kicad/pcbnew/class_zone.cpp

1380 lines
39 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 1992-2017 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file class_zone.cpp
* @brief Implementation of class to handle copper zones.
*/
#include <fctsys.h>
#include <trigo.h>
#include <pcb_screen.h>
#include <class_drawpanel.h>
#include <kicad_string.h>
#include <richio.h>
#include <macros.h>
#include <pcb_base_frame.h>
#include <msgpanel.h>
#include <bitmaps.h>
#include <convert_to_biu.h>
#include <class_board.h>
#include <class_zone.h>
#include <pcbnew.h>
#include <zones.h>
#include <math_for_graphics.h>
#include <polygon_test_point_inside.h>
ZONE_CONTAINER::ZONE_CONTAINER( BOARD* aBoard ) :
BOARD_CONNECTED_ITEM( aBoard, PCB_ZONE_AREA_T )
{
m_CornerSelection = nullptr; // no corner is selected
m_IsFilled = false; // fill status : true when the zone is filled
m_FillMode = ZFM_POLYGONS;
m_hatchStyle = DIAGONAL_EDGE;
m_hatchPitch = GetDefaultHatchPitch();
m_hv45 = false;
m_priority = 0;
m_cornerSmoothingType = ZONE_SETTINGS::SMOOTHING_NONE;
SetIsKeepout( false );
SetDoNotAllowCopperPour( false ); // has meaning only if m_isKeepout == true
SetDoNotAllowVias( true ); // has meaning only if m_isKeepout == true
SetDoNotAllowTracks( true ); // has meaning only if m_isKeepout == true
m_cornerRadius = 0;
SetLocalFlags( 0 ); // flags tempoarry used in zone calculations
m_Poly = new SHAPE_POLY_SET(); // Outlines
aBoard->GetZoneSettings().ExportSetting( *this );
}
ZONE_CONTAINER::ZONE_CONTAINER( const ZONE_CONTAINER& aZone ) :
BOARD_CONNECTED_ITEM( aZone )
{
// Should the copy be on the same net?
SetNetCode( aZone.GetNetCode() );
m_Poly = new SHAPE_POLY_SET( *aZone.m_Poly );
// For corner moving, corner index to drag, or nullptr if no selection
m_CornerSelection = nullptr;
m_IsFilled = aZone.m_IsFilled;
m_ZoneClearance = aZone.m_ZoneClearance; // clearance value
m_ZoneMinThickness = aZone.m_ZoneMinThickness;
m_FillMode = aZone.m_FillMode; // Filling mode (segments/polygons)
m_hv45 = aZone.m_hv45;
m_priority = aZone.m_priority;
m_ArcToSegmentsCount = aZone.m_ArcToSegmentsCount;
m_PadConnection = aZone.m_PadConnection;
m_ThermalReliefGap = aZone.m_ThermalReliefGap;
m_ThermalReliefCopperBridge = aZone.m_ThermalReliefCopperBridge;
m_FilledPolysList.Append( aZone.m_FilledPolysList );
m_FillSegmList = aZone.m_FillSegmList; // vector <> copy
m_isKeepout = aZone.m_isKeepout;
m_doNotAllowCopperPour = aZone.m_doNotAllowCopperPour;
m_doNotAllowVias = aZone.m_doNotAllowVias;
m_doNotAllowTracks = aZone.m_doNotAllowTracks;
m_cornerSmoothingType = aZone.m_cornerSmoothingType;
m_cornerRadius = aZone.m_cornerRadius;
m_hatchStyle = aZone.m_hatchStyle;
m_hatchPitch = aZone.m_hatchPitch;
m_HatchLines = aZone.m_HatchLines;
SetLayerSet( aZone.GetLayerSet() );
SetLocalFlags( aZone.GetLocalFlags() );
}
ZONE_CONTAINER& ZONE_CONTAINER::operator=( const ZONE_CONTAINER& aOther )
{
BOARD_CONNECTED_ITEM::operator=( aOther );
// Replace the outlines for aOther outlines.
