kicad/pcbnew/board_items_to_polygon_shap...

941 lines
38 KiB
C++

/**********************************************/
/* board_items_to_polygon_shape_transform.cpp */
/**********************************************/
/* Function to convert pads and tranck shapes to polygons
* Used to fill zones areas
*/
#include <vector>
#include "fctsys.h"
#include "common.h"
#include "pcbnew.h"
#include "wxPcbStruct.h"
#include "trigo.h"
/* Exported functions */
/**
* Function TransformRoundedEndsSegmentToPolygon
* convert a segment with rounded ends to a polygon
* Convert arcs to multiple straight lines
* @param aCornerBuffer = a buffer to store the polygon
* @param aStart = the segment start point coordinate
* @param aEnd = the segment end point coordinate
* @param aCircleToSegmentsCount = the number of segments to approximate a circle
* @param aWidth = the segment width
*/
void TransformRoundedEndsSegmentToPolygon( std::vector <CPolyPt>& aCornerBuffer,
wxPoint aStart, wxPoint aEnd,
int aCircleToSegmentsCount,
int aWidth );
/**
* Function TransformArcToPolygon
* Creates a polygon from an Arc
* Convert arcs to multiple straight segments
* @param aCornerBuffer = a buffer to store the polygon
* @param aCentre = centre of the arc or circle
* @param aStart = start point of the arc, or a point on the circle
* @param aArcAngle = arc angle in 0.1 degrees. For a circle, aArcAngle = 3600
* @param aCircleToSegmentsCount = the number of segments to approximate a circle
* @param aWidth = width (thickness) of the line
*/
void TransformArcToPolygon( std::vector <CPolyPt>& aCornerBuffer,
wxPoint aCentre, wxPoint aStart, int aArcAngle,
int aCircleToSegmentsCount, int aWidth )
{
wxPoint arc_start, arc_end;
int delta = 3600 / aCircleToSegmentsCount; // rot angle in 0.1 degree
arc_end = arc_start = aStart;
if( aArcAngle != 3600 )
{
RotatePoint( &arc_end, aCentre, -aArcAngle );
}
if( aArcAngle < 0 )
{
EXCHG( arc_start, arc_end );
NEGATE( aArcAngle );
}
// Compute the ends of segments and creates poly
wxPoint curr_end = arc_start;
wxPoint curr_start = arc_start;
for( int ii = delta; ii < aArcAngle; ii += delta )
{
curr_end = arc_start;
RotatePoint( &curr_end, aCentre, -ii );
TransformRoundedEndsSegmentToPolygon( aCornerBuffer,
curr_start, curr_end, aCircleToSegmentsCount, aWidth );
curr_start = curr_end;
}
if( curr_end != arc_end )
TransformRoundedEndsSegmentToPolygon( aCornerBuffer,
curr_end, arc_end, aCircleToSegmentsCount, aWidth );
}
/**
* Function TransformShapeWithClearanceToPolygon
* Convert the track shape to a closed polygon
* Used in filling zones calculations
* Circles and arcs are approximated by segments
* @param aCornerBuffer = a buffer to store the polygon
* @param aClearanceValue = the clearance around the pad
* @param aCircleToSegmentsCount = the number of segments to approximate a circle
* @param aCorrectionFactor = the correction to apply to circles radius to keep
* clearance when the circle is approximated by segment bigger or equal
* to the real clearance value (usually near from 1.0)
*/
void TEXTE_PCB::TransformShapeWithClearanceToPolygon(
std::vector <CPolyPt>& aCornerBuffer,
int aClearanceValue,
int aCircleToSegmentsCount,
double aCorrectionFactor )
{
if( GetLength() == 0 )
return;
CPolyPt corners[4]; // Buffer of polygon corners
EDA_Rect rect = GetTextBox( -1 );
rect.Inflate( aClearanceValue );
corners[0].x = rect.GetOrigin().x;
corners[0].y = rect.GetOrigin().y;
corners[1].y = corners[0].y;
corners[1].x = rect.GetRight();
corners[2].x = corners[1].x;
corners[2].y = rect.GetBottom();
corners[3].y = corners[2].y;
corners[3].x = corners[0].x;
for( int ii = 0; ii < 4; ii++ )
{
// Rotate polygon
RotatePoint( &corners[ii].x, &corners[ii].y,
m_Pos.x, m_Pos.y,
m_Orient );
