kicad/pcbnew/pad.h

875 lines
30 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 1992-2024 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef PAD_H
#define PAD_H
#include <mutex>
#include <array>
#include <zones.h>
#include <board_connected_item.h>
#include <geometry/shape_poly_set.h>
#include <geometry/shape_compound.h>
#include <padstack.h>
#include <geometry/eda_angle.h>
#include <geometry/geometry_utils.h>
#include <core/arraydim.h>
class PCB_SHAPE;
class SHAPE;
class SHAPE_SEGMENT;
class LINE_READER;
class EDA_3D_CANVAS;
class FOOTPRINT;
namespace KIGFX
{
class VIEW;
}
class PAD : public BOARD_CONNECTED_ITEM
{
public:
PAD( FOOTPRINT* parent );
// Copy constructor & operator= are needed because the list of basic shapes
// must be duplicated in copy.
PAD( const PAD& aPad );
PAD& operator=( const PAD &aOther );
void Serialize( google::protobuf::Any &aContainer ) const override;
bool Deserialize( const google::protobuf::Any &aContainer ) override;
/*
* Default layers used for pads, according to the pad type.
*
* This is default values only, they can be changed for a given pad.
*/
static LSET PTHMask(); ///< layer set for a through hole pad
static LSET SMDMask(); ///< layer set for a SMD pad on Front layer
static LSET ConnSMDMask(); ///< layer set for a SMD pad on Front layer
///< used for edge board connectors
static LSET UnplatedHoleMask(); ///< layer set for a mechanical unplated through hole pad
static LSET ApertureMask(); ///< layer set for an aperture pad
static inline bool ClassOf( const EDA_ITEM* aItem )
{
return aItem && PCB_PAD_T == aItem->Type();
}
bool IsType( const std::vector<KICAD_T>& aScanTypes ) const override
{
if( BOARD_CONNECTED_ITEM::IsType( aScanTypes ) )
return true;
for( KICAD_T scanType : aScanTypes )
{
if( HasHole() )
{
if( scanType == PCB_LOCATE_HOLE_T )
return true;
else if( scanType == PCB_LOCATE_PTH_T && m_attribute != PAD_ATTRIB::NPTH )
return true;
else if( scanType == PCB_LOCATE_NPTH_T && m_attribute == PAD_ATTRIB::NPTH )
return true;
}
}
return false;
}
bool HasHole() const override
{
return GetDrillSizeX() > 0 && GetDrillSizeY() > 0;
}
bool HasDrilledHole() const override
{
return HasHole() && GetDrillSizeX() == GetDrillSizeY();
}
bool IsLocked() const override;
/**
* Import the pad settings from \a aMasterPad.
*
* The result is "this" has the same settings (sizes, shapes ... ) as \a aMasterPad.
*
* @param aMasterPad the template pad.
*/
void ImportSettingsFrom( const PAD& aMasterPad );
/**
* @return true if the pad has a footprint parent flipped on the back/bottom layer.
*/
bool IsFlipped() const;
/**
* Set the pad number (note that it can be alphanumeric, such as the array reference "AA12").
*/
void SetNumber( const wxString& aNumber ) { m_number = aNumber; }
const wxString& GetNumber() const { return m_number; }
/**
* Indicates whether or not the pad can have a number. (NPTH and SMD aperture pads can not.)
*/
bool CanHaveNumber() const;
/**
* Set the pad function (pin name in schematic)
*/
void SetPinFunction( const wxString& aName ) { m_pinFunction = aName; }
const wxString& GetPinFunction() const { return m_pinFunction; }
/**
* Set the pad electrical type
*/
void SetPinType( const wxString& aType ) { m_pinType = aType; }
const wxString& GetPinType() const { return m_pinType; }
/**
* Before we had custom pad shapes it was common to have multiple overlapping pads to
* represent a more complex shape.
*/
bool SameLogicalPadAs( const PAD* aOther ) const
{
// hide tricks behind sensible API
return GetParentFootprint() == aOther->GetParentFootprint()
&& !m_number.IsEmpty() && m_number == aOther->m_number;
}
/**
* @return true if this and \param aOther represent a net-tie.