delete m_Poly;
m_Poly = new SHAPE_POLY_SET( *aOther.m_Poly );
m_CornerSelection = nullptr; // for corner moving, corner index to (null if no selection)
m_ZoneClearance = aOther.m_ZoneClearance; // clearance value
m_ZoneMinThickness = aOther.m_ZoneMinThickness;
m_FillMode = aOther.m_FillMode; // filling mode (segments/polygons)
m_ArcToSegmentsCount = aOther.m_ArcToSegmentsCount;
m_PadConnection = aOther.m_PadConnection;
m_ThermalReliefGap = aOther.m_ThermalReliefGap;
m_ThermalReliefCopperBridge = aOther.m_ThermalReliefCopperBridge;
SetHatchStyle( aOther.GetHatchStyle() );
SetHatchPitch( aOther.GetHatchPitch() );
m_HatchLines = aOther.m_HatchLines; // copy vector <SEG>
m_FilledPolysList.RemoveAllContours();
m_FilledPolysList.Append( aOther.m_FilledPolysList );
m_FillSegmList.clear();
m_FillSegmList = aOther.m_FillSegmList;
SetLayerSet( aOther.GetLayerSet() );
return *this;
}
ZONE_CONTAINER::~ZONE_CONTAINER()
{
delete m_Poly;
delete m_CornerSelection;
}
EDA_ITEM* ZONE_CONTAINER::Clone() const
{
return new ZONE_CONTAINER( *this );
}
bool ZONE_CONTAINER::UnFill()
{
bool change = ( !m_FilledPolysList.IsEmpty() ) ||
( m_FillSegmList.size() > 0 );
m_FilledPolysList.RemoveAllContours();
m_FillSegmList.clear();
m_IsFilled = false;
return change;
}
const wxPoint ZONE_CONTAINER::GetPosition() const
{
return (wxPoint) GetCornerPosition( 0 );
}
PCB_LAYER_ID ZONE_CONTAINER::GetLayer() const
{
return BOARD_ITEM::GetLayer();
}
bool ZONE_CONTAINER::IsOnCopperLayer() const
{
if( GetIsKeepout() )
{
return ( m_layerSet & LSET::AllCuMask() ).count() > 0;
}
else
{
return IsCopperLayer( GetLayer() );
}
}
bool ZONE_CONTAINER::CommonLayerExists( const LSET aLayerSet ) const
{
LSET common = GetLayerSet() & aLayerSet;
return common.count() > 0;
}
void ZONE_CONTAINER::SetLayer( PCB_LAYER_ID aLayer )
{
SetLayerSet( LSET( aLayer ) );
m_Layer = aLayer;
}
void ZONE_CONTAINER::SetLayerSet( LSET aLayerSet )
{
if( GetIsKeepout() )
{
// Keepouts can only exist on copper layers
aLayerSet &= LSET::AllCuMask();
}
if( aLayerSet.count() == 0 )
{
return;
}
m_layerSet = aLayerSet;
// Set the single layer to the first selected layer
m_Layer = aLayerSet.Seq()[0];
}
LSET ZONE_CONTAINER::GetLayerSet() const
{
// TODO - Enable multi-layer zones for all zone types
// not just keepout zones
if( GetIsKeepout() )
{
return m_layerSet;
}
else
{
return LSET( m_Layer );
}
}
void ZONE_CONTAINER::ViewGetLayers( int aLayers[], int& aCount ) const
{
if( GetIsKeepout() )
{
LSEQ layers = m_layerSet.Seq();
for( unsigned int idx = 0; idx < layers.size(); idx++ )
{
aLayers[idx] = layers[idx];
}
aCount = layers.size();
}
else
{
aLayers[0] = m_Layer;
aCount = 1;
}
}
bool ZONE_CONTAINER::IsOnLayer( PCB_LAYER_ID aLayer ) const
{
if( GetIsKeepout() )
{
return m_layerSet.test( aLayer );
}
return BOARD_ITEM::IsOnLayer( aLayer );
}
void ZONE_CONTAINER::Draw( EDA_DRAW_PANEL* panel, wxDC* DC, GR_DRAWMODE aDrawMode,
const wxPoint& offset )
{
if( !DC )
return;
wxPoint seg_start, seg_end;
PCB_LAYER_ID curr_layer = ( (PCB_SCREEN*) panel->GetScreen() )->m_Active_Layer;
BOARD* brd = GetBoard();
auto frame = static_cast<PCB_BASE_FRAME*> ( panel->GetParent() );
PCB_LAYER_ID draw_layer = UNDEFINED_LAYER;
LSET layers = GetLayerSet() & brd->GetVisibleLayers();
// If there are no visible layers and the zone is not highlighted, return
if( layers.count() == 0 && !( aDrawMode & GR_HIGHLIGHT ) )
{
return;
}
/* Keepout zones can exist on multiple layers
* Thus, determining which color to use to render them is a bit tricky.
* In descending order of priority:
*
* 1. If in GR_HIGHLIGHT mode:
* a. If zone is on selected layer, use layer color!
* b. Else, use grey
* 1. Not in GR_HIGHLIGHT mode
* a. If zone is on selected layer, use layer color
* b. Else, use color of top-most (visible) layer
*
*/
if( GetIsKeepout() )
{
// At least one layer must be provided!
assert( GetLayerSet().count() > 0 );
// Not on any visible layer?
if( layers.count() == 0 && !( aDrawMode & GR_HIGHLIGHT ) )
{
return;
}
// Is keepout zone present on the selected layer?