aCornerBuffer.push_back( corners[ii] );
}
aCornerBuffer.back().end_contour = true;
}
/**
* Function TransformShapeWithClearanceToPolygon
* Convert the track shape to a closed polygon
* Used in filling zones calculations
* Circles and arcs are approximated by segments
* @param aCornerBuffer = a buffer to store the polygon
* @param aClearanceValue = the clearance around the pad
* @param aCircleToSegmentsCount = the number of segments to approximate a circle
* @param aCorrectionFactor = the correction to apply to circles radius to keep
* clearance when the circle is approxiamted by segment bigger or equal
* to the real clearance value (usually near from 1.0)
*/
void DRAWSEGMENT::TransformShapeWithClearanceToPolygon(
std::vector <CPolyPt>& aCornerBuffer,
int aClearanceValue,
int aCircleToSegmentsCount,
double aCorrectionFactor )
{
switch( m_Shape )
{
case S_CIRCLE:
TransformArcToPolygon( aCornerBuffer, m_Start, // Circle centre
m_End, 3600,
aCircleToSegmentsCount,
m_Width + (2 * aClearanceValue) );
break;
case S_ARC:
TransformArcToPolygon( aCornerBuffer, m_Start,
m_End, m_Angle,
aCircleToSegmentsCount,
m_Width + (2 * aClearanceValue) );
break;
default:
TransformRoundedEndsSegmentToPolygon(
aCornerBuffer, m_Start, m_End,
aCircleToSegmentsCount, m_Width + (2 * aClearanceValue) );
break;
}
}
/**
* Function TransformShapeWithClearanceToPolygon
* Convert the track shape to a closed polygon
* Used in filling zones calculations
* Circles and arcs are approximated by segments
* @param aCornerBuffer = a buffer to store the polygon
* @param aClearanceValue = the clearance around the pad
* @param aCircleToSegmentsCount = the number of segments to approximate a circle
* @param aCorrectionFactor = the correction to apply to circles radius to keep
* clearance when the circle is approxiamted by segment bigger or equal
* to the real clearance value (usually near from 1.0)
*/
void EDGE_MODULE::TransformShapeWithClearanceToPolygon(
std::vector <CPolyPt>& aCornerBuffer,
int aClearanceValue,
int aCircleToSegmentsCount,
double aCorrectionFactor )
{
switch( m_Shape )
{
case S_CIRCLE:
TransformArcToPolygon( aCornerBuffer, m_Start, // Circle centre
m_End, 3600,
aCircleToSegmentsCount,
m_Width + (2 * aClearanceValue) );
break;
case S_ARC:
TransformArcToPolygon( aCornerBuffer, m_Start,
m_End, m_Angle,
aCircleToSegmentsCount,
m_Width + (2 * aClearanceValue) );
break;
case S_SEGMENT:
TransformRoundedEndsSegmentToPolygon(
aCornerBuffer, m_Start, m_End,
aCircleToSegmentsCount, m_Width + (2 * aClearanceValue) );
break;
default:
break;
}
}
/**
* Function TransformShapeWithClearanceToPolygon
* Convert the track shape to a closed polygon
* Used in filling zones calculations
* Circles (vias) and arcs (ends of tracks) are approximated by segments
* @param aCornerBuffer = a buffer to store the polygon
* @param aClearanceValue = the clearance around the pad
* @param aCircleToSegmentsCount = the number of segments to approximate a circle
* @param aCorrectionFactor = the correction to apply to circles radius to keep
* clearance when the circle is approxiamted by segment bigger or equal
* to the real clearance value (usually near from 1.0)
*/
void TRACK:: TransformShapeWithClearanceToPolygon( std:: vector < CPolyPt>& aCornerBuffer,
int aClearanceValue,
int aCircleToSegmentsCount,
double aCorrectionFactor )
{
wxPoint corner_position;
int ii, angle;
int dx = (m_Width / 2) + aClearanceValue;
int delta = 3600 / aCircleToSegmentsCount; // rot angle in 0.1 degree
switch( Type() )
{
case TYPE_VIA:
dx = (int) ( dx * aCorrectionFactor );
for( ii = 0; ii < aCircleToSegmentsCount; ii++ )
{
corner_position = wxPoint( dx, 0 );
RotatePoint( &corner_position.x, &corner_position.y,
(1800 / aCircleToSegmentsCount) );