*/
bool SharesNetTieGroup( const PAD* aOther ) const;
/**
* @return true if the pad is associated with an "unconnected" pin (or a no-connect symbol)
* and has no net.
*/
bool IsNoConnectPad() const;
/**
* @return true if the pad is associated with a "free" pin (not-internally-connected) and has
* not yet been assigned another net (ie: by being routed to).
*/
bool IsFreePad() const;
/**
* Set the new shape of this pad.
*/
void SetShape( PAD_SHAPE aShape )
{
m_padStack.SetShape( aShape );
SetDirty();
}
/**
* @return the shape of this pad.
*/
PAD_SHAPE GetShape() const { return m_padStack.Shape(); }
void SetPosition( const VECTOR2I& aPos ) override
{
m_pos = aPos;
SetDirty();
}
VECTOR2I GetPosition() const override { return m_pos; }
/**
* @return the shape of the anchor pad shape, for custom shaped pads.
*/
PAD_SHAPE GetAnchorPadShape() const
{
return m_padStack.AnchorShape();
}
/**
* @return the option for the custom pad shape to use as clearance area in copper zones.
*/
PADSTACK::CUSTOM_SHAPE_ZONE_MODE GetCustomShapeInZoneOpt() const
{
return m_padStack.CustomShapeInZoneMode();
}
/**
* Set the option for the custom pad shape to use as clearance area in copper zones.
*
* @param aOption is the clearance area shape CUST_PAD_SHAPE_IN_ZONE option
*/
void SetCustomShapeInZoneOpt( PADSTACK::CUSTOM_SHAPE_ZONE_MODE aOption )
{
m_padStack.SetCustomShapeInZoneMode( aOption );
}
/**
* Set the shape of the anchor pad for custom shaped pads.
*
* @param aShape is the shape of the anchor pad shape( currently, only #PAD_SHAPE::RECTANGLE or
* #PAD_SHAPE::CIRCLE.
*/
void SetAnchorPadShape( PAD_SHAPE aShape )
{
m_padStack.SetAnchorShape( aShape == PAD_SHAPE::RECTANGLE
? PAD_SHAPE::RECTANGLE
: PAD_SHAPE::CIRCLE );
SetDirty();
}
/**
* @return true if the pad is on any copper layer, false otherwise.
*/
bool IsOnCopperLayer() const override;
void SetY( int y ) { m_pos.y = y; SetDirty(); }
void SetX( int x ) { m_pos.x = x; SetDirty(); }
void SetSize( const VECTOR2I& aSize )
{
m_padStack.Size() = aSize;
SetDirty();
}
const VECTOR2I& GetSize() const { return m_padStack.Size(); }
void SetSizeX( const int aX ) { if( aX > 0 ) { m_padStack.Size().x = aX; SetDirty(); } }
int GetSizeX() const { return m_padStack.Size().x; }
void SetSizeY( const int aY ) { if( aY > 0 ) { m_padStack.Size().y = aY; SetDirty(); } }
int GetSizeY() const { return m_padStack.Size().y; }
void SetDelta( const VECTOR2I& aSize ) { m_padStack.TrapezoidDeltaSize() = aSize; SetDirty(); }
const VECTOR2I& GetDelta() const { return m_padStack.TrapezoidDeltaSize(); }
void SetDrillSize( const VECTOR2I& aSize ) { m_padStack.Drill().size = aSize; SetDirty(); }
const VECTOR2I& GetDrillSize() const { return m_padStack.Drill().size; }
void SetDrillSizeX( const int aX ) { m_padStack.Drill().size.x = aX; SetDirty(); }
int GetDrillSizeX() const { return m_padStack.Drill().size.x; }
void SetDrillSizeY( const int aY ) { m_padStack.Drill().size.y = aY; SetDirty(); }
int GetDrillSizeY() const { return m_padStack.Drill().size.y; }
void SetOffset( const VECTOR2I& aOffset ) { m_padStack.Offset() = aOffset; SetDirty(); }
const VECTOR2I& GetOffset() const { return m_padStack.Offset(); }
VECTOR2I GetCenter() const override { return GetPosition(); }
const PADSTACK& Padstack() const { return m_padStack; }
PADSTACK& Padstack() { return m_padStack; }
void SetPadstack( const PADSTACK& aPadstack ) { m_padStack = aPadstack; }
/**
* Has meaning only for custom shape pads.