if( layers.test( curr_layer ) )
{
draw_layer = curr_layer;
}
else
{
// Select the first (top) visible layer
if( layers.count() > 0 )
{
draw_layer = layers.Seq()[0];
}
else
{
draw_layer = GetLayerSet().Seq()[0];
}
}
}
/* Non-keepout zones are easier to deal with
*/
else
{
if( brd->IsLayerVisible( GetLayer() ) == false && !( aDrawMode & GR_HIGHLIGHT ) )
{
return;
}
draw_layer = GetLayer();
}
assert( draw_layer != UNDEFINED_LAYER );
auto color = frame->Settings().Colors().GetLayerColor( draw_layer );
GRSetDrawMode( DC, aDrawMode );
auto displ_opts = (PCB_DISPLAY_OPTIONS*)( panel->GetDisplayOptions() );
if( displ_opts->m_ContrastModeDisplay )
{
if( !IsOnLayer( curr_layer ) )
{
color = COLOR4D( DARKDARKGRAY );
}
}
if( ( aDrawMode & GR_HIGHLIGHT ) && !( aDrawMode & GR_AND ) )
{
color.SetToLegacyHighlightColor();
}
color.a = 0.588;
// draw the lines
std::vector<wxPoint> lines;
lines.reserve( (GetNumCorners() * 2) + 2 );
// Iterate through the segments of the outline
for( auto iterator = m_Poly->IterateSegmentsWithHoles(); iterator; iterator++ )
{
// Create the segment
SEG segment = *iterator;
lines.push_back( static_cast<wxPoint>( segment.A ) + offset );
lines.push_back( static_cast<wxPoint>( segment.B ) + offset );
}
GRLineArray( panel->GetClipBox(), DC, lines, 0, color );
// draw hatches
lines.clear();
lines.reserve( (m_HatchLines.size() * 2) + 2 );
for( unsigned ic = 0; ic < m_HatchLines.size(); ic++ )
{
seg_start = static_cast<wxPoint>( m_HatchLines[ic].A ) + offset;
seg_end = static_cast<wxPoint>( m_HatchLines[ic].B ) + offset;
lines.push_back( seg_start );
lines.push_back( seg_end );
}
GRLineArray( panel->GetClipBox(), DC, lines, 0, color );
}
void ZONE_CONTAINER::DrawFilledArea( EDA_DRAW_PANEL* panel,
wxDC* DC, GR_DRAWMODE aDrawMode, const wxPoint& offset )
{
static std::vector <wxPoint> CornersBuffer;
auto displ_opts = (PCB_DISPLAY_OPTIONS*)( panel->GetDisplayOptions() );
// outline_mode is false to show filled polys,
// and true to show polygons outlines only (test and debug purposes)
bool outline_mode = displ_opts->m_DisplayZonesMode == 2 ? true : false;
if( DC == NULL )
return;
if( displ_opts->m_DisplayZonesMode == 1 ) // Do not show filled areas
return;
if( m_FilledPolysList.IsEmpty() ) // Nothing to draw
return;
BOARD* brd = GetBoard();
PCB_LAYER_ID curr_layer = ( (PCB_SCREEN*) panel->GetScreen() )->m_Active_Layer;
auto frame = static_cast<PCB_BASE_FRAME*> ( panel->GetParent() );
auto color = frame->Settings().Colors().GetLayerColor( GetLayer() );
if( brd->IsLayerVisible( GetLayer() ) == false && !( aDrawMode & GR_HIGHLIGHT ) )
return;
GRSetDrawMode( DC, aDrawMode );
if( displ_opts->m_ContrastModeDisplay )
{
if( !IsOnLayer( curr_layer ) )
color = COLOR4D( DARKDARKGRAY );
}
if( ( aDrawMode & GR_HIGHLIGHT ) && !( aDrawMode & GR_AND ) )
color.SetToLegacyHighlightColor();
color.a = 0.588;
for ( int ic = 0; ic < m_FilledPolysList.OutlineCount(); ic++ )
{
const SHAPE_LINE_CHAIN& path = m_FilledPolysList.COutline( ic );
CornersBuffer.clear();
wxPoint p0;
for( int j = 0; j < path.PointCount(); j++ )
{
const VECTOR2I& corner = path.CPoint( j );
wxPoint coord( corner.x + offset.x, corner.y + offset.y );
if( j == 0 )
p0 = coord;
CornersBuffer.push_back( coord );
}
CornersBuffer.push_back( p0 );
// Draw outlines:
if( ( m_ZoneMinThickness > 1 ) || outline_mode )
{
int ilim = CornersBuffer.size() - 1;
for( int is = 0, ie = ilim; is <= ilim; ie = is, is++ )
{
int x0 = CornersBuffer[is].x;
int y0 = CornersBuffer[is].y;
int x1 = CornersBuffer[ie].x;
int y1 = CornersBuffer[ie].y;
// Draw only basic outlines, not extra segments.
