetCenter( dim );
BVHPrimitiveInfo *midPtr = std::partition( &primitiveInfo[start],
&primitiveInfo[end - 1] + 1,
CompareToMid( dim, pmid ) );
mid = midPtr - &primitiveInfo[0];
wxASSERT( ( mid >= start ) && ( mid <= end ) );
if( ( mid != start ) && ( mid != end ) )
break;
}
// Intentionally fall through to SPLITMETHOD::EQUAL_COUNTS since prims
// with large overlapping bounding boxes may fail to partition
KI_FALLTHROUGH;
case SPLITMETHOD::EQUALCOUNTS:
{
// Partition primitives into equally-sized subsets
mid = ( start + end ) / 2;
std::nth_element( &primitiveInfo[start], &primitiveInfo[mid],
&primitiveInfo[end - 1] + 1, ComparePoints( dim ) );
break;
}
case SPLITMETHOD::SAH:
default:
{
// Partition primitives using approximate SAH
if( nPrimitives <= 2 )
{
// Partition primitives into equally-sized subsets
mid = ( start + end ) / 2;
std::nth_element( &primitiveInfo[start], &primitiveInfo[mid],
&primitiveInfo[end - 1] + 1, ComparePoints( dim ) );
}
else
{
// Allocate _BucketInfo_ for SAH partition buckets
const int nBuckets = 12;
BucketInfo buckets[nBuckets];
for( int i = 0; i < nBuckets; ++i )
{
buckets[i].count = 0;
buckets[i].bounds.Reset();
}
// Initialize _BucketInfo_ for SAH partition buckets
for( int i = start; i < end; ++i )
{
int b = nBuckets *
centroidBounds.Offset( primitiveInfo[i].centroid )[dim];
if( b == nBuckets )
b = nBuckets - 1;
wxASSERT( b >= 0 && b < nBuckets );
buckets[b].count++;
buckets[b].bounds.Union( primitiveInfo[i].bounds );
}
// Compute costs for splitting after each bucket
float cost[nBuckets - 1];
for( int i = 0; i < ( nBuckets - 1 ); ++i )
{
BBOX_3D b0, b1;
b0.Reset();
b1.Reset();
int count0 = 0;
int count1 = 0;
for( int j = 0; j <= i; ++j )
{
if( buckets[j].count )
{
count0 += buckets[j].count;
b0.Union( buckets[j].bounds );
}
}
for( int j = i + 1; j < nBuckets; ++j )
{
if( buckets[j].count )
{
count1 += buckets[j].count;
b1.Union( buckets[j].bounds );
}
}
cost[i] = 1.0f + ( count0 * b0.SurfaceArea() +
count1 * b1.SurfaceArea() ) / bounds.SurfaceArea();
}
// Find bucket to split at that minimizes SAH metric
float minCost = cost[0];
int minCostSplitBucket = 0;
for( int i = 1; i < ( nBuckets - 1 ); ++i )
{
if( cost[i] < minCost )
{
minCost = cost[i];
minCostSplitBucket = i;
}
}
// Either create leaf or split primitives at selected SAH bucket
if( ( nPrimitives > m_maxPrimsInNode ) || ( minCost < (float) nPrimitives ) )
{
BVHPrimitiveInfo *pmid =
std::partition( &primitiveInfo[start], &primitiveInfo[end - 1] + 1,
CompareToBucket( minCostSplitBucket, nBuckets,
dim, centroidBounds ) );
mid = pmid - &primitiveInfo[0];
wxASSERT( ( mid >= start ) && ( mid <= end ) );
}
else
{
// Create leaf _BVHBuildNode_
const int firstPrimOffset = orderedPrims.size();
for( int i = start; i < end; ++i )
{
const int primitiveNr = primitiveInfo[i].primitiveNumber;
wxASSERT( primitiveNr < (int)m_primitives.size() );
orderedPrims.push_back( m_primitives[ primitiveNr ] );
}
node->InitLeaf( firstPrimOffset, nPrimitives, bounds );
return node;
}
}
break;
}
}
node->InitInterior( dim, recursiveBuild( primitiveInfo, start, mid, totalNodes,
orderedPrims ),
recursiveBuild( primitiveInfo, mid, end, totalNodes,
orderedPrims) );
}
}
return node;
}
BVHBuildNode *BVH_PBRT::HLBVHBuild( const std::vector<BVHPrimitiveInfo>& primitiveInfo,
int* totalNodes, CONST_VECTOR_OBJECT& orderedPrims )
{
// Compute bounding box of all primitive centroids
BBOX_3D bounds;
bounds.Reset();