* add a free shape to the shape list.
* the shape can be
* - a polygon (outline can have a thickness)
* - a thick segment
* - a filled circle (thickness == 0) or ring
* - a filled rect (thickness == 0) or rectangular outline
* - a arc
* - a bezier curve
*/
void AddPrimitivePoly( const SHAPE_POLY_SET& aPoly, int aThickness, bool aFilled );
void AddPrimitivePoly( const std::vector<VECTOR2I>& aPoly, int aThickness, bool aFilled );
/**
* Merge all basic shapes to a #SHAPE_POLY_SET.
*
* @note The results are relative to the pad position, orientation 0.
*
* @param aMergedPolygon will store the final polygon
* @param aErrorLoc is used when a circle (or arc) is approximated by segments
* = ERROR_INSIDE to build a polygon inside the arc/circle (usual shape to raw/plot)
* = ERROR_OUIDE to build a polygon outside the arc/circle
* (for instance when building a clearance area)
*/
void MergePrimitivesAsPolygon( SHAPE_POLY_SET* aMergedPolygon,
ERROR_LOC aErrorLoc = ERROR_INSIDE ) const;
/**
* Clear the basic shapes list.
*/
void DeletePrimitivesList();
/**
* Accessor to the basic shape list for custom-shaped pads.
*/
const std::vector<std::shared_ptr<PCB_SHAPE>>& GetPrimitives() const
{
return m_editPrimitives;
}
void Flip( const VECTOR2I& VECTOR2I, bool aFlipLeftRight ) override;
/**
* Flip (mirror) the primitives left to right or top to bottom, around the anchor position
* in custom pads.
*/
void FlipPrimitives( bool aFlipLeftRight );
/**
* Clear the current custom shape primitives list and import a new list. Copies the input,
* which is not altered.
*/
void ReplacePrimitives( const std::vector<std::shared_ptr<PCB_SHAPE>>& aPrimitivesList );
/**
* Import a custom shape primitive list (composed of basic shapes) and add items to the
* current list. Copies the input, which is not altered.
*/
void AppendPrimitives( const std::vector<std::shared_ptr<PCB_SHAPE>>& aPrimitivesList );
/**
* Add item to the custom shape primitives list
*/
void AddPrimitive( PCB_SHAPE* aPrimitive );
/**
* Set the rotation angle of the pad.
*
* If \a aAngle is outside of 0 - 360, then it will be normalized.
*/
void SetOrientation( const EDA_ANGLE& aAngle );
void SetFPRelativeOrientation( const EDA_ANGLE& aAngle );
/**
* Return the rotation angle of the pad.
*/
EDA_ANGLE GetOrientation() const { return m_orient; }
EDA_ANGLE GetFPRelativeOrientation() const;
// For property system
void SetOrientationDegrees( double aOrientation )
{
SetOrientation( EDA_ANGLE( aOrientation, DEGREES_T ) );
}
double GetOrientationDegrees() const
{
return m_orient.AsDegrees();
}
void SetDrillShape( PAD_DRILL_SHAPE aShape )
{
m_padStack.Drill().shape = aShape;
m_shapesDirty = true;
}
PAD_DRILL_SHAPE GetDrillShape() const { return m_padStack.Drill().shape; }
bool IsDirty() const
{
return m_shapesDirty || m_polyDirty[ERROR_INSIDE] || m_polyDirty[ERROR_OUTSIDE];
}
void SetDirty()
{
m_shapesDirty = true;
m_polyDirty[ERROR_INSIDE] = true;
m_polyDirty[ERROR_OUTSIDE] = true;
}
void SetLayerSet( LSET aLayers ) override { m_padStack.SetLayerSet( aLayers ); }
LSET GetLayerSet() const override { return m_padStack.LayerSet(); }
void SetAttribute( PAD_ATTRIB aAttribute );
PAD_ATTRIB GetAttribute() const { return m_attribute; }
void SetProperty( PAD_PROP aProperty );
PAD_PROP GetProperty() const { return m_property; }
// We don't currently have an attribute for APERTURE, and adding one will change the file
// format, so for now just infer a copper-less pad to be an APERTURE pad.
