182 lines
4.3 KiB
C++
182 lines
4.3 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2017 CERN
|
|
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include <geometry/shape_arc.h>
|
|
#include <geometry/shape_line_chain.h>
|
|
|
|
bool SHAPE_ARC::Collide( const SEG& aSeg, int aClearance ) const
|
|
{
|
|
int minDist = aClearance + m_width / 2;
|
|
auto centerDist = aSeg.Distance( m_pc );
|
|
|
|
if( centerDist < minDist )
|
|
return true;
|
|
|
|
auto ab = (aSeg.B - aSeg.A );
|
|
auto ac = ( m_pc - aSeg.A );
|
|
|
|
auto lenAbSq = ab.SquaredEuclideanNorm();
|
|
|
|
auto lambda = (double) ac.Dot( ab ) / (double) lenAbSq;
|
|
|
|
|
|
if( lambda >= 0.0 && lambda <= 1.0 )
|
|
{
|
|
VECTOR2I p;
|
|
|
|
p.x = (double) aSeg.A.x * lambda + (double) aSeg.B.x * (1.0 - lambda);
|
|
p.y = (double) aSeg.A.y * lambda + (double) aSeg.B.y * (1.0 - lambda);
|
|
|
|
auto p0pdist = ( m_p0 - p ).EuclideanNorm();
|
|
|
|
if( p0pdist < minDist )
|
|
return true;
|
|
|
|
auto p1pdist = ( m_p1 - p ).EuclideanNorm();
|
|
|
|
if( p1pdist < minDist )
|
|
return true;
|
|
}
|
|
|
|
auto p0dist = aSeg.Distance( m_p0 );
|
|
|
|
if( p0dist > minDist )
|
|
return true;
|
|
|
|
auto p1dist = aSeg.Distance( m_p1 );
|
|
|
|
if( p1dist > minDist )
|
|
return false;
|
|
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool SHAPE_ARC::ConstructFromCorners( VECTOR2I aP0, VECTOR2I aP1, double aCenterAngle )
|
|
{
|
|
VECTOR2D mid = ( VECTOR2D( aP0 ) + VECTOR2D( aP1 ) ) * 0.5;
|
|
VECTOR2D chord = VECTOR2D( aP1 ) - VECTOR2D( aP0 );
|
|
double c = (aP1 - aP0).EuclideanNorm() / 2;
|
|
VECTOR2D d = chord.Rotate( M_PI / 2.0 ).Resize( c );
|
|
|
|
m_pc = mid + d * ( 1.0 / tan( aCenterAngle / 2.0 * M_PI / 180.0 ) );
|
|
m_p0 = aP0;
|
|
m_p1 = aP1;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SHAPE_ARC::ConstructFromCornerAndAngles( VECTOR2I aP0,
|
|
double aStartAngle,
|
|
double aCenterAngle,
|
|
double aRadius )
|
|
{
|
|
m_p0 = aP0;
|
|
auto d1 = VECTOR2D( 1.0, 0.0 ).Rotate( aStartAngle * M_PI / 180.0 ) * aRadius;
|
|
auto d2 =
|
|
VECTOR2D( 1.0, 0.0 ).Rotate( (aStartAngle + aCenterAngle) * M_PI / 180.0 ) * aRadius;
|
|
|
|
m_pc = m_p0 - (VECTOR2I) d1;
|
|
m_p1 = m_pc + (VECTOR2I) d2;
|
|
|
|
if( aCenterAngle < 0 )
|
|
std::swap( m_p0, m_p1 );
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool SHAPE_ARC::Collide( const VECTOR2I& aP, int aClearance ) const
|
|
{
|
|
assert( false );
|
|
return false;
|
|
}
|
|
|
|
|
|
double SHAPE_ARC::GetStartAngle() const
|
|
{
|
|
VECTOR2D d( m_p0 - m_pc );
|
|
|
|
return 180.0 / M_PI * atan2( d.y, d.x );
|
|
}
|
|
|
|
|
|
double SHAPE_ARC::GetEndAngle() const
|
|
{
|
|
VECTOR2D d( m_p1 - m_pc );
|
|
|
|
return 180.0 / M_PI * atan2( d.y, d.x );
|
|
}
|
|
|
|
|
|
double SHAPE_ARC::GetCentralAngle() const
|
|
{
|
|
auto ea = GetEndAngle();
|
|
auto sa = GetStartAngle();
|
|
|
|
if( ea < sa )
|
|
ea += 360.0;
|
|
|
|
while( sa < 0.0 )
|
|
{
|
|
sa += 360.0;
|
|
ea += 360.0;
|
|
}
|
|
|
|
return ea - sa;
|
|
}
|
|
|
|
const SHAPE_LINE_CHAIN SHAPE_ARC::ConvertToPolyline( double aAccuracy ) const
|
|
{
|
|
SHAPE_LINE_CHAIN rv;
|
|
double ca = GetCentralAngle();
|
|
double r = GetRadius();
|
|
double step;
|
|
auto c = GetCenter();
|
|
int n;
|
|
|
|
if( r == 0.0 )
|
|
{
|
|
ca = 0;
|
|
n = 0;
|
|
}
|
|
else
|
|
{
|
|
step = 180 / M_PI * acos( r * ( 1 - aAccuracy ) / r );
|
|
n = (int) ceil(ca / step);
|
|
}
|
|
|
|
for( int i = 0; i <= n ; i++ )
|
|
{
|
|
double a = GetStartAngle() + ca * (double) i / (double) n;
|
|
double x = c.x + r * cos( a * M_PI / 180.0 );
|
|
double y = c.y + r * sin( a * M_PI / 180.0 );
|
|
|
|
rv.Append( (int) x, (int) y );
|
|
}
|
|
|
|
return rv;
|
|
}
|