for( unsigned int i = 0; i < primitiveInfo.size(); ++i )
bounds.Union( primitiveInfo[i].centroid );
// Compute Morton indices of primitives
std::vector<MortonPrimitive> mortonPrims( primitiveInfo.size() );
for( int i = 0; i < (int)primitiveInfo.size(); ++i )
{
// Initialize _mortonPrims[i]_ for _i_th primitive
const int mortonBits = 10;
const int mortonScale = 1 << mortonBits;
wxASSERT( primitiveInfo[i].primitiveNumber < (int)primitiveInfo.size() );
mortonPrims[i].primitiveIndex = primitiveInfo[i].primitiveNumber;
const SFVEC3F centroidOffset = bounds.Offset( primitiveInfo[i].centroid );
wxASSERT( ( centroidOffset.x >= 0.0f ) && ( centroidOffset.x <= 1.0f ) );
wxASSERT( ( centroidOffset.y >= 0.0f ) && ( centroidOffset.y <= 1.0f ) );
wxASSERT( ( centroidOffset.z >= 0.0f ) && ( centroidOffset.z <= 1.0f ) );
mortonPrims[i].mortonCode = EncodeMorton3( centroidOffset * SFVEC3F( (float)mortonScale ) );
}
// Radix sort primitive Morton indices
RadixSort( &mortonPrims );
// Create LBVH treelets at bottom of BVH
// Find intervals of primitives for each treelet
std::vector<LBVHTreelet> treeletsToBuild;
for( int start = 0, end = 1; end <= (int)mortonPrims.size(); ++end )
{
const uint32_t mask = 0b00111111111111000000000000000000;
if( ( end == (int) mortonPrims.size() )
|| ( ( mortonPrims[start].mortonCode & mask )
!= ( mortonPrims[end].mortonCode & mask ) ) )
{
// Add entry to _treeletsToBuild_ for this treelet
const int numPrimitives = end - start;
const int maxBVHNodes = 2 * numPrimitives;
// !TODO: implement a memory arena
BVHBuildNode *nodes = static_cast<BVHBuildNode *>( malloc( maxBVHNodes *
sizeof( BVHBuildNode ) ) );
m_nodesToFree.push_back( nodes );
for( int i = 0; i < maxBVHNodes; ++i )
{
nodes[i].bounds.Reset();
nodes[i].firstPrimOffset = 0;
nodes[i].nPrimitives = 0;
nodes[i].splitAxis = 0;
nodes[i].children[0] = nullptr;
nodes[i].children[1] = nullptr;
}
LBVHTreelet tmpTreelet;
tmpTreelet.startIndex = start;
tmpTreelet.numPrimitives = numPrimitives;
tmpTreelet.buildNodes = nodes;
treeletsToBuild.push_back( tmpTreelet );
start = end;
}
}
// Create LBVHs for treelets in parallel
int atomicTotal = 0;
int orderedPrimsOffset = 0;
orderedPrims.resize( m_primitives.size() );
for( int index = 0; index < (int)treeletsToBuild.size(); ++index )
{
// Generate _index_th LBVH treelet
int nodesCreated = 0;
const int firstBit = 29 - 12;
LBVHTreelet &tr = treeletsToBuild[index];
wxASSERT( tr.startIndex < (int)mortonPrims.size() );
tr.buildNodes = emitLBVH( tr.buildNodes, primitiveInfo, &mortonPrims[tr.startIndex],
tr.numPrimitives, &nodesCreated, orderedPrims,
&orderedPrimsOffset, firstBit );
atomicTotal += nodesCreated;
}
*totalNodes = atomicTotal;
// Initialize _finishedTreelets_ with treelet root node pointers
std::vector<BVHBuildNode *> finishedTreelets;
finishedTreelets.reserve( treeletsToBuild.size() );
for( int index = 0; index < (int)treeletsToBuild.size(); ++index )
finishedTreelets.push_back( treeletsToBuild[index].buildNodes );
// Create and return SAH BVH from LBVH treelets
return buildUpperSAH( finishedTreelets, 0, finishedTreelets.size(), totalNodes );
}
BVHBuildNode *BVH_PBRT::emitLBVH( BVHBuildNode* &buildNodes,
const std::vector<BVHPrimitiveInfo>& primitiveInfo,
MortonPrimitive* mortonPrims, int nPrimitives, int* totalNodes,
CONST_VECTOR_OBJECT& orderedPrims, int *orderedPrimsOffset,
int bit )
{
wxASSERT( nPrimitives > 0 );
wxASSERT( totalNodes != nullptr );