if( !displ_opts->m_DisplayPcbTrackFill || GetState( FORCE_SKETCH ) )
GRCSegm( panel->GetClipBox(), DC,
x0, y0, x1, y1,
m_ZoneMinThickness, color );
else
GRFillCSegm( panel->GetClipBox(), DC,
x0, y0, x1, y1, m_ZoneMinThickness, color );
}
}
// Draw areas:
if( m_FillMode == ZFM_POLYGONS && !outline_mode )
GRPoly( panel->GetClipBox(), DC, CornersBuffer.size(), &CornersBuffer[0],
true, 0, color, color );
}
if( m_FillMode == 1 && !outline_mode ) // filled with segments
{
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
{
wxPoint start = (wxPoint) ( m_FillSegmList[ic].A + VECTOR2I(offset) );
wxPoint end = (wxPoint) ( m_FillSegmList[ic].B + VECTOR2I(offset) );
if( !displ_opts->m_DisplayPcbTrackFill || GetState( FORCE_SKETCH ) )
GRCSegm( panel->GetClipBox(), DC, start.x, start.y, end.x, end.y,
m_ZoneMinThickness, color );
else
GRFillCSegm( panel->GetClipBox(), DC, start.x, start.y, end.x, end.y,
m_ZoneMinThickness, color );
}
}
}
const EDA_RECT ZONE_CONTAINER::GetBoundingBox() const
{
const int PRELOAD = 0x7FFFFFFF; // Biggest integer (32 bits)
int ymax = -PRELOAD;
int ymin = PRELOAD;
int xmin = PRELOAD;
int xmax = -PRELOAD;
int count = GetNumCorners();
for( int i = 0; i<count; ++i )
{
wxPoint corner = static_cast<wxPoint>( GetCornerPosition( i ) );
ymax = std::max( ymax, corner.y );
xmax = std::max( xmax, corner.x );
ymin = std::min( ymin, corner.y );
xmin = std::min( xmin, corner.x );
}
EDA_RECT ret( wxPoint( xmin, ymin ), wxSize( xmax - xmin + 1, ymax - ymin + 1 ) );
return ret;
}
void ZONE_CONTAINER::DrawWhileCreateOutline( EDA_DRAW_PANEL* panel, wxDC* DC,
GR_DRAWMODE draw_mode )
{
GR_DRAWMODE current_gr_mode = draw_mode;
bool is_close_segment = false;
if( !DC )
return;
PCB_LAYER_ID curr_layer = ( (PCB_SCREEN*) panel->GetScreen() )->m_Active_Layer;
auto frame = static_cast<PCB_BASE_FRAME*> ( panel->GetParent() );
auto color = frame->Settings().Colors().GetLayerColor( GetLayer() );
auto displ_opts = (PCB_DISPLAY_OPTIONS*)( panel->GetDisplayOptions() );
if( displ_opts->m_ContrastModeDisplay )
{
if( !IsOnLayer( curr_layer ) )
color = COLOR4D( DARKDARKGRAY );
}
// Object to iterate through the corners of the outlines
SHAPE_POLY_SET::ITERATOR iterator = m_Poly->Iterate();
// Segment start and end
VECTOR2I seg_start, seg_end;
// Remember the first point of this contour
VECTOR2I contour_first_point = *iterator;
// Iterate through all the corners of the outlines and build the segments to draw
while( iterator )
{
// Get the first point of the current segment
seg_start = *iterator;
// Get the last point of the current segment, handling the case where the end of the
// contour is reached, when the last point of the segment is the first point of the
// contour
if( !iterator.IsEndContour() )
{
// Set GR mode to default
current_gr_mode = draw_mode;
SHAPE_POLY_SET::ITERATOR iterator_copy = iterator;
iterator_copy++;
if( iterator_copy.IsEndContour() )
current_gr_mode = GR_XOR;
is_close_segment = false;
iterator++;
seg_end = *iterator;
}
else
{
is_close_segment = true;
seg_end = contour_first_point;
// Reassign first point of the contour to the next contour start
iterator++;
if( iterator )
contour_first_point = *iterator;
// Set GR mode to XOR
current_gr_mode = GR_XOR;
}
GRSetDrawMode( DC, current_gr_mode );
if( is_close_segment )
GRLine( panel->GetClipBox(), DC, seg_start.x, seg_start.y, seg_end.x, seg_end.y, 0,
WHITE );
else
GRLine( panel->GetClipBox(), DC, seg_start.x, seg_start.y, seg_end.x, seg_end.y, 0,
color );
}
}
int ZONE_CONTAINER::GetThermalReliefGap( D_PAD* aPad ) const
{
if( aPad == NULL || aPad->GetThermalGap() == 0 )
return m_ThermalReliefGap;
else
return aPad->GetThermalGap();
}
int ZONE_CONTAINER::GetThermalReliefCopperBridge( D_PAD* aPad ) const
{
if( aPad == NULL || aPad->GetThermalWidth() == 0 )
return m_ThermalReliefCopperBridge;
else
return aPad->GetThermalWidth();
}
void ZONE_CONTAINER::SetCornerRadius( unsigned int aRadius )
{
m_cornerRadius = aRadius;
if( m_cornerRadius > (unsigned int) Mils2iu( MAX_ZONE_CORNER_RADIUS_MILS ) )
m_cornerRadius = Mils2iu( MAX_ZONE_CORNER_RADIUS_MILS );
}
bool ZONE_CONTAINER::HitTest( const wxPoint& aPosition ) const
{