angle = ii * delta;
RotatePoint( &corner_position.x, &corner_position.y, angle );
corner_position.x += m_Start.x;
corner_position.y += m_Start.y;
CPolyPt polypoint( corner_position.x, corner_position.y );
aCornerBuffer.push_back( polypoint );
}
aCornerBuffer.back().end_contour = true;
break;
default:
TransformRoundedEndsSegmentToPolygon(
aCornerBuffer,
m_Start, m_End,
aCircleToSegmentsCount,
m_Width + ( 2 * aClearanceValue) );
break;
}
}
/* Function TransformRoundedEndsSegmentToPolygon
*/
void TransformRoundedEndsSegmentToPolygon( std::vector <CPolyPt>& aCornerBuffer,
wxPoint aStart, wxPoint aEnd,
int aCircleToSegmentsCount,
int aWidth )
{
int rayon = aWidth / 2;
wxPoint endp = aEnd - aStart; // end point coordinate for the same segment starting at (0,0)
wxPoint startp = aStart;
wxPoint corner;
int seg_len;
CPolyPt polypoint;
// normalize the position in order to have endp.x >= 0;
if( endp.x < 0 )
{
endp = aStart - aEnd;
startp = aEnd;
}
int delta_angle = ArcTangente( endp.y, endp.x ); // delta_angle is in 0.1 degrees
seg_len = (int) sqrt( ( (double) endp.y * endp.y ) + ( (double) endp.x * endp.x ) );
int delta = 3600 / aCircleToSegmentsCount; // rot angle in 0.1 degree
// Compute the outlines of the segment, and creates a polygon
corner = wxPoint( 0, rayon );
RotatePoint( &corner, -delta_angle );
corner += startp;
polypoint.x = corner.x;
polypoint.y = corner.y;
aCornerBuffer.push_back( polypoint );
corner = wxPoint( seg_len, rayon );
RotatePoint( &corner, -delta_angle );
corner += startp;
polypoint.x = corner.x;
polypoint.y = corner.y;
aCornerBuffer.push_back( polypoint );
// add right rounded end:
for( int ii = delta; ii < 1800; ii += delta )
{
corner = wxPoint( 0, rayon );
RotatePoint( &corner, ii );
corner.x += seg_len;
RotatePoint( &corner, -delta_angle );
corner += startp;
polypoint.x = corner.x;
polypoint.y = corner.y;
aCornerBuffer.push_back( polypoint );
}
corner = wxPoint( seg_len, -rayon );
RotatePoint( &corner, -delta_angle );
corner += startp;
polypoint.x = corner.x;
polypoint.y = corner.y;
aCornerBuffer.push_back( polypoint );
corner = wxPoint( 0, -rayon );
RotatePoint( &corner, -delta_angle );
corner += startp;
polypoint.x = corner.x;
polypoint.y = corner.y;
aCornerBuffer.push_back( polypoint );
// add left rounded end:
for( int ii = delta; ii < 1800; ii += delta )
{
corner = wxPoint( 0, -rayon );
RotatePoint( &corner, ii );
RotatePoint( &corner, -delta_angle );
corner += startp;
polypoint.x = corner.x;
polypoint.y = corner.y;
aCornerBuffer.push_back( polypoint );
}
aCornerBuffer.back().end_contour = true;
}
/**
* Function TransformShapeWithClearanceToPolygon
* Convert the pad shape to a closed polygon
* Used in filling zones calculations
* Circles and arcs are approximated by segments
* @param aCornerBuffer = a buffer to store the polygon
* @param aClearanceValue = the clearance around the pad
* @param aCircleToSegmentsCount = the number of segments to approximate a circle
* @param aCorrectionFactor = the correction to apply to circles radius to keep
* clearance when the circle is approxiamted by segment bigger or equal
* to the real clearance value (usually near from 1.0)
*/
void D_PAD:: TransformShapeWithClearanceToPolygon( std:: vector < CPolyPt>& aCornerBuffer,
int aClearanceValue,
int aCircleToSegmentsCount,
double aCorrectionFactor )
{
wxPoint corner_position;
int ii, angle;
int dx = (m_Size.x / 2) + aClearanceValue;
int dy = (m_Size.y / 2) + aClearanceValue;
int delta = 3600 / aCircleToSegmentsCount; // rot angle in 0.1 degree
wxPoint PadShapePos = ReturnShapePos(); /* Note: for pad having a shape offset,
* the pad position is NOT the shape position */
wxSize psize = m_Size; /* pad size unsed in RECT and TRAPEZOIDAL pads