wxASSERT( orderedPrimsOffset != nullptr );
wxASSERT( nPrimitives > 0 );
wxASSERT( mortonPrims != nullptr );
if( ( bit == -1 ) || ( nPrimitives < m_maxPrimsInNode ) )
{
// Create and return leaf node of LBVH treelet
(*totalNodes)++;
BVHBuildNode *node = buildNodes++;
BBOX_3D bounds;
bounds.Reset();
int firstPrimOffset = *orderedPrimsOffset;
*orderedPrimsOffset += nPrimitives;
wxASSERT( ( firstPrimOffset + ( nPrimitives - 1 ) ) < (int) orderedPrims.size() );
for( int i = 0; i < nPrimitives; ++i )
{
const int primitiveIndex = mortonPrims[i].primitiveIndex;
wxASSERT( primitiveIndex < (int)m_primitives.size() );
orderedPrims[firstPrimOffset + i] = m_primitives[primitiveIndex];
bounds.Union( primitiveInfo[primitiveIndex].bounds );
}
node->InitLeaf( firstPrimOffset, nPrimitives, bounds );
return node;
}
else
{
int mask = 1 << bit;
// Advance to next subtree level if there's no LBVH split for this bit
if( ( mortonPrims[0].mortonCode & mask ) ==
( mortonPrims[nPrimitives - 1].mortonCode & mask ) )
return emitLBVH( buildNodes, primitiveInfo, mortonPrims, nPrimitives, totalNodes,
orderedPrims, orderedPrimsOffset, bit - 1 );
// Find LBVH split point for this dimension
int searchStart = 0;
int searchEnd = nPrimitives - 1;
while( searchStart + 1 != searchEnd )
{
wxASSERT(searchStart != searchEnd);
const int mid = ( searchStart + searchEnd ) / 2;
if( ( mortonPrims[searchStart].mortonCode & mask ) ==
( mortonPrims[mid].mortonCode & mask ) )
searchStart = mid;
else
{
wxASSERT( ( mortonPrims[mid].mortonCode & mask ) ==
( mortonPrims[searchEnd].mortonCode & mask ) );
searchEnd = mid;
}
}
const int splitOffset = searchEnd;
wxASSERT( splitOffset <= ( nPrimitives - 1 ) );
wxASSERT( ( mortonPrims[splitOffset - 1].mortonCode & mask )
!= ( mortonPrims[splitOffset].mortonCode & mask ) );
// Create and return interior LBVH node
(*totalNodes)++;
BVHBuildNode *node = buildNodes++;
BVHBuildNode *lbvh[2];
lbvh[0] = emitLBVH( buildNodes, primitiveInfo, mortonPrims, splitOffset,
totalNodes, orderedPrims, orderedPrimsOffset, bit - 1 );
lbvh[1] = emitLBVH( buildNodes, primitiveInfo, &mortonPrims[splitOffset],
nPrimitives - splitOffset, totalNodes, orderedPrims,
orderedPrimsOffset, bit - 1 );
const int axis = bit % 3;
node->InitInterior( axis, lbvh[0], lbvh[1] );
return node;
}
}
BVHBuildNode *BVH_PBRT::buildUpperSAH( std::vector<BVHBuildNode*>& treeletRoots, int start,
int end, int* totalNodes )
{
wxASSERT( totalNodes != nullptr );
wxASSERT( start < end );
wxASSERT( end <= (int)treeletRoots.size() );
int nNodes = end - start;
if( nNodes == 1 )
return treeletRoots[start];
(*totalNodes)++;
BVHBuildNode* node = static_cast<BVHBuildNode*>( malloc( sizeof( BVHBuildNode ) ) );
m_nodesToFree.push_back( node );
node->bounds.Reset();
node->firstPrimOffset = 0;
node->nPrimitives = 0;
node->splitAxis = 0;
node->children[0] = nullptr;
node->children[1] = nullptr;
// Compute bounds of all nodes under this HLBVH node
BBOX_3D bounds;
bounds.Reset();
for( int i = start; i < end; ++i )
bounds.Union( treeletRoots[i]->bounds );
// Compute bound of HLBVH node centroids, choose split dimension _dim_
BBOX_3D centroidBounds;
centroidBounds.Reset();
for( int i = start; i < end; ++i )
{
SFVEC3F centroid = ( treeletRoots[i]->bounds.Min() + treeletRoots[i]->bounds.Max() ) * 0.5f;
centroidBounds.Union( centroid );
}
const int dim = centroidBounds.MaxDimension();
// FIXME: if this hits, what do we need to do?