return HitTestForCorner( aPosition ) || HitTestForEdge( aPosition );
}
void ZONE_CONTAINER::SetSelectedCorner( const wxPoint& aPosition )
{
SHAPE_POLY_SET::VERTEX_INDEX corner;
// If there is some corner to be selected, assign it to m_CornerSelection
if( HitTestForCorner( aPosition, corner ) || HitTestForEdge( aPosition, corner ) )
{
if( m_CornerSelection == nullptr )
m_CornerSelection = new SHAPE_POLY_SET::VERTEX_INDEX;
*m_CornerSelection = corner;
}
}
// Zones outlines have no thickness, so it Hit Test functions
// we must have a default distance between the test point
// and a corner or a zone edge:
#define MAX_DIST_IN_MM 0.25
bool ZONE_CONTAINER::HitTestForCorner( const wxPoint& refPos,
SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const
{
int distmax = Millimeter2iu( MAX_DIST_IN_MM );
return m_Poly->CollideVertex( VECTOR2I( refPos ), aCornerHit, distmax );
}
bool ZONE_CONTAINER::HitTestForCorner( const wxPoint& refPos ) const
{
SHAPE_POLY_SET::VERTEX_INDEX dummy;
return HitTestForCorner( refPos, dummy );
}
bool ZONE_CONTAINER::HitTestForEdge( const wxPoint& refPos,
SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const
{
int distmax = Millimeter2iu( MAX_DIST_IN_MM );
return m_Poly->CollideEdge( VECTOR2I( refPos ), aCornerHit, distmax );
}
bool ZONE_CONTAINER::HitTestForEdge( const wxPoint& refPos ) const
{
SHAPE_POLY_SET::VERTEX_INDEX dummy;
return HitTestForEdge( refPos, dummy );
}
bool ZONE_CONTAINER::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const
{
// Calculate bounding box for zone
EDA_RECT bbox = GetBoundingBox();
bbox.Normalize();
EDA_RECT arect = aRect;
arect.Normalize();
arect.Inflate( aAccuracy );
if( aContained )
{
return arect.Contains( bbox );
}
else // Test for intersection between aBox and the polygon
// For a polygon, using its bounding box has no sense here
{
// Fast test: if aBox is outside the polygon bounding box,
// rectangles cannot intersect
if( !arect.Intersects( bbox ) )
return false;
// aBox is inside the polygon bounding box,
// and can intersect the polygon: use a fine test.
// aBox intersects the polygon if at least one aBox corner
// is inside the polygon
/*
wxPoint origin = arect.GetOrigin();
int w = arect.GetWidth();
int h = arect.GetHeight();
if ( HitTestInsideZone( origin ) ||
HitTestInsideZone( origin + wxPoint( w, 0 ) ) ||
HitTestInsideZone( origin + wxPoint( w, h ) ) ||
HitTestInsideZone( origin + wxPoint( 0, h ) ) )
{
return true;
}
*/
// No corner inside aBox, but outlines can intersect aBox
// if one of outline corners is inside aBox
int count = m_Poly->TotalVertices();
for( int ii =0; ii < count; ii++ )
{
auto vertex = m_Poly->Vertex( ii );
auto vertexNext = m_Poly->Vertex( ( ii + 1 ) % count );
// Test if the point is within the rect
if( arect.Contains( ( wxPoint ) vertex ) )
{
return true;
}
// Test if this edge intersects the rect
if( arect.Intersects( ( wxPoint ) vertex, ( wxPoint ) vertexNext ) )
{
return true;
}
}
return false;
}
}
int ZONE_CONTAINER::GetClearance( BOARD_CONNECTED_ITEM* aItem ) const
{
int myClearance = m_ZoneClearance;
#if 1 // Maybe the netclass clearance should not come into play for a zone?
// At least the policy decision can be controlled by the zone
// itself, i.e. here. On reasons of insufficient documentation,
// the user will be less bewildered if we simply respect the
// "zone clearance" setting in the zone properties dialog. (At least
// until there is a UI boolean for this.)
NETCLASSPTR myClass = GetNetClass();
if( myClass )
myClearance = std::max( myClearance, myClass->GetClearance() );
#endif
if( aItem )
{
int hisClearance = aItem->GetClearance( NULL );
myClearance = std::max( hisClearance, myClearance );
}
return myClearance;
}
bool ZONE_CONTAINER::HitTestFilledArea( const wxPoint& aRefPos ) const
{
return m_FilledPolysList.Contains( VECTOR2I( aRefPos.x, aRefPos.y ) );
}
void ZONE_CONTAINER::GetMsgPanelInfo( std::vector< MSG_PANEL_ITEM >& aList )
{
wxString msg;
msg = _( "Zone Outline" );
// Display Cutout instead of Outline for holes inside a zone
// i.e. when num contour !=0
// Check whether the selected corner is in a hole; i.e., in any contour but the first one.