* trapezoidal pads are considered as rect pad shape having they boudary box size
*/
switch( m_PadShape )
{
case PAD_CIRCLE:
dx = (int) ( dx * aCorrectionFactor );
for( ii = 0; ii < aCircleToSegmentsCount; ii++ )
{
corner_position = wxPoint( dx, 0 );
RotatePoint( &corner_position, (1800 / aCircleToSegmentsCount) );
// Half increment offset to get more space between
angle = ii * delta;
RotatePoint( &corner_position, angle );
corner_position += PadShapePos;
CPolyPt polypoint( corner_position.x, corner_position.y );
aCornerBuffer.push_back( polypoint );
}
aCornerBuffer.back().end_contour = true;
break;
case PAD_OVAL:
angle = m_Orient;
if( dy > dx ) // Oval pad X/Y ratio for choosing translation axles
{
dy = (int) ( dy * aCorrectionFactor );
int angle_pg; // Polygon angle
wxPoint shape_offset = wxPoint( 0, dy - dx );
RotatePoint( &shape_offset, angle ); // Rotating shape offset vector with component
for( ii = 0; ii < aCircleToSegmentsCount / 2 + 1; ii++ ) // Half circle end cap...
{
corner_position = wxPoint( dx, 0 );
// Coordinate translation +dx
RotatePoint( &corner_position, (1800 / aCircleToSegmentsCount) );
RotatePoint( &corner_position, angle );
angle_pg = ii * delta;
RotatePoint( &corner_position, angle_pg );
corner_position += PadShapePos - shape_offset;
CPolyPt polypoint( corner_position.x, corner_position.y );
aCornerBuffer.push_back( polypoint );
}
for( ii = 0; ii < aCircleToSegmentsCount / 2 + 1; ii++ ) // Second half circle end cap...
{
corner_position = wxPoint( -dx, 0 );
// Coordinate translation -dx
RotatePoint( &corner_position, (1800 / aCircleToSegmentsCount) );
RotatePoint( &corner_position, angle );
angle_pg = ii * delta;
RotatePoint( &corner_position, angle_pg );
corner_position += PadShapePos + shape_offset;
CPolyPt polypoint( corner_position.x, corner_position.y );
aCornerBuffer.push_back( polypoint );
}
aCornerBuffer.back().end_contour = true;
break;
}
else //if( dy <= dx )
{
dx = (int) ( dx * aCorrectionFactor );
int angle_pg; // Polygon angle
wxPoint shape_offset = wxPoint( (dy - dx), 0 );
RotatePoint( &shape_offset, angle );
for( ii = 0; ii < aCircleToSegmentsCount / 2 + 1; ii++ )
{
corner_position = wxPoint( 0, dy );
RotatePoint( &corner_position, (1800 / aCircleToSegmentsCount) );
RotatePoint( &corner_position, angle );
angle_pg = ii * delta;
RotatePoint( &corner_position, angle_pg );
corner_position += PadShapePos - shape_offset;
CPolyPt polypoint( corner_position.x, corner_position.y );
aCornerBuffer.push_back( polypoint );
}
for( ii = 0; ii < aCircleToSegmentsCount / 2 + 1; ii++ )
{
corner_position = wxPoint( 0, -dy );
RotatePoint( &corner_position, (1800 / aCircleToSegmentsCount) );
RotatePoint( &corner_position, angle );
angle_pg = ii * delta;
RotatePoint( &corner_position, angle_pg );
corner_position += PadShapePos + shape_offset;
CPolyPt polypoint( corner_position.x, corner_position.y );
aCornerBuffer.push_back( polypoint );
}
aCornerBuffer.back().end_contour = true;
break;
}
default:
case PAD_TRAPEZOID:
psize.x += ABS( m_DeltaSize.y );
psize.y += ABS( m_DeltaSize.x );
// fall through
case PAD_RECT: // Easy implementation for rectangular cutouts with rounded corners // Easy implementation for rectangular cutouts with rounded corners
angle = m_Orient;
int rounding_radius = (int) ( aClearanceValue * aCorrectionFactor ); // Corner rounding radius
int angle_pg; // Polygon increment angle
for( int i = 0; i < aCircleToSegmentsCount / 4 + 1; i++ )
{
corner_position = wxPoint( 0, -rounding_radius );
RotatePoint( &corner_position, (1800 / aCircleToSegmentsCount) );
// Start at half increment offset
angle_pg = i * delta;
RotatePoint( &corner_position, angle_pg );
// Rounding vector rotation
corner_position -= psize / 2; // Rounding vector + Pad corner offset