// Make sure the SAH split below does something... ?
wxASSERT( centroidBounds.Max()[dim] != centroidBounds.Min()[dim] );
// Allocate _BucketInfo_ for SAH partition buckets
const int nBuckets = 12;
BucketInfo buckets[nBuckets];
for( int i = 0; i < nBuckets; ++i )
{
buckets[i].count = 0;
buckets[i].bounds.Reset();
}
// Initialize _BucketInfo_ for HLBVH SAH partition buckets
for( int i = start; i < end; ++i )
{
const float centroid = ( treeletRoots[i]->bounds.Min()[dim] +
treeletRoots[i]->bounds.Max()[dim] ) * 0.5f;
int b = nBuckets * ( ( centroid - centroidBounds.Min()[dim] )
/ ( centroidBounds.Max()[dim] - centroidBounds.Min()[dim] ) );
if( b == nBuckets )
b = nBuckets - 1;
wxASSERT( ( b >= 0 ) && ( b < nBuckets ) );
buckets[b].count++;
buckets[b].bounds.Union( treeletRoots[i]->bounds );
}
// Compute costs for splitting after each bucket
float cost[nBuckets - 1];
for( int i = 0; i < nBuckets - 1; ++i )
{
BBOX_3D b0, b1;
b0.Reset();
b1.Reset();
int count0 = 0, count1 = 0;
for( int j = 0; j <= i; ++j )
{
if( buckets[j].count )
{
count0 += buckets[j].count;
b0.Union( buckets[j].bounds );
}
}
for( int j = i + 1; j < nBuckets; ++j )
{
if( buckets[j].count )
{
count1 += buckets[j].count;
b1.Union( buckets[j].bounds );
}
}
cost[i] = .125f + ( count0 * b0.SurfaceArea() + count1 * b1.SurfaceArea() ) /
bounds.SurfaceArea();
}
// Find bucket to split at that minimizes SAH metric
float minCost = cost[0];
int minCostSplitBucket = 0;
for( int i = 1; i < nBuckets - 1; ++i )
{
if( cost[i] < minCost )
{
minCost = cost[i];
minCostSplitBucket = i;
}
}
// Split nodes and create interior HLBVH SAH node
BVHBuildNode **pmid = std::partition( &treeletRoots[start], &treeletRoots[end - 1] + 1,
HLBVH_SAH_Evaluator( minCostSplitBucket, nBuckets,
dim, centroidBounds ) );
const int mid = pmid - &treeletRoots[0];
wxASSERT( ( mid > start ) && ( mid < end ) );
node->InitInterior( dim,
buildUpperSAH( treeletRoots, start, mid, totalNodes ),
buildUpperSAH( treeletRoots, mid, end, totalNodes ) );
return node;
}
int BVH_PBRT::flattenBVHTree( BVHBuildNode* node, uint32_t* offset )
{
LinearBVHNode *linearNode = &m_nodes[*offset];
linearNode->bounds = node->bounds;
int myOffset = (*offset)++;
if( node->nPrimitives > 0 )
{
wxASSERT( ( !node->children[0] ) && ( !node->children[1] ) );
wxASSERT( node->nPrimitives < 65536 );
linearNode->primitivesOffset = node->firstPrimOffset;
linearNode->nPrimitives = node->nPrimitives;
}
else
{
// Create interior flattened BVH node
linearNode->axis = node->splitAxis;
linearNode->nPrimitives = 0;
flattenBVHTree( node->children[0], offset );
linearNode->secondChildOffset = flattenBVHTree( node->children[1], offset );
}
return myOffset;
}
#define MAX_TODOS 64
bool BVH_PBRT::Intersect( const RAY& aRay, HITINFO& aHitInfo ) const
{
if( !m_nodes )
return false;
bool hit = false;
// Follow ray through BVH nodes to find primitive intersections
int todoOffset = 0, nodeNum = 0;
int todo[MAX_TODOS];
while( true )
{
const LinearBVHNode *node = &m_nodes[nodeNum];
wxASSERT( todoOffset < MAX_TODOS );