if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 )
msg << wxT( " " ) << _( "(Cutout)" );
aList.push_back( MSG_PANEL_ITEM( _( "Type" ), msg, DARKCYAN ) );
if( GetIsKeepout() )
{
msg.Empty();
if( GetDoNotAllowVias() )
AccumulateDescription( msg, _( "No via" ) );
if( GetDoNotAllowTracks() )
AccumulateDescription( msg, _("No track") );
if( GetDoNotAllowCopperPour() )
AccumulateDescription( msg, _("No copper pour") );
aList.push_back( MSG_PANEL_ITEM( _( "Keepout" ), msg, RED ) );
}
else if( IsOnCopperLayer() )
{
if( GetNetCode() >= 0 )
{
NETINFO_ITEM* net = GetNet();
if( net )
msg = net->GetNetname();
else // Should not occur
msg = _( "<unknown>" );
}
else // a netcode < 0 is an error
msg = wxT( "<error>" );
aList.push_back( MSG_PANEL_ITEM( _( "NetName" ), msg, RED ) );
// Display net code : (useful in test or debug)
msg.Printf( wxT( "%d" ), GetNetCode() );
aList.push_back( MSG_PANEL_ITEM( _( "NetCode" ), msg, RED ) );
// Display priority level
msg.Printf( wxT( "%d" ), GetPriority() );
aList.push_back( MSG_PANEL_ITEM( _( "Priority" ), msg, BLUE ) );
}
else
{
aList.push_back( MSG_PANEL_ITEM( _( "Non Copper Zone" ), wxEmptyString, RED ) );
}
aList.push_back( MSG_PANEL_ITEM( _( "Layer" ), GetLayerName(), BROWN ) );
msg.Printf( wxT( "%d" ), (int) m_Poly->TotalVertices() );
aList.push_back( MSG_PANEL_ITEM( _( "Corners" ), msg, BLUE ) );
if( m_FillMode )
msg = _( "Segments" );
else
msg = _( "Polygons" );
aList.push_back( MSG_PANEL_ITEM( _( "Fill Mode" ), msg, BROWN ) );
// Useful for statistics :
msg.Printf( wxT( "%d" ), (int) m_HatchLines.size() );
aList.push_back( MSG_PANEL_ITEM( _( "Hatch Lines" ), msg, BLUE ) );
if( !m_FilledPolysList.IsEmpty() )
{
msg.Printf( wxT( "%d" ), m_FilledPolysList.TotalVertices() );
aList.push_back( MSG_PANEL_ITEM( _( "Corner Count" ), msg, BLUE ) );
}
}
/* Geometric transforms: */
void ZONE_CONTAINER::Move( const wxPoint& offset )
{
/* move outlines */
m_Poly->Move( VECTOR2I( offset ) );
Hatch();
m_FilledPolysList.Move( VECTOR2I( offset.x, offset.y ) );
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
{
m_FillSegmList[ic].A += VECTOR2I(offset);
m_FillSegmList[ic].B += VECTOR2I(offset);
}
}
void ZONE_CONTAINER::MoveEdge( const wxPoint& offset, int aEdge )
{
int next_corner;
if( m_Poly->GetNeighbourIndexes( aEdge, nullptr, &next_corner ) )
{
m_Poly->Vertex( aEdge ) += VECTOR2I( offset );
m_Poly->Vertex( next_corner ) += VECTOR2I( offset );
Hatch();
}
}
void ZONE_CONTAINER::Rotate( const wxPoint& centre, double angle )
{
wxPoint pos;
for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ )
{
pos = static_cast<wxPoint>( *iterator );
RotatePoint( &pos, centre, angle );
iterator->x = pos.x;
iterator->y = pos.y;
}
Hatch();
/* rotate filled areas: */
for( auto ic = m_FilledPolysList.Iterate(); ic; ++ic )
RotatePoint( &ic->x, &ic->y, centre.x, centre.y, angle );
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
{
wxPoint a ( m_FillSegmList[ic].A );
RotatePoint( &a, centre, angle );
m_FillSegmList[ic].A = a;
wxPoint b ( m_FillSegmList[ic].B );
RotatePoint( &b, centre, angle );
m_FillSegmList[ic].B = a;
}
}
void ZONE_CONTAINER::Flip( const wxPoint& aCentre )
{
Mirror( aCentre );
int copperLayerCount = GetBoard()->GetCopperLayerCount();
if( GetIsKeepout() )
{
SetLayerSet( FlipLayerMask( GetLayerSet(), copperLayerCount ) );
}
else
{
SetLayer( FlipLayer( GetLayer(), copperLayerCount ) );
}
}
void ZONE_CONTAINER::Mirror( const wxPoint& mirror_ref )
{
for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ )
{
int py = mirror_ref.y - iterator->y;
iterator->y = py + mirror_ref.y;
}
Hatch();
for( auto ic = m_FilledPolysList.Iterate(); ic; ++ic )
{
int py = mirror_ref.y - ic->y;
ic->y = py + mirror_ref.y;
}
for( unsigned ic = 0; ic < m_FillSegmList.size(); ic++ )
{
MIRROR( m_FillSegmList[ic].A.y, mirror_ref.y );
MIRROR( m_FillSegmList[ic].B.y, mirror_ref.y );
}
}
ZoneConnection ZONE_CONTAINER::GetPadConnection( D_PAD* aPad ) const
{
if( aPad == NULL || aPad->GetZoneConnection() == PAD_ZONE_CONN_INHERITED )
return m_PadConnection;
else
return aPad->GetZoneConnection();
}
void ZONE_CONTAINER::AddPolygon( std::vector< wxPoint >& aPolygon )
{
if( aPolygon.empty() )
return;
SHAPE_LINE_CHAIN outline;
// Create an outline and populate it with the points of aPolygon
for( unsigned i = 0; i < aPolygon.size(); i++ )
{
outline.Append( VECTOR2I( aPolygon[i] ) );
}
outline.SetClosed( true );
// Add the outline as a new polygon in the polygon set
if( m_Poly->OutlineCount() == 0 )
m_Poly->AddOutline( outline );
else
m_Poly->AddHole( outline );
}
bool ZONE_CONTAINER::AppendCorner( wxPoint aPosition, int aHoleIdx, bool aAllowDuplication )
{
// Ensure the main outline exists:
if( m_Poly->OutlineCount() == 0 )
m_Poly->NewOutline();
// If aHoleIdx >= 0, the corner musty be added to the hole, index aHoleIdx.
// (remember: the index of the first hole is 0)
// Return error if if does dot exist.
if( aHoleIdx >= m_Poly->HoleCount( 0 ) )
return false;
m_Poly->Append( aPosition.x, aPosition.y, -1, aHoleIdx, aAllowDuplication );
return true;
}
wxString ZONE_CONTAINER::GetSelectMenuText() const
{
wxString text;
NETINFO_ITEM* net;
BOARD* board = GetBoard();
// Check whether the selected contour is a hole (contour index > 0)
if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 )
text << wxT( " " ) << _( "(Cutout)" );
if( GetIsKeepout() )
text << wxT( " " ) << _( "(Keepout)" );
text << wxString::Format( wxT( " (%08lX)" ), m_TimeStamp );
// Display net name for copper zones
if( !GetIsKeepout() )
{
if( GetNetCode() >= 0 )
{
if( board )
{
net = GetNet();
if( net )
{
text << wxT( " [" ) << net->GetNetname() << wxT( "]" );
}
}
else
{
text << _( "** NO BOARD DEFINED **" );
}
}
else
{ // A netcode < 0 is an error:
// Netname not found or area not initialised
text << wxT( " [" ) << GetNetname() << wxT( "]" );
text << wxT( " <" ) << _( "Not Found" ) << wxT( ">" );
}
}
wxString msg;
msg.Printf( _( "Zone Outline %s on %s" ), GetChars( text ),
GetChars( GetLayerName() ) );
return msg;
}
int ZONE_CONTAINER::GetHatchPitch() const
{
return m_hatchPitch;
}
void ZONE_CONTAINER::SetHatch( int aHatchStyle, int aHatchPitch, bool aRebuildHatch )
{
SetHatchPitch( aHatchPitch );
m_hatchStyle = (ZONE_CONTAINER::HATCH_STYLE) aHatchStyle;
if( aRebuildHatch )
Hatch();
}
void ZONE_CONTAINER::SetHatchPitch( int aPitch )
{
m_hatchPitch = aPitch;
}
void ZONE_CONTAINER::UnHatch()
{
m_HatchLines.clear();
}
// Creates hatch lines inside the outline of the complex polygon
// sort function used in ::Hatch to sort points by descending wxPoint.x values
bool sortEndsByDescendingX( const VECTOR2I& ref, const VECTOR2I& tst )
{
return tst.x < ref.x;
}
void ZONE_CONTAINER::Hatch()
{
UnHatch();
if( m_hatchStyle == NO_HATCH || m_hatchPitch == 0 || m_Poly->IsEmpty() )
return;
// define range for hatch lines
int min_x = m_Poly->Vertex( 0 ).x;
int max_x = m_Poly->Vertex( 0 ).x;
int min_y = m_Poly->Vertex( 0 ).y;
int max_y = m_Poly->Vertex( 0 ).y;
for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ )
{
if( iterator->x < min_x )
min_x = iterator->x;
if( iterator->x > max_x )
max_x = iterator->x;
if( iterator->y < min_y )
min_y = iterator->y;
if( iterator->y > max_y )
max_y = iterator->y;
}
// Calculate spacing between 2 hatch lines
int spacing;
if( m_hatchStyle == DIAGONAL_EDGE )
spacing = m_hatchPitch;
else
spacing = m_hatchPitch * 2;
// set the "length" of hatch lines (the length on horizontal axis)
int hatch_line_len = m_hatchPitch;
// To have a better look, give a slope depending on the layer
LAYER_NUM layer = GetLayer();
int slope_flag = (layer & 1) ? 1 : -1; // 1 or -1
double slope = 0.707106 * slope_flag; // 45 degrees slope
int max_a, min_a;
if( slope_flag == 1 )
{
max_a = KiROUND( max_y - slope * min_x );
min_a = KiROUND( min_y - slope * max_x );
}
else
{
max_a = KiROUND( max_y - slope * max_x );
min_a = KiROUND( min_y - slope * min_x );
}
min_a = (min_a / spacing) * spacing;
// calculate an offset depending on layer number,
// for a better look of hatches on a multilayer board
int offset = (layer * 7) / 8;
min_a += offset;
// loop through hatch lines
#define MAXPTS 200 // Usually we store only few values per one hatch line
// depending on the complexity of the zone outline
static std::vector<VECTOR2I> pointbuffer;
pointbuffer.clear();
pointbuffer.reserve( MAXPTS + 2 );
for( int a = min_a; a < max_a; a += spacing )
{
// get intersection points for this hatch line
// Note: because we should have an even number of intersections with the
// current hatch line and the zone outline (a closed polygon,
// or a set of closed polygons), if an odd count is found
// we skip this line (should not occur)
pointbuffer.clear();
// Iterate through all vertices
for( auto iterator = m_Poly->IterateSegmentsWithHoles(); iterator; iterator++ )
{
double x, y, x2, y2;
int ok;
SEG segment = *iterator;
ok = FindLineSegmentIntersection( a, slope,
segment.A.x, segment.A.y,
segment.B.x, segment.B.y,
&x, &y, &x2, &y2 );
if( ok )
{
VECTOR2I point( KiROUND( x ), KiROUND( y ) );
pointbuffer.push_back( point );
}
if( ok == 2 )
{
VECTOR2I point( KiROUND( x2 ), KiROUND( y2 ) );
pointbuffer.push_back( point );
}
if( pointbuffer.size() >= MAXPTS ) // overflow
{
wxASSERT( 0 );
break;
}
}
// ensure we have found an even intersection points count
// because intersections are the ends of segments
// inside the polygon(s) and a segment has 2 ends.
// if not, this is a strange case (a bug ?) so skip this hatch
if( pointbuffer.size() % 2 != 0 )
continue;
// sort points in order of descending x (if more than 2) to
// ensure the starting point and the ending point of the same segment
// are stored one just after the other.
if( pointbuffer.size() > 2 )
sort( pointbuffer.begin(), pointbuffer.end(), sortEndsByDescendingX );
// creates lines or short segments inside the complex polygon
for( unsigned ip = 0; ip < pointbuffer.size(); ip += 2 )
{
int dx = pointbuffer[ip + 1].x - pointbuffer[ip].x;
// Push only one line for diagonal hatch,
// or for small lines < twice the line length
// else push 2 small lines
if( m_hatchStyle == DIAGONAL_FULL || std::abs( dx ) < 2 * hatch_line_len )
{
m_HatchLines.push_back( SEG( pointbuffer[ip], pointbuffer[ip + 1] ) );
}
else
{
double dy = pointbuffer[ip + 1].y - pointbuffer[ip].y;
slope = dy / dx;
if( dx > 0 )
dx = hatch_line_len;
else
dx = -hatch_line_len;
int x1 = KiROUND( pointbuffer[ip].x + dx );
int x2 = KiROUND( pointbuffer[ip + 1].x - dx );
int y1 = KiROUND( pointbuffer[ip].y + dx * slope );
int y2 = KiROUND( pointbuffer[ip + 1].y - dx * slope );
m_HatchLines.push_back(SEG(pointbuffer[ip].x, pointbuffer[ip].y, x1, y1));
m_HatchLines.push_back( SEG( pointbuffer[ip+1].x, pointbuffer[ip+1].y, x2, y2 ) );
}
}
}
}
int ZONE_CONTAINER::GetDefaultHatchPitch()
{
return Mils2iu( 20 );
}
BITMAP_DEF ZONE_CONTAINER::GetMenuImage() const
{
return add_zone_xpm;
}
void ZONE_CONTAINER::SwapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_ZONE_AREA_T );
std::swap( *((ZONE_CONTAINER*) this), *((ZONE_CONTAINER*) aImage) );
}
void ZONE_CONTAINER::CacheTriangulation()
{
m_FilledPolysList.CacheTriangulation();
}
bool ZONE_CONTAINER::BuildSmoothedPoly( SHAPE_POLY_SET& aSmoothedPoly ) const
{
if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations do not like it ...
return false;
// Make a smoothed polygon out of the user-drawn polygon if required
switch( m_cornerSmoothingType )
{
case ZONE_SETTINGS::SMOOTHING_CHAMFER:
aSmoothedPoly = m_Poly->Chamfer( m_cornerRadius );
break;
case ZONE_SETTINGS::SMOOTHING_FILLET:
aSmoothedPoly = m_Poly->Fillet( m_cornerRadius, m_ArcToSegmentsCount );
break;
default:
// Acute angles between adjacent edges can create issues in calculations,
// in inflate/deflate outlines transforms, especially when the angle is very small.
// We can avoid issues by creating a very small chamfer which remove acute angles,
// or left it without chamfer and use only CPOLYGONS_LIST::InflateOutline to create
// clearance areas
aSmoothedPoly = m_Poly->Chamfer( Millimeter2iu( 0.0 ) );
break;
}
return true;
};
/* Function TransformOutlinesShapeWithClearanceToPolygon
* Convert the zone filled areas polygons to polygons
* inflated (optional) by max( aClearanceValue, the zone clearance)
* and copy them in aCornerBuffer
* param aClearanceValue = the clearance around polygons
* param aAddClearance = true to add a clearance area to the polygon
* false to create the outline polygon.
*/
void ZONE_CONTAINER::TransformOutlinesShapeWithClearanceToPolygon(
SHAPE_POLY_SET& aCornerBuffer, int aMinClearanceValue, bool aUseNetClearance ) const
{
// Creates the zone outline polygon (with holes if any)
SHAPE_POLY_SET polybuffer;
BuildSmoothedPoly( polybuffer );
// add clearance to outline
int clearance = aMinClearanceValue;
if( aUseNetClearance && IsOnCopperLayer() )
{
clearance = GetClearance();
if( aMinClearanceValue > clearance )
clearance = aMinClearanceValue;
}
// Calculate the polygon with clearance
// holes are linked to the main outline, so only one polygon is created.
if( clearance )
polybuffer.Inflate( clearance, 16 );
polybuffer.Fracture( SHAPE_POLY_SET::PM_FAST );
aCornerBuffer.Append( polybuffer );
}