bool IsAperturePad() const
{
return ( m_padStack.LayerSet() & LSET::AllCuMask() ).none();
}
void SetPadToDieLength( int aLength ) { m_lengthPadToDie = aLength; }
int GetPadToDieLength() const { return m_lengthPadToDie; }
std::optional<int> GetLocalClearance() const override { return m_padStack.Clearance(); }
void SetLocalClearance( std::optional<int> aClearance ) { m_padStack.Clearance() = aClearance; }
std::optional<int> GetLocalSolderMaskMargin() const { return m_padStack.SolderMaskMargin(); }
void SetLocalSolderMaskMargin( std::optional<int> aMargin )
{
m_padStack.SolderMaskMargin() = aMargin;
}
std::optional<int> GetLocalSolderPasteMargin() const { return m_padStack.SolderPasteMargin(); }
void SetLocalSolderPasteMargin( std::optional<int> aMargin )
{
m_padStack.SolderPasteMargin() = aMargin;
}
std::optional<double> GetLocalSolderPasteMarginRatio() const
{
return m_padStack.SolderPasteMarginRatio();
}
void SetLocalSolderPasteMarginRatio( std::optional<double> aRatio )
{
m_padStack.SolderPasteMarginRatio() = aRatio;
}
void SetLocalZoneConnection( ZONE_CONNECTION aType ) { m_padStack.ZoneConnection() = aType; }
ZONE_CONNECTION GetLocalZoneConnection() const
{
return m_padStack.ZoneConnection().value_or( ZONE_CONNECTION::INHERITED );
}
/**
* Return the pad's "own" clearance in internal units.
*
* @param aLayer the layer in question.
* @param aSource [out] optionally reports the source as a user-readable string.
* @return the clearance in internal units.
*/
int GetOwnClearance( PCB_LAYER_ID aLayer, wxString* aSource = nullptr ) const override;
/**
* Convert the pad shape to a closed polygon. Circles and arcs are approximated by segments.
*
* @param aBuffer a buffer to store the polygon.
* @param aClearance the clearance around the pad.
* @param aMaxError maximum error from true when converting arcs.
* @param aErrorLoc should the approximation error be placed outside or inside the polygon?
* @param ignoreLineWidth used for edge cuts where the line width is only for visualization.
*/
void TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer, int aClearance,
int aMaxError, ERROR_LOC aErrorLoc = ERROR_INSIDE,
bool ignoreLineWidth = false ) const override;
/**
* Build the corner list of the polygonal drill shape in the board coordinate system.
*
* @param aBuffer a buffer to fill.
* @param aClearance the clearance or margin value.
* @param aError maximum deviation of an arc from the polygon approximation.
* @param aErrorLoc = should the approximation error be placed outside or inside the polygon?
* @return false if the pad has no hole, true otherwise.
*/
bool TransformHoleToPolygon( SHAPE_POLY_SET& aBuffer, int aClearance, int aError,
ERROR_LOC aErrorLoc = ERROR_INSIDE ) const;
/**
* Some pad shapes can be complex (rounded/chamfered rectangle), even without considering
* custom shapes. This routine returns a COMPOUND shape (set of simple shapes which make
* up the pad for use with routing, collision determination, etc).
*
* @note This list can contain a SHAPE_SIMPLE (a simple single-outline non-intersecting
* polygon), but should never contain a SHAPE_POLY_SET (a complex polygon consisting of
* multiple outlines and/or holes).