RotatePoint( &corner_position, angle );
// Rotate according to module orientation
corner_position += PadShapePos; // Shift origin to position
CPolyPt polypoint( corner_position.x, corner_position.y );
aCornerBuffer.push_back( polypoint );
}
for( int i = 0; i < aCircleToSegmentsCount / 4 + 1; i++ )
{
corner_position = wxPoint( -rounding_radius, 0 );
RotatePoint( &corner_position, (1800 / aCircleToSegmentsCount) );
angle_pg = i * delta;
RotatePoint( &corner_position, angle_pg );
corner_position -= wxPoint( psize.x / 2, -psize.y / 2 );
RotatePoint( &corner_position, angle );
corner_position += PadShapePos;
CPolyPt polypoint( corner_position.x, corner_position.y );
aCornerBuffer.push_back( polypoint );
}
for( int i = 0;
i < aCircleToSegmentsCount / 4 + 1;
i++ )
{
corner_position = wxPoint( 0, rounding_radius );
RotatePoint( &corner_position, (1800 / aCircleToSegmentsCount) );
angle_pg = i * delta;
RotatePoint( &corner_position, angle_pg );
corner_position += psize / 2;
RotatePoint( &corner_position, angle );
corner_position += PadShapePos;
CPolyPt polypoint( corner_position.x, corner_position.y );
aCornerBuffer.push_back( polypoint );
}
for( int i = 0; i < aCircleToSegmentsCount / 4 + 1; i++ )
{
corner_position = wxPoint( rounding_radius, 0 );
RotatePoint( &corner_position, (1800 / aCircleToSegmentsCount) );
angle_pg = i * delta;
RotatePoint( &corner_position, angle_pg );
corner_position -= wxPoint( -psize.x / 2, psize.y / 2 );
RotatePoint( &corner_position, angle );
corner_position += PadShapePos;
CPolyPt polypoint( corner_position.x, corner_position.y );
aCornerBuffer.push_back( polypoint );
}
aCornerBuffer.back().end_contour = true;
break;
}
}
/**
* Function CreateThermalReliefPadPolygon
* Add holes around a pad to create a thermal relief
* copper thickness is min (dx/2, aCopperWitdh) or min (dy/2, aCopperWitdh)
* @param aCornerBuffer = a buffer to store the polygon
* @param aPad = the current pad used to create the thermal shape
* @param aThermalGap = gap in thermal shape
* @param aCopperThickness = stubs thickness in thermal shape
* @param aMinThicknessValue = min copper thickness allowed
* @param aCircleToSegmentsCount = the number of segments to approximate a circle
* @param aCorrectionFactor = the correction to apply to circles radius to keep
* @param aThermalRot = for rond pads the rotation of thermal stubs (450 usually for 45 deg.)
*/
/* thermal reliefs are created as 4 polygons.
* each corner of a polygon if calculated for a pad at position 0, 0, orient 0,
* and then moved and rotated acroding to the pad position and orientation
*/
/* WARNING:
* When Kbool calculates the filled areas :
* i.e when substracting holes (thermal shapes) to the full zone area
* under certains circumstances kboll drop some holes.
* These circumstances are:
* some identical holes (same thermal shape and size) are *exactly* on the same vertical line
* And
* nothing else between holes
* And
* angles less than 90 deg between 2 consecutive lines in hole outline (sometime occurs without this condition)
* And
* a hole above the identical holes
*
* In fact, it is easy to find these conditions in pad arrays.
* So to avoid this, the workaround is do not use holes outlines that include
* angles less than 90 deg between 2 consecutive lines
* this is made in round and oblong thermal reliefs
*
* Note 1: polygons are drawm using outlines witk a thickness = aMinThicknessValue
* so shapes must keep in account this outline thickness
*
* Note 2:
* Trapezoidal pads are not considered here because they are very special case
* and are used in microwave applications and they *DO NOT* have a thermal relief that change the shape
* by creating stubs and destroy their properties.