// Check ray against BVH node
float hitBox = 0.0f;
const bool hitted = node->bounds.Intersect( aRay, &hitBox );
if( hitted && ( hitBox < aHitInfo.m_tHit ) )
{
if( node->nPrimitives > 0 )
{
// Intersect ray with primitives in leaf BVH node
for( int i = 0; i < node->nPrimitives; ++i )
{
if( m_primitives[node->primitivesOffset + i]->Intersect( aRay, aHitInfo ) )
{
aHitInfo.m_acc_node_info = nodeNum;
hit = true;
}
}
}
else
{
// Put far BVH node on _todo_ stack, advance to near node
if( aRay.m_dirIsNeg[node->axis] )
{
todo[todoOffset++] = nodeNum + 1;
nodeNum = node->secondChildOffset;
}
else
{
todo[todoOffset++] = node->secondChildOffset;
nodeNum = nodeNum + 1;
}
continue;
}
}
if( todoOffset == 0 )
break;
nodeNum = todo[--todoOffset];
}
return hit;
}
/// @todo This may be optimized
bool BVH_PBRT::Intersect( const RAY& aRay, HITINFO& aHitInfo, unsigned int aAccNodeInfo ) const
{
if( !m_nodes )
return false;
bool hit = false;
// Follow ray through BVH nodes to find primitive intersections
int todoOffset = 0, nodeNum = aAccNodeInfo;
int todo[MAX_TODOS];
while( true )
{
const LinearBVHNode *node = &m_nodes[nodeNum];
wxASSERT( todoOffset < MAX_TODOS );
// Check ray against BVH node
float hitBox = 0.0f;
const bool hitted = node->bounds.Intersect( aRay, &hitBox );
if( hitted && ( hitBox < aHitInfo.m_tHit ) )
{
if( node->nPrimitives > 0 )
{
// Intersect ray with primitives in leaf BVH node
for( int i = 0; i < node->nPrimitives; ++i )
{
if( m_primitives[node->primitivesOffset + i]->Intersect( aRay, aHitInfo ) )
{
//aHitInfo.m_acc_node_info = nodeNum;
hit = true;
}
}
}
else
{
// Put far BVH node on _todo_ stack, advance to near node
if( aRay.m_dirIsNeg[node->axis] )
{
todo[todoOffset++] = nodeNum + 1;
nodeNum = node->secondChildOffset;
}
else
{
todo[todoOffset++] = node->secondChildOffset;
nodeNum = nodeNum + 1;
}
continue;
}
}
if( todoOffset == 0 )
break;
nodeNum = todo[--todoOffset];
}
return hit;
}
bool BVH_PBRT::IntersectP( const RAY& aRay, float aMaxDistance ) const
{
if( !m_nodes )
return false;
// Follow ray through BVH nodes to find primitive intersections
int todoOffset = 0, nodeNum = 0;
int todo[MAX_TODOS];
while( true )
{
const LinearBVHNode* node = &m_nodes[nodeNum];
wxASSERT( todoOffset < MAX_TODOS );
// Check ray against BVH node
float hitBox = 0.0f;
const bool hitted = node->bounds.Intersect( aRay, &hitBox );
if( hitted && ( hitBox < aMaxDistance ) )
{
if( node->nPrimitives > 0 )
{
// Intersect ray with primitives in leaf BVH node
for( int i = 0; i < node->nPrimitives; ++i )
{
const OBJECT_3D* obj = m_primitives[node->primitivesOffset + i];
if( obj->GetMaterial()->GetCastShadows()
&& obj->IntersectP( aRay, aMaxDistance ) )
return true;
}
}
else
{
// Put far BVH node on _todo_ stack, advance to near node
if( aRay.m_dirIsNeg[node->axis] )
{
todo[todoOffset++] = nodeNum + 1;
nodeNum = node->secondChildOffset;
}
else
{
todo[todoOffset++] = node->secondChildOffset;
nodeNum = nodeNum + 1;
}
continue;
}
}
if( todoOffset == 0 )
break;
nodeNum = todo[--todoOffset];
}
return false;
}