*
* @param aLayer optional parameter allowing a caller to specify a particular layer (default
* is to return the pad's "natural" shape).
* @param aFlash optional parameter allowing a caller to force the pad to be flashed (or not
* flashed) on the current layer (default is to honour the pad's setting and
* the current connections for the given layer).
*/
virtual std::shared_ptr<SHAPE>
GetEffectiveShape( PCB_LAYER_ID aLayer = UNDEFINED_LAYER,
FLASHING flashPTHPads = FLASHING::DEFAULT ) const override;
const std::shared_ptr<SHAPE_POLY_SET>& GetEffectivePolygon( ERROR_LOC aErrorLoc = ERROR_INSIDE ) const;
/**
* Return a SHAPE_SEGMENT object representing the pad's hole.
*/
std::shared_ptr<SHAPE_SEGMENT> GetEffectiveHoleShape() const override;
/**
* Return the radius of a minimum sized circle which fully encloses this pad.
*
* The center is the pad position NOT THE SHAPE POS!
*/
int GetBoundingRadius() const;
/**
* Return any local clearance overrides set in the "classic" (ie: pre-rule) system.
*
* @param aSource [out] optionally reports the source as a user-readable string.
* @return the clearance in internal units.
*/
std::optional<int> GetLocalClearance( wxString* aSource ) const override;
/**
* Return any clearance overrides set in the "classic" (ie: pre-rule) system.
*
* @param aSource [out] optionally reports the source as a user-readable string.
* @return the clearance in internal units.
*/
std::optional<int> GetClearanceOverrides( wxString* aSource ) const override;
/**
* @return the expansion for the solder mask layer
*
* Usually > 0 (mask shape bigger than pad). For pads **not** on copper layers, the value
* is the local value because there is no default shape to build. For pads also on copper
* layers, the value (used to build a default shape) is:
* 1 the local value
* 2 if 0, the parent footprint value
* 3 if 0, the global value
*/
int GetSolderMaskExpansion() const;
/**
* Usually < 0 (mask shape smaller than pad)because the margin can be dependent on the pad
* size, the margin has a x and a y value. For pads **not** on copper layers, the value is
* the local value because there is no default shape to build. For pads also on copper
* layers, the value (used to build a default shape) is:
* 1 the local value
* 2 if 0, the parent footprint value
* 3 if 0, the global value
*
* @return the margin for the solder mask layer.
*/
VECTOR2I GetSolderPasteMargin() const;
ZONE_CONNECTION GetZoneConnectionOverrides( wxString* aSource = nullptr ) const;
/**
* Set the width of the thermal spokes connecting the pad to a zone. If != 0 this will
* override similar settings in the parent footprint and zone.
*/
void SetThermalSpokeWidth( int aWidth ) { m_padStack.ThermalSpokeWidth() = aWidth; }
int GetThermalSpokeWidth() const { return m_padStack.ThermalSpokeWidth().value_or( 0 ); }
int GetLocalSpokeWidthOverride( wxString* aSource = nullptr ) const;
/**
* The orientation of the thermal spokes. 45° will produce an X (the default for circular
* pads and circular-anchored custom shaped pads), while 90° will produce a + (the default
* for all other shapes).
*/
void SetThermalSpokeAngle( const EDA_ANGLE& aAngle )
{
m_padStack.SetThermalSpokeAngle( aAngle );
}
EDA_ANGLE GetThermalSpokeAngle() const
{
return m_padStack.ThermalSpokeAngle();
}
// For property system
void SetThermalSpokeAngleDegrees( double aAngle )
{
m_padStack.SetThermalSpokeAngle( EDA_ANGLE( aAngle, DEGREES_T ) );
}
double GetThermalSpokeAngleDegrees() const
{
return m_padStack.ThermalSpokeAngle().AsDegrees();
}
void SetThermalGap( int aGap ) { m_padStack.ThermalGap() = aGap; }
int GetThermalGap() const { return m_padStack.ThermalGap().value_or( 0 ); }
int GetLocalThermalGapOverride( wxString* aSource = nullptr ) const;
/**
* Has meaning only for rounded rectangle pads.
*
* @return The radius of the rounded corners for this pad.
*/
void SetRoundRectCornerRadius( double aRadius );
int GetRoundRectCornerRadius() const;
VECTOR2I ShapePos() const;
/**
* Has meaning only for rounded rectangle pads.
*
* Set the ratio between the smaller X or Y size and the rounded corner radius.
* Cannot be > 0.5; the normalized IPC-7351C value is 0.25
*/
void SetRoundRectRadiusRatio( double aRadiusScale );
double GetRoundRectRadiusRatio() const { return m_padStack.RoundRectRadiusRatio(); }
/**
* Has meaning only for chamfered rectangular pads.
*
* Set the ratio between the smaller X or Y size and chamfered corner size.
* Cannot be < 0.5.
*/
void SetChamferRectRatio( double aChamferScale );
double GetChamferRectRatio() const { return m_padStack.ChamferRatio(); }
/**
* Has meaning only for chamfered rectangular pads.
*
* Set the position of the chamfers for orientation 0.
*
* @param aPositions a bit-set of #RECT_CHAMFER_POSITIONS.
*/
void SetChamferPositions( int aPositions ) { m_padStack.SetChamferPositions( aPositions ); }
int GetChamferPositions() const { return m_padStack.ChamferPositions(); }
/**
* @return the netcode.
*/
int GetSubRatsnest() const { return m_subRatsnest; }
void SetSubRatsnest( int aSubRatsnest ) { m_subRatsnest = aSubRatsnest; }
/**
* @deprecated - use Padstack().SetUnconnectedLayerMode()
* Sets the unconnected removal property. If true, the copper is removed on zone fill
* or when specifically requested when the via is not connected on a layer.
*/
void SetRemoveUnconnected( bool aSet )
{
m_padStack.SetUnconnectedLayerMode( aSet
? PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_ALL
: PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL );
}
bool GetRemoveUnconnected() const
{
return m_padStack.UnconnectedLayerMode() != PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL;
}
/**
* @deprecated - use Padstack().SetUnconnectedLayerMode()
* Sets whether we keep the start and end annular rings even if they are not connected
*/
void SetKeepTopBottom( bool aSet )
{
m_padStack.SetUnconnectedLayerMode( aSet
? PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_EXCEPT_START_AND_END
: PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_ALL );
}
bool GetKeepTopBottom() const
{
return m_padStack.UnconnectedLayerMode()
== PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_EXCEPT_START_AND_END;
}
void SetUnconnectedLayerMode( PADSTACK::UNCONNECTED_LAYER_MODE aMode )
{
m_padStack.SetUnconnectedLayerMode( aMode );
}
PADSTACK::UNCONNECTED_LAYER_MODE GetUnconnectedLayerMode() const
{
return m_padStack.UnconnectedLayerMode();
}
bool ConditionallyFlashed( PCB_LAYER_ID aLayer ) const
{
switch( m_padStack.UnconnectedLayerMode() )
{
case PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL:
return false;
case PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_ALL:
return true;
case PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_EXCEPT_START_AND_END:
{
if( aLayer == m_padStack.Drill().start || aLayer == m_padStack.Drill().end )
return false;
}
}
return true;
}
void GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList ) override;
bool IsOnLayer( PCB_LAYER_ID aLayer ) const override
{
return m_padStack.LayerSet().test( aLayer );
}
/**
* Check to see whether the pad should be flashed on the specific layer.
*
* @param aLayer Layer to check for connectivity
* @param aOnlyCheckIfPermitted indicates that the routine should just return whether or not
* a flashed connection is permitted on this layer (without checking for a connection)
* @return true if connected by pad or track (or optionally zone)
*/
bool FlashLayer( int aLayer, bool aOnlyCheckIfPermitted = false ) const;
bool CanFlashLayer( int aLayer )
{
return FlashLayer( aLayer, true );
}
PCB_LAYER_ID GetLayer() const override;
/**
* @return the principal copper layer for SMD and CONN pads.
*/
PCB_LAYER_ID GetPrincipalLayer() const;
/**
* Check to see if the pad should be flashed to any of the layers in the set.
*
* @param aLayers set of layers to check the via against
* @return true if connected by pad or track (or optionally zone) on any of the associated
* layers
*/
bool FlashLayer( LSET aLayers ) const;
bool HitTest( const VECTOR2I& aPosition, int aAccuracy = 0 ) const override;
bool HitTest( const BOX2I& aRect, bool aContained, int aAccuracy = 0 ) const override;
wxString GetClass() const override
{
return wxT( "PAD" );
}
/**
* The bounding box is cached, so this will be efficient most of the time.
*/
const BOX2I GetBoundingBox() const override;
/**
* Compare two pads and return 0 if they are equal.
*
* @return less than 0 if left less than right, 0 if equal, or greater than 0 if left
* greater than right.
*/
static int Compare( const PAD* aPadRef, const PAD* aPadCmp );
void Move( const VECTOR2I& aMoveVector ) override
{
m_pos += aMoveVector;
SetDirty();
}
void Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle ) override;
wxString GetItemDescription( UNITS_PROVIDER* aUnitsProvider ) const override;
BITMAPS GetMenuImage() const override;
/**
* @return the GUI-appropriate name of the shape.
*/
wxString ShowPadShape() const;
/**
* @return the GUI-appropriate description of the pad type (attribute) : Std, SMD ...
*/
wxString ShowPadAttr() const;
EDA_ITEM* Clone() const override;
/**
* Same as Clone, but returns a PAD item.
*
* Useful mainly for python scripts, because Clone returns an EDA_ITEM.
*/
PAD* ClonePad() const
{
return (PAD*) Clone();
}
/**
* Rebuild the effective shape cache (and bounding box and radius) for the pad and clears
* the dirty bit.
*/
void BuildEffectiveShapes( PCB_LAYER_ID aLayer ) const;
void BuildEffectivePolygon( ERROR_LOC aErrorLoc = ERROR_INSIDE ) const;
virtual void ViewGetLayers( int aLayers[], int& aCount ) const override;
double ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const override;
virtual const BOX2I ViewBBox() const override;
void ClearZoneLayerOverrides()
{
m_zoneLayerOverrides.fill( ZLO_NONE );
}
const ZONE_LAYER_OVERRIDE& GetZoneLayerOverride( PCB_LAYER_ID aLayer ) const
{
return m_zoneLayerOverrides.at( aLayer );
}
void SetZoneLayerOverride( PCB_LAYER_ID aLayer, ZONE_LAYER_OVERRIDE aOverride )
{
std::unique_lock<std::mutex> cacheLock( m_zoneLayerOverridesMutex );
m_zoneLayerOverrides.at( aLayer ) = aOverride;
}
double Similarity( const BOARD_ITEM& aOther ) const override;
bool operator==( const BOARD_ITEM& aOther ) const override;
bool operator!=( const BOARD_ITEM& aOther ) const { return !operator==( aOther ); }
#if defined(DEBUG)
virtual void Show( int nestLevel, std::ostream& os ) const override { ShowDummy( os ); }
#endif
protected:
virtual void swapData( BOARD_ITEM* aImage ) override;
private:
void addPadPrimitivesToPolygon( SHAPE_POLY_SET* aMergedPolygon, int aError,
ERROR_LOC aErrorLoc ) const;
private:
wxString m_number; // Pad name (pin number in schematic)
wxString m_pinFunction; // Pin name in schematic
wxString m_pinType; // Pin electrical type in schematic
VECTOR2I m_pos; // Pad Position on board
PADSTACK m_padStack;
/*
* Editing definitions of primitives for custom pad shapes. In local coordinates relative
* to m_Pos (NOT shapePos) at orient 0.
*/
std::vector<std::shared_ptr<PCB_SHAPE>> m_editPrimitives;
// Must be set to true