*/
void CreateThermalReliefPadPolygon( std::vector<CPolyPt>& aCornerBuffer,
D_PAD& aPad,
int aThermalGap,
int aCopperThickness,
int aMinThicknessValue,
int aCircleToSegmentsCount,
double aCorrectionFactor,
int aThermalRot )
{
wxPoint corner, corner_end;
wxPoint PadShapePos = aPad.ReturnShapePos(); /* Note: for pad having a shape offset,
* the pad position is NOT the shape position */
wxSize copper_thickness;
int dx = aPad.m_Size.x / 2;
int dy = aPad.m_Size.y / 2;
int delta = 3600 / aCircleToSegmentsCount; // rot angle in 0.1 degree
/* Keep in account the polygon outline thickness
* aThermalGap must be increased by aMinThicknessValue/2 because drawing external outline
* with a thickness of aMinThicknessValue will reduce gap by aMinThicknessValue/2
*/
aThermalGap += aMinThicknessValue / 2;
/* Keep in account the polygon outline thickness
* copper_thickness must be decreased by aMinThicknessValue because drawing outlines
* with a thickness of aMinThicknessValue will increase real thickness by aMinThicknessValue
*/
aCopperThickness -= aMinThicknessValue;
if( aCopperThickness < 0 )
aCopperThickness = 0;
copper_thickness.x = min( dx, aCopperThickness );
copper_thickness.y = min( dy, aCopperThickness );
switch( aPad.m_PadShape )
{
case PAD_CIRCLE: // Add 4 similar holes
{
/* we create 4 copper holes and put them in position 1, 2, 3 and 4
* here is the area of the rectangular pad + its thermal gap
* the 4 copper holes remove the copper in order to create the thermal gap
* 4 ------ 1
* | |
* | |
* | |
* | |
* 3 ------ 2
* holes 2, 3, 4 are the same as hole 1, rotated 90, 180, 270 deg
*/
// Build the hole pattern, for the hole in the X >0, Y > 0 plane:
// The pattern roughtly is a 90 deg arc pie
std::vector <wxPoint> corners_buffer;
// Radius of outer arcs of the shape:
int outer_radius = dx + aThermalGap; // The radius of the outer arc is pad radius + aThermalGap
// Crosspoint of thermal spoke sides, the first point of polygon buffer
corners_buffer.push_back( wxPoint( copper_thickness.x / 2, copper_thickness.y / 2 ) );
// Add an intermediate point on spoke sides, to allow a > 90 deg angle between side and first seg of arc approx
corner.x = copper_thickness.x / 2;
int y = outer_radius - (aThermalGap / 4);
corner.y = (int) sqrt( ( ( (double) y * y ) - (double) corner.x * corner.x ) );
if( aThermalRot != 0 )
corners_buffer.push_back( corner );
// calculate the starting point of the outter arc
corner.x = copper_thickness.x / 2;
double dtmp =
sqrt( ( (double) outer_radius * outer_radius ) - ( (double) corner.x * corner.x ) );
corner.y = (int) dtmp;
RotatePoint( &corner, 90 );
// calculate the ending point of the outter arc
corner_end.x = corner.y;
corner_end.y = corner.x;
// calculate intermediate points (y coordinate from corner.y to corner_end.y
while( (corner.y > corner_end.y) && (corner.x < corner_end.x) )
{
corners_buffer.push_back( corner );
RotatePoint( &corner, delta );
}
corners_buffer.push_back( corner_end );
/* add an intermediate point, to avoid angles < 90 deg between last arc approx line and radius line
*/
corner.x = corners_buffer[1].y;
corner.y = corners_buffer[1].x;
corners_buffer.push_back( corner );
// Now, add the 4 holes ( each is the pattern, rotated by 0, 90, 180 and 270 deg
// WARNING: problems with kbool if angle = 0 (in fact when angle < 200):
// bad filled polygon on some cases, when pads are on a same vertical line
// this seems a bug in kbool polygon (exists in 2.0 kbool version)
// aThermalRot = 450 (45.0 degrees orientation) seems work fine.
