kicad/gerbview/gerber_draw_item.cpp

1042 lines
30 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 1992-2017 <Jean-Pierre Charras>
* Copyright (C) 1992-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <base_units.h>
#include <trigo.h>
#include <bitmaps.h>
#include <eda_text.h>
#include <gerbview_frame.h>
#include <convert_basic_shapes_to_polygon.h>
#include <gerber_draw_item.h>
#include <gerber_file_image.h>
#include <gerber_file_image_list.h>
#include <string_utils.h>
#include <geometry/shape_arc.h>
#include <math/util.h> // for KiROUND
#include <widgets/msgpanel.h>
#include <wx/msgdlg.h>
GERBER_DRAW_ITEM::GERBER_DRAW_ITEM( GERBER_FILE_IMAGE* aGerberImageFile ) :
EDA_ITEM( nullptr, GERBER_DRAW_ITEM_T )
{
m_GerberImageFile = aGerberImageFile;
m_ShapeType = GBR_SEGMENT;
m_Flashed = false;
m_DCode = 0;
m_UnitsMetric = false;
m_LayerNegative = false;
m_swapAxis = false;
m_mirrorA = false;
m_mirrorB = false;
m_drawScale.x = m_drawScale.y = 1.0;
m_lyrRotation = 0;
if( m_GerberImageFile )
SetLayerParameters();
}
GERBER_DRAW_ITEM::~GERBER_DRAW_ITEM()
{
}
void GERBER_DRAW_ITEM::SetNetAttributes( const GBR_NETLIST_METADATA& aNetAttributes )
{
m_netAttributes = aNetAttributes;
if( ( m_netAttributes.m_NetAttribType & GBR_NETLIST_METADATA::GBR_NETINFO_CMP )
|| ( m_netAttributes.m_NetAttribType & GBR_NETLIST_METADATA::GBR_NETINFO_PAD ) )
{
m_GerberImageFile->m_ComponentsList.insert( std::make_pair( m_netAttributes.m_Cmpref, 0 ) );
}
if( ( m_netAttributes.m_NetAttribType & GBR_NETLIST_METADATA::GBR_NETINFO_NET ) )
m_GerberImageFile->m_NetnamesList.insert( std::make_pair( m_netAttributes.m_Netname, 0 ) );
}
int GERBER_DRAW_ITEM::GetLayer() const
{
// Return the layer this item is on, or 0 if the m_GerberImageFile is null.
return m_GerberImageFile ? m_GerberImageFile->m_GraphicLayer : 0;
}
bool GERBER_DRAW_ITEM::GetTextD_CodePrms( int& aSize, VECTOR2I& aPos, EDA_ANGLE& aOrientation )
{
// calculate the best size and orientation of the D_Code text
if( m_DCode <= 0 )
return false; // No D_Code for this item
if( m_Flashed || m_ShapeType == GBR_ARC )
aPos = m_Start;
else // it is a line:
aPos = ( m_Start + m_End) / 2;
aPos = GetABPosition( aPos );
int size; // the best size for the text
if( GetDcodeDescr() )
size = GetDcodeDescr()->GetShapeDim( this );
else
size = std::min( m_Size.x, m_Size.y );
aOrientation = ANGLE_HORIZONTAL;
if( m_Flashed )
{
// A reasonable size for text is min_dim/3 because most of time this text has 3 chars.
aSize = size / 3;
}
else // this item is a line
{
VECTOR2I delta = m_Start - m_End;
EDA_ANGLE angle( delta );
aOrientation = angle.Normalize90();
// A reasonable size for text is size/2 because text needs margin below and above it.
// a margin = size/4 seems good, expecting the line len is large enough to show 3 chars,
// that is the case most of time.
aSize = size / 2;
}
return true;
}
VECTOR2I GERBER_DRAW_ITEM::GetABPosition( const VECTOR2I& aXYPosition ) const
{
/* Note: RS274Xrevd_e is obscure about the order of transforms:
* For instance: Rotation must be made after or before mirroring ?
* Note: if something is changed here, GetYXPosition must reflect changes
*/
VECTOR2I abPos = aXYPosition + m_GerberImageFile->m_ImageJustifyOffset;
// We have also a draw transform (rotation and offset)
// order is rotation and after offset
if( m_swapAxis )
std::swap( abPos.x, abPos.y );
abPos += m_layerOffset + m_GerberImageFile->m_ImageOffset;
abPos.x = KiROUND( abPos.x * m_drawScale.x );
abPos.y = KiROUND( abPos.y * m_drawScale.y );
EDA_ANGLE rotation( m_lyrRotation + m_GerberImageFile->m_ImageRotation, DEGREES_T );
if( !rotation.IsZero() )
RotatePoint( abPos, -rotation );
// Negate A axis if mirrored
if( m_mirrorA )
abPos.x = -abPos.x;
// abPos.y must be negated when no mirror, because draw axis is top to bottom
if( !m_mirrorB )
abPos.y = -abPos.y;
// Now generate the draw transform
if( !m_GerberImageFile->m_DisplayRotation.IsZero() )
RotatePoint( abPos, m_GerberImageFile->m_DisplayRotation );
abPos.x += KiROUND( m_GerberImageFile->m_DisplayOffset.x * m_drawScale.x );
abPos.y += KiROUND( m_GerberImageFile->m_DisplayOffset.y * m_drawScale.y );
return abPos;
}
VECTOR2I GERBER_DRAW_ITEM::GetXYPosition( const VECTOR2I& aABPosition ) const
{
// do the inverse transform made by GetABPosition
VECTOR2I xyPos = aABPosition;
// First, undo the draw transform
xyPos.x -= KiROUND( m_GerberImageFile->m_DisplayOffset.x * m_drawScale.x );
xyPos.y -= KiROUND( m_GerberImageFile->m_DisplayOffset.y * m_drawScale.y );
if( !m_GerberImageFile->m_DisplayRotation.IsZero() )
RotatePoint( xyPos, -m_GerberImageFile->m_DisplayRotation );
if( m_mirrorA )
xyPos.x = -xyPos.x;
if( !m_mirrorB )
xyPos.y = -xyPos.y;
EDA_ANGLE rotation( m_lyrRotation + m_GerberImageFile->m_ImageRotation, DEGREES_T );
if( !rotation.IsZero() )
RotatePoint( xyPos, rotation );
xyPos.x = KiROUND( xyPos.x / m_drawScale.x );
xyPos.y = KiROUND( xyPos.y / m_drawScale.y );
xyPos -= m_layerOffset + m_GerberImageFile->m_ImageOffset;
if( m_swapAxis )
std::swap( xyPos.x, xyPos.y );
return xyPos - m_GerberImageFile->m_ImageJustifyOffset;
}
void GERBER_DRAW_ITEM::SetLayerParameters()
{
m_UnitsMetric = m_GerberImageFile->m_GerbMetric;
m_swapAxis = m_GerberImageFile->m_SwapAxis; // false if A = X, B = Y;
// true if A =Y, B = Y
m_mirrorA = m_GerberImageFile->m_MirrorA; // true: mirror / axe A
m_mirrorB = m_GerberImageFile->m_MirrorB; // true: mirror / axe B
m_drawScale = m_GerberImageFile->m_Scale; // A and B scaling factor
m_layerOffset = m_GerberImageFile->m_Offset; // Offset from OF command
// Rotation from RO command:
m_lyrRotation = m_GerberImageFile->m_LocalRotation;
m_LayerNegative = m_GerberImageFile->GetLayerParams().m_LayerNegative;
}
wxString GERBER_DRAW_ITEM::ShowGBRShape() const
{
switch( m_ShapeType )
{
case GBR_SEGMENT: return _( "Line" );
case GBR_ARC: return _( "Arc" );
case GBR_CIRCLE: return _( "Circle" );
case GBR_SPOT_OVAL: return wxT( "spot_oval" );
case GBR_SPOT_CIRCLE: return wxT( "spot_circle" );
case GBR_SPOT_RECT: return wxT( "spot_rect" );
case GBR_SPOT_POLY: return wxT( "spot_poly" );
case GBR_POLYGON: return wxT( "polygon" );
case GBR_SPOT_MACRO:
{
wxString name = wxT( "apt_macro" );
D_CODE* dcode = GetDcodeDescr();
if( dcode && dcode->GetMacro() )
name << wxT(" ") << dcode->GetMacro()->m_AmName;
return name;
}
default: return wxT( "??" );
}
}
D_CODE* GERBER_DRAW_ITEM::GetDcodeDescr() const
{
if( ( m_DCode < FIRST_DCODE ) || ( m_DCode > LAST_DCODE ) )
return nullptr;
if( m_GerberImageFile == nullptr )
return nullptr;
return m_GerberImageFile->GetDCODE( m_DCode );
}
const BOX2I GERBER_DRAW_ITEM::GetBoundingBox() const
{
// return a rectangle which is (pos,dim) in nature. therefore the +1
BOX2I bbox( m_Start, VECTOR2I( 1, 1 ) );
D_CODE* code = GetDcodeDescr();
// TODO(JE) GERBER_DRAW_ITEM maybe should actually be a number of subclasses.
// Until/unless that is changed, we need to do different things depending on
// what is actually being represented by this GERBER_DRAW_ITEM.
switch( m_ShapeType )
{
case GBR_POLYGON:
{
BOX2I bb = m_ShapeAsPolygon.BBox();
bbox.Inflate( bb.GetWidth() / 2, bb.GetHeight() / 2 );
bbox.SetOrigin( bb.GetOrigin() );
break;
}
case GBR_CIRCLE:
{
double radius = m_Start.Distance( m_End );
bbox.Inflate( radius, radius );
break;
}
case GBR_ARC:
{
EDA_ANGLE angle( atan2( double( m_End.y - m_ArcCentre.y ),
double( m_End.x - m_ArcCentre.x ) )
- atan2( double( m_Start.y - m_ArcCentre.y ),
double( m_Start.x - m_ArcCentre.x ) ),
RADIANS_T );
if( m_End == m_Start ) // Arc with the end point = start point is expected to be a circle.
angle = ANGLE_360;
else
angle.Normalize();
SHAPE_ARC arc( m_ArcCentre, m_Start, angle );
bbox = arc.BBox( m_Size.x / 2 ); // m_Size.x is the line thickness
break;
}
case GBR_SPOT_CIRCLE:
{
if( code )
{
int radius = code->m_Size.x >> 1;
bbox.Inflate( radius, radius );
}
break;
}
case GBR_SPOT_RECT:
{
if( code )
bbox.Inflate( code->m_Size.x / 2, code->m_Size.y / 2 );
break;
}
case GBR_SPOT_OVAL:
{
if( code )
bbox.Inflate( code->m_Size.x /2, code->m_Size.y / 2 );
break;
}
case GBR_SPOT_MACRO:
case GBR_SPOT_POLY:
if( code )
{
if( code->m_Polygon.OutlineCount() == 0 )
code->ConvertShapeToPolygon( this );
bbox.Inflate( code->m_Polygon.BBox().GetWidth() / 2,
code->m_Polygon.BBox().GetHeight() / 2 );
}
break;
case GBR_SEGMENT:
{
if( code && code->m_ApertType == APT_RECT )
{
if( m_ShapeAsPolygon.OutlineCount() == 0 )
{
// We cannot initialize m_ShapeAsPolygon, because we are in a const function.
// So use a temporary polygon
SHAPE_POLY_SET poly_shape;
ConvertSegmentToPolygon( &poly_shape );
bbox = poly_shape.BBox();
}
else
{
bbox = m_ShapeAsPolygon.BBox();
}
}
else
{
int radius = ( m_Size.x + 1 ) / 2;
int ymax = std::max( m_Start.y, m_End.y ) + radius;
int xmax = std::max( m_Start.x, m_End.x ) + radius;
int ymin = std::min( m_Start.y, m_End.y ) - radius;
int xmin = std::min( m_Start.x, m_End.x ) - radius;
bbox = BOX2I( VECTOR2I( xmin, ymin ), VECTOR2I( xmax - xmin + 1, ymax - ymin + 1 ) );
}
break;
}
default:
wxASSERT_MSG( false, wxT( "GERBER_DRAW_ITEM shape is unknown!" ) );
break;
}
// calculate the corners coordinates in current Gerber axis orientations
// because the initial bbox is a horizontal rect, but the bbox in AB position
// is the bbox image with perhaps a rotation, we need to calculate the coords of the
// corners of the bbox rotated, and then calculate the final bounding box
VECTOR2I corners[4];
bbox.Normalize();
// Shape:
// 0...1
// . .
// . .
// 3...2
corners[0] = bbox.GetOrigin(); // top left
corners[2] = bbox.GetEnd(); // bottom right
corners[1] = VECTOR2I( corners[2].x, corners[0].y ); // top right
corners[3] = VECTOR2I( corners[0].x, corners[2].y ); // bottom left
VECTOR2I org = GetABPosition( bbox.GetOrigin() );;
VECTOR2I end = GetABPosition( bbox.GetEnd() );;
// Now calculate the bounding box of bbox, if the display image is rotated
// It will be perhaps a bit bigger than a better bounding box calculation, but it is fast
// and easy
// (if not rotated, this is a nop)
for( int ii = 0; ii < 4; ii++ )
{
corners[ii] = GetABPosition( corners[ii] );
org.x = std::min( org.x, corners[ii].x );
org.y = std::min( org.y, corners[ii].y );
end.x = std::max( end.x, corners[ii].x );
end.y = std::max( end.y, corners[ii].y );
}
// Set the corners position:
bbox.SetOrigin( org );
bbox.SetEnd( end );
bbox.Normalize();
return bbox;
}
void GERBER_DRAW_ITEM::MoveXY( const VECTOR2I& aMoveVector )
{
m_Start += aMoveVector;
m_End += aMoveVector;
m_ArcCentre += aMoveVector;
m_ShapeAsPolygon.Move( aMoveVector );
}
bool GERBER_DRAW_ITEM::HasNegativeItems()
{
bool isClear = m_LayerNegative ^ m_GerberImageFile->m_ImageNegative;
// if isClear is true, this item has negative shape
return isClear;
}
void GERBER_DRAW_ITEM::Print( wxDC* aDC, const VECTOR2I& aOffset, GBR_DISPLAY_OPTIONS* aOptions )
{
// used when a D_CODE is not found. default D_CODE to draw a flashed item
static D_CODE dummyD_CODE( 0 );
bool isFilled;
int radius;
int halfPenWidth;
static bool show_err;
D_CODE* d_codeDescr = GetDcodeDescr();
if( d_codeDescr == nullptr )
d_codeDescr = &dummyD_CODE;
COLOR4D color = m_GerberImageFile->GetPositiveDrawColor();
/* isDark is true if flash is positive and should use a drawing
* color other than the background color, else use the background color
* when drawing so that an erasure happens.
*/
bool isDark = !(m_LayerNegative ^ m_GerberImageFile->m_ImageNegative);
if( !isDark )
{
// draw in background color ("negative" color)
color = aOptions->m_NegativeDrawColor;
}
isFilled = aOptions->m_DisplayLinesFill;
switch( m_ShapeType )
{
case GBR_POLYGON:
isFilled = aOptions->m_DisplayPolygonsFill;
if( !isDark )
isFilled = true;
PrintGerberPoly( aDC, color, aOffset, isFilled );
break;
case GBR_CIRCLE:
radius = KiROUND( m_Start.Distance( m_End ) );
halfPenWidth = m_Size.x >> 1;
if( !isFilled )
{
// draw the border of the pen's path using two circles, each as narrow as possible
GRCircle( aDC, GetABPosition( m_Start ), radius - halfPenWidth, 0, color );
GRCircle( aDC, GetABPosition( m_Start ), radius + halfPenWidth, 0, color );
}
else // Filled mode
{
GRCircle( aDC, GetABPosition( m_Start ), radius, m_Size.x, color );
}
break;
case GBR_ARC:
// Currently, arcs plotted with a rectangular aperture are not supported.
// a round pen only is expected.
if( !isFilled )
{
GRArc( aDC, GetABPosition( m_Start ), GetABPosition( m_End ),
GetABPosition( m_ArcCentre ), 0, color );
}
else
{
GRArc( aDC, GetABPosition( m_Start ), GetABPosition( m_End ),
GetABPosition( m_ArcCentre ), m_Size.x, color );
}
break;
case GBR_SPOT_CIRCLE:
case GBR_SPOT_RECT:
case GBR_SPOT_OVAL:
case GBR_SPOT_POLY:
case GBR_SPOT_MACRO:
isFilled = aOptions->m_DisplayFlashedItemsFill;
d_codeDescr->DrawFlashedShape( this, aDC, color, m_Start, isFilled );
break;
case GBR_SEGMENT:
/* Plot a line from m_Start to m_End.
* Usually, a round pen is used, but some Gerber files use a rectangular pen
* In fact, any aperture can be used to plot a line.
* currently: only a square pen is handled (I believe using a polygon gives a strange plot).
*/
if( d_codeDescr->m_ApertType == APT_RECT )
{
if( m_ShapeAsPolygon.OutlineCount() == 0 )
ConvertSegmentToPolygon();
PrintGerberPoly( aDC, color, aOffset, isFilled );
}
else if( !isFilled )
{
GRCSegm( aDC, GetABPosition( m_Start ), GetABPosition( m_End ), m_Size.x, color );
}
else
{
GRFilledSegment( aDC, GetABPosition( m_Start ), GetABPosition( m_End ), m_Size.x,
color );
}
break;
default:
if( !show_err )
{
wxMessageBox( wxT( "Trace_Segment() type error" ) );
show_err = true;
}
break;
}
}
void GERBER_DRAW_ITEM::ConvertSegmentToPolygon( SHAPE_POLY_SET* aPolygon ) const
{
aPolygon->RemoveAllContours();
aPolygon->NewOutline();
VECTOR2I start = m_Start;
VECTOR2I end = m_End;
// make calculations more easy if ensure start.x < end.x
// (only 2 quadrants to consider)
if( start.x > end.x )
std::swap( start, end );
// calculate values relative to start point:
VECTOR2I delta = end - start;
// calculate corners for the first quadrant only (delta.x and delta.y > 0 )
// currently, delta.x already is > 0.
// make delta.y > 0
bool change = delta.y < 0;
if( change )
delta.y = -delta.y;
// Now create the full polygon.
// Due to previous changes, the shape is always something like
// 3 4
// 2 5
// 1 6
VECTOR2I corner;
corner.x -= m_Size.x/2;
corner.y -= m_Size.y/2;
VECTOR2I close = corner;
aPolygon->Append( VECTOR2I( corner ) ); // Lower left corner, start point (1)
corner.y += m_Size.y;
aPolygon->Append( VECTOR2I( corner ) ); // upper left corner, start point (2)
if( delta.x || delta.y )
{
corner += delta;
aPolygon->Append( VECTOR2I( corner ) ); // upper left corner, end point (3)
}
corner.x += m_Size.x;
aPolygon->Append( VECTOR2I( corner ) ); // upper right corner, end point (4)
corner.y -= m_Size.y;
aPolygon->Append( VECTOR2I( corner ) ); // lower right corner, end point (5)
if( delta.x || delta.y )
{
corner -= delta;
aPolygon->Append( VECTOR2I( corner ) ); // lower left corner, start point (6)
}
aPolygon->Append( VECTOR2I( close ) ); // close the shape
// Create final polygon:
if( change )
aPolygon->Mirror( false, true );
aPolygon->Move( VECTOR2I( start ) );
}
void GERBER_DRAW_ITEM::ConvertSegmentToPolygon()
{
ConvertSegmentToPolygon( &m_ShapeAsPolygon );
}
void GERBER_DRAW_ITEM::PrintGerberPoly( wxDC* aDC, const COLOR4D& aColor, const VECTOR2I& aOffset,
bool aFilledShape )
{
std::vector<VECTOR2I> points;
SHAPE_LINE_CHAIN& poly = m_ShapeAsPolygon.Outline( 0 );
int pointCount = poly.PointCount() - 1;
points.reserve( pointCount );
for( int ii = 0; ii < pointCount; ii++ )
{
VECTOR2I p( poly.CPoint( ii ).x, poly.CPoint( ii ).y );
points[ii] = p + aOffset;
points[ii] = GetABPosition( points[ii] );
}
GRClosedPoly( aDC, pointCount, &points[0], aFilledShape, aColor );
}
void GERBER_DRAW_ITEM::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
wxString msg;
wxString text;
msg = ShowGBRShape();
aList.emplace_back( _( "Type" ), msg );
// Display D_Code value with its attributes for items using a DCode:
if( m_ShapeType == GBR_POLYGON ) // Has no DCode, but can have an attribute
{
msg = _( "Attribute" );
if( m_AperFunction.IsEmpty() )
text = _( "No attribute" );
else
text = m_AperFunction;
}
else
{
msg.Printf( _( "D Code %d" ), m_DCode );
D_CODE* apertDescr = GetDcodeDescr();
if( !apertDescr || apertDescr->m_AperFunction.IsEmpty() )
text = _( "No attribute" );
else
text = apertDescr->m_AperFunction;
}
aList.emplace_back( msg, text );
// Display graphic layer name
msg = GERBER_FILE_IMAGE_LIST::GetImagesList().GetDisplayName( GetLayer(), true );
aList.emplace_back( _( "Graphic Layer" ), msg );
// Display item position
auto xStart = EDA_UNIT_UTILS::UI::ToUserUnit( gerbIUScale, aFrame->GetUserUnits(), m_Start.x );
auto yStart = EDA_UNIT_UTILS::UI::ToUserUnit( gerbIUScale, aFrame->GetUserUnits(), m_Start.y );
auto xEnd = EDA_UNIT_UTILS::UI::ToUserUnit( gerbIUScale, aFrame->GetUserUnits(), m_End.x );
auto yEnd = EDA_UNIT_UTILS::UI::ToUserUnit( gerbIUScale, aFrame->GetUserUnits(), m_End.y );
if( m_Flashed )
{
msg.Printf( wxT( "(%.4f, %.4f)" ), xStart, yStart );
aList.emplace_back( _( "Position" ), msg );
}
else
{
msg.Printf( wxT( "(%.4f, %.4f)" ), xStart, yStart );
aList.emplace_back( _( "Start" ), msg );
msg.Printf( wxT( "(%.4f, %.4f)" ), xEnd, yEnd );
aList.emplace_back( _( "End" ), msg );
}
// Display item rotation
// The full rotation is Image rotation + m_lyrRotation
// but m_lyrRotation is specific to this object
// so we display only this parameter
msg.Printf( wxT( "%f" ), m_lyrRotation );
aList.emplace_back( _( "Rotation" ), msg );
// Display item polarity (item specific)
msg = m_LayerNegative ? _("Clear") : _("Dark");
aList.emplace_back( _( "Polarity" ), msg );
// Display mirroring (item specific)
msg.Printf( wxT( "A:%s B:%s" ), m_mirrorA ? _( "Yes" ) : _( "No" ),
m_mirrorB ? _( "Yes" ) : _( "No" ) );
aList.emplace_back( _( "Mirror" ), msg );
// Display AB axis swap (item specific)
msg = m_swapAxis ? wxT( "A=Y B=X" ) : wxT( "A=X B=Y" );
aList.emplace_back( _( "AB axis" ), msg );
// Display net info, if exists
if( m_netAttributes.m_NetAttribType == GBR_NETLIST_METADATA::GBR_NETINFO_UNSPECIFIED )
return;
// Build full net info:
wxString net_msg;
wxString cmp_pad_msg;
if( ( m_netAttributes.m_NetAttribType & GBR_NETLIST_METADATA::GBR_NETINFO_NET ) )
{
net_msg = _( "Net:" );
net_msg << wxS( " " );
if( m_netAttributes.m_Netname.IsEmpty() )
net_msg << _( "<no net>" );
else
net_msg << UnescapeString( m_netAttributes.m_Netname );
}
if( ( m_netAttributes.m_NetAttribType & GBR_NETLIST_METADATA::GBR_NETINFO_PAD ) )
{
if( m_netAttributes.m_PadPinFunction.IsEmpty() )
{
cmp_pad_msg.Printf( _( "Cmp: %s Pad: %s" ),
m_netAttributes.m_Cmpref,
m_netAttributes.m_Padname.GetValue() );
}
else
{
cmp_pad_msg.Printf( _( "Cmp: %s Pad: %s Fct %s" ),
m_netAttributes.m_Cmpref,
m_netAttributes.m_Padname.GetValue(),
m_netAttributes.m_PadPinFunction.GetValue() );
}
}
else if( ( m_netAttributes.m_NetAttribType & GBR_NETLIST_METADATA::GBR_NETINFO_CMP ) )
{
cmp_pad_msg = _( "Cmp:" );
cmp_pad_msg << wxS( " " ) << m_netAttributes.m_Cmpref;
}
aList.emplace_back( net_msg, cmp_pad_msg );
}
BITMAPS GERBER_DRAW_ITEM::GetMenuImage() const
{
if( m_Flashed )
return BITMAPS::pad;
switch( m_ShapeType )
{
case GBR_SEGMENT:
case GBR_ARC:
case GBR_CIRCLE:
return BITMAPS::add_line;
case GBR_SPOT_OVAL:
case GBR_SPOT_CIRCLE:
case GBR_SPOT_RECT:
case GBR_SPOT_POLY:
case GBR_SPOT_MACRO:
// should be handles by m_Flashed == true
return BITMAPS::pad;
case GBR_POLYGON:
return BITMAPS::add_graphical_polygon;
}
return BITMAPS::info;
}
bool GERBER_DRAW_ITEM::HitTest( const VECTOR2I& aRefPos, int aAccuracy ) const
{
// In case the item has a very tiny width defined, allow it to be selected
const int MIN_HIT_TEST_RADIUS = gerbIUScale.mmToIU( 0.01 );
// calculate aRefPos in XY Gerber axis:
VECTOR2I ref_pos = GetXYPosition( aRefPos );
SHAPE_POLY_SET poly;
switch( m_ShapeType )
{
case GBR_POLYGON:
poly = m_ShapeAsPolygon;
return poly.Contains( VECTOR2I( ref_pos ), 0, aAccuracy );
case GBR_SPOT_POLY:
poly = GetDcodeDescr()->m_Polygon;
poly.Move( VECTOR2I( m_Start ) );
return poly.Contains( VECTOR2I( ref_pos ), 0, aAccuracy );
case GBR_SPOT_RECT:
return GetBoundingBox().Contains( aRefPos );
case GBR_SPOT_OVAL:
{
BOX2I bbox = GetBoundingBox();
if( ! bbox.Contains( aRefPos ) )
return false;
// This is similar to a segment with thickness = min( m_Size.x, m_Size.y )
int radius = std::min( m_Size.x, m_Size.y )/2;
VECTOR2I start, end;
if( m_Size.x > m_Size.y ) // Horizontal oval
{
int len = m_Size.y - m_Size.x;
start.x = -len/2;
end.x = len/2;
}
else // Vertical oval
{
int len = m_Size.x - m_Size.y;
start.y = -len/2;
end.y = len/2;
}
start += bbox.Centre();
end += bbox.Centre();
if( radius < MIN_HIT_TEST_RADIUS )
radius = MIN_HIT_TEST_RADIUS;
return TestSegmentHit( aRefPos, start, end, radius );
}
case GBR_ARC:
{
double radius = m_Start.Distance( m_ArcCentre );
VECTOR2D test_radius = VECTOR2D( ref_pos ) - VECTOR2D( m_ArcCentre );
int size = ( ( m_Size.x < MIN_HIT_TEST_RADIUS ) ? MIN_HIT_TEST_RADIUS : m_Size.x );
// Are we close enough to the radius?
bool radius_hit = ( std::fabs( test_radius.EuclideanNorm() - radius) < size );
if( radius_hit )
{
// Now check that we are within the arc angle
VECTOR2D start = VECTOR2D( m_Start ) - VECTOR2D( m_ArcCentre );
VECTOR2D end = VECTOR2D( m_End ) - VECTOR2D( m_ArcCentre );
EDA_ANGLE start_angle( start );
EDA_ANGLE end_angle( end );
start_angle.Normalize();
end_angle.Normalize();
if( m_Start == m_End )
{
start_angle = ANGLE_0;
end_angle = ANGLE_360;
}
else if( end_angle < start_angle )
{
end_angle += ANGLE_360;
}
EDA_ANGLE test_angle( test_radius );
test_angle.Normalize();
return ( test_angle > start_angle && test_angle < end_angle );
}
return false;
}
case GBR_SPOT_MACRO:
return m_AbsolutePolygon.Contains( VECTOR2I( aRefPos ), -1, aAccuracy );
case GBR_SEGMENT:
case GBR_CIRCLE:
case GBR_SPOT_CIRCLE:
break; // handled below.
}
// TODO: a better analyze of the shape (perhaps create a D_CODE::HitTest for flashed items)
int radius = std::min( m_Size.x, m_Size.y ) >> 1;
if( radius < MIN_HIT_TEST_RADIUS )
radius = MIN_HIT_TEST_RADIUS;
if( m_Flashed )
return m_Start.Distance( ref_pos ) <= radius;
else
return TestSegmentHit( ref_pos, m_Start, m_End, radius );
}
bool GERBER_DRAW_ITEM::HitTest( const BOX2I& aRefArea, bool aContained, int aAccuracy ) const
{
VECTOR2I pos = GetABPosition( m_Start );
if( aRefArea.Contains( pos ) )
return true;
pos = GetABPosition( m_End );
if( aRefArea.Contains( pos ) )
return true;
return false;
}
#if defined(DEBUG)
void GERBER_DRAW_ITEM::Show( int nestLevel, std::ostream& os ) const
{
NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str() <<
" shape=\"" << m_ShapeType << '"' <<
" addr=\"" << std::hex << this << std::dec << '"' <<
" layer=\"" << GetLayer() << '"' <<
" size=\"" << m_Size << '"' <<
" flags=\"" << m_flags << '"' <<
"<start" << m_Start << "/>" <<
"<end" << m_End << "/>";
os << "</" << GetClass().Lower().mb_str() << ">\n";
}
#endif
void GERBER_DRAW_ITEM::ViewGetLayers( int aLayers[], int& aCount ) const
{
aCount = 2;
aLayers[0] = GERBER_DRAW_LAYER( GetLayer() );
aLayers[1] = GERBER_DCODE_LAYER( aLayers[0] );
}
const BOX2I GERBER_DRAW_ITEM::ViewBBox() const
{
return GetBoundingBox();
}
double GERBER_DRAW_ITEM::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const
{
// DCodes will be shown only if zoom is appropriate:
// Returns the level of detail of the item.
// A level of detail (LOD) is the minimal VIEW scale that
// is sufficient for an item to be shown on a given layer.
if( IsDCodeLayer( aLayer ) )
{
int size = 0;
switch( m_ShapeType )
{
case GBR_SPOT_MACRO:
size = GetDcodeDescr()->m_Polygon.BBox().GetWidth();
break;
case GBR_ARC:
size = m_Start.Distance( m_ArcCentre );
break;
default:
size = m_Size.x;
}
// the level of details is chosen experimentally, to show
// only a readable text:
double level = (double) gerbIUScale.mmToIU( 3 );
return level / ( size + 1 );
}
// Other layers are shown without any conditions
return 0.0;
}
INSPECT_RESULT GERBER_DRAW_ITEM::Visit( INSPECTOR inspector, void* testData,
const std::vector<KICAD_T>& aScanTypes )
{
for( KICAD_T scanType : aScanTypes )
{
if( scanType == Type() )
{
if( INSPECT_RESULT::QUIT == inspector( this, testData ) )
return INSPECT_RESULT::QUIT;
}
}
return INSPECT_RESULT::CONTINUE;
}
wxString GERBER_DRAW_ITEM::GetItemDescription( UNITS_PROVIDER* aUnitsProvider ) const
{
wxString layerName = GERBER_FILE_IMAGE_LIST::GetImagesList().GetDisplayName( GetLayer(), true );
return wxString::Format( _( "%s (D%d) on layer %d: %s" ),
ShowGBRShape(),
m_DCode,
GetLayer() + 1,
layerName );
}