// aThermalRot = 0 with thermal shapes without angle < 90 deg has problems in rare circumstances
// Note: with the 2 step build ( thermal shapes added after areas are built), 0 seems work
int angle_pad = aPad.m_Orient; // Pad orientation
int th_angle = aThermalRot;
for( unsigned ihole = 0; ihole < 4; ihole++ )
{
for( unsigned ii = 0; ii < corners_buffer.size(); ii++ )
{
corner = corners_buffer[ii];
RotatePoint( &corner, th_angle + angle_pad ); // Rotate by segment angle and pad orientation
corner += PadShapePos;
aCornerBuffer.push_back( CPolyPt( corner.x, corner.y ) );
}
aCornerBuffer.back().end_contour = true;
th_angle += 900; // Note: th_angle in in 0.1 deg.
}
}
break;
case PAD_OVAL:
{
// Oval pad support along the lines of round and rectangular pads
std::vector <wxPoint> corners_buffer; // Polygon buffer as vector
int dx = (aPad.m_Size.x / 2) + aThermalGap; // Cutout radius x
int dy = (aPad.m_Size.y / 2) + aThermalGap; // Cutout radius y
wxPoint shape_offset;
// We want to calculate an oval shape with dx > dy.
// if this is not the case, exchange dx and dy, and rotate the shape 90 deg.
int supp_angle = 0;
if( dx < dy )
{
EXCHG( dx, dy );
supp_angle = 900;
EXCHG( copper_thickness.x, copper_thickness.y );
}
int deltasize = dx - dy; // = distance between shape position and the 2 demi-circle ends centre
// here we have dx > dy
// Radius of outer arcs of the shape:
int outer_radius = dy; // The radius of the outer arc is radius end + aThermalGap
// Some coordinate fiddling, depending on the shape offset direction
shape_offset = wxPoint( deltasize, 0 );
// Crosspoint of thermal spoke sides, the first point of polygon buffer
corners_buffer.push_back( wxPoint( copper_thickness.x / 2, copper_thickness.y / 2 ) );
// Arc start point calculation, the intersecting point of cutout arc and thermal spoke edge
if( copper_thickness.x > deltasize ) // If copper thickness is more than shape offset, we need to calculate arc intercept point.
{
corner.x = copper_thickness.x / 2;
corner.y =
(int) sqrt( ( (double) outer_radius * outer_radius ) -
( (double) ( corner.x - delta ) * ( corner.x - deltasize ) ) );
corner.x -= deltasize;
/* creates an intermediate point, to have a > 90 deg angle
* between the side and the first segment of arc approximation
*/
wxPoint intpoint = corner;
intpoint.y -= aThermalGap / 4;
corners_buffer.push_back( intpoint + shape_offset );
RotatePoint( &corner, 90 );
}
else
{
corner.x = copper_thickness.x / 2;
corner.y = outer_radius;
corners_buffer.push_back( corner );
corner.x = ( deltasize - copper_thickness.x ) / 2;
}
// Add an intermediate point on spoke sides, to allow a > 90 deg angle between side and first seg of arc approx
wxPoint last_corner;
last_corner.y = copper_thickness.y / 2;
int px = outer_radius - (aThermalGap / 4);
last_corner.x =
(int) sqrt( ( ( (double) px * px ) - (double) last_corner.y * last_corner.y ) );
// Arc stop point calculation, the intersecting point of cutout arc and thermal spoke edge
corner_end.y = copper_thickness.y / 2;
corner_end.x =
(int) sqrt( ( (double) outer_radius *
outer_radius ) - ( (double) corner_end.y * corner_end.y ) );
RotatePoint( &corner_end, -90 );
// calculate intermediate arc points till limit is reached
while( (corner.y > corner_end.y) && (corner.x < corner_end.x) )
{
corners_buffer.push_back( corner + shape_offset );
RotatePoint( &corner, delta );
}
//corners_buffer.push_back(corner + shape_offset); // TODO: about one mil geometry error forms somewhere.
corners_buffer.push_back( corner_end + shape_offset );
corners_buffer.push_back( last_corner + shape_offset ); // Enabling the line above shows intersection point.
/* Create 2 holes, rotated by pad rotation.
*/
int angle = aPad.m_Orient + supp_angle;
for( int irect = 0; irect < 2; irect++ )
{
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, angle );
cpos += PadShapePos;
aCornerBuffer.push_back( CPolyPt( cpos.x, cpos.y ) );
}
aCornerBuffer.back().end_contour = true;
angle += 1800; // this is calculate hole 3
if( angle >= 3600 )
angle -= 3600;
}
// Create holes, that are the mirrored from the previous holes
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint swap = corners_buffer[ic];
swap.x = -swap.x;
corners_buffer[ic] = swap;
}
// Now add corner 4 and 2 (2 is the corner 4 rotated by 180 deg
angle = aPad.m_Orient + supp_angle;
for( int irect = 0; irect < 2; irect++ )
{
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, angle );
cpos += PadShapePos;
aCornerBuffer.push_back( CPolyPt( cpos.x, cpos.y ) );
}
aCornerBuffer.back().end_contour = true;
angle += 1800;
if( angle >= 3600 )
angle -= 3600;
}
}
break;
case PAD_RECT: // draw 4 Holes
{
/* we create 4 copper holes and put them in position 1, 2, 3 and 4
* here is the area of the rectangular pad + its thermal gap
* the 4 copper holes remove the copper in order to create the thermal gap
* 4 ------ 1
* | |
* | |
* | |
* | |
* 3 ------ 2
* hole 3 is the same as hole 1, rotated 180 deg
* hole 4 is the same as hole 2, rotated 180 deg and is the same as hole 1, mirrored
*/
// First, create a rectangular hole for position 1 :
// 2 ------- 3
// | |
// | |
// | |
// 1 -------4
// Modified rectangles with one corner rounded. TODO: merging with oval thermals and possibly round too.
std::vector <wxPoint> corners_buffer; // Polygon buffer as vector
int dx = (aPad.m_Size.x / 2) + aThermalGap; // Cutout radius x
int dy = (aPad.m_Size.y / 2) + aThermalGap; // Cutout radius y
// The first point of polygon buffer is left lower corner, second the crosspoint of thermal spoke sides,
// the third is upper right corner and the rest are rounding vertices going anticlockwise. Note the inveted Y-axis in CG.
corners_buffer.push_back( wxPoint( -dx, -(aThermalGap / 4 + copper_thickness.y / 2) ) ); // Adds small miters to zone
corners_buffer.push_back( wxPoint( -(dx - aThermalGap / 4), -copper_thickness.y / 2 ) ); // fill and spoke corner
corners_buffer.push_back( wxPoint( -copper_thickness.x / 2, -copper_thickness.y / 2 ) );
corners_buffer.push_back( wxPoint( -copper_thickness.x / 2, -(dy - aThermalGap / 4) ) );
corners_buffer.push_back( wxPoint( -(aThermalGap / 4 + copper_thickness.x / 2), -dy ) );
int angle = aPad.m_Orient;
int rounding_radius = (int) ( aThermalGap * aCorrectionFactor ); // Corner rounding radius
int angle_pg; // Polygon increment angle
for( int i = 0; i < aCircleToSegmentsCount / 4 + 1; i++ )
{
wxPoint corner_position = wxPoint( 0, -rounding_radius );
RotatePoint( &corner_position, 1800 / aCircleToSegmentsCount ); // Start at half increment offset
angle_pg = i * delta;
RotatePoint( &corner_position, angle_pg ); // Rounding vector rotation
corner_position -= aPad.m_Size / 2; // Rounding vector + Pad corner offset
corners_buffer.push_back( wxPoint( corner_position.x, corner_position.y ) );
}
for( int irect = 0; irect < 2; irect++ )
{
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, angle ); // Rotate according to module orientation
cpos += PadShapePos; // Shift origin to position
aCornerBuffer.push_back( CPolyPt( cpos.x, cpos.y ) );
}
aCornerBuffer.back().end_contour = true;
angle += 1800; // this is calculate hole 3
if( angle >= 3600 )
angle -= 3600;
}
// Create holes, that are the mirrored from the previous holes
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint swap = corners_buffer[ic];
swap.x = -swap.x;
corners_buffer[ic] = swap;
}
// Now add corner 4 and 2 (2 is the corner 4 rotated by 180 deg
for( int irect = 0; irect < 2; irect++ )
{
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, angle );
cpos += PadShapePos;
aCornerBuffer.push_back( CPolyPt( cpos.x, cpos.y ) );
}
aCornerBuffer.back().end_contour = true;
angle += 1800;
if( angle >= 3600 )
angle -= 3600;
}
break;
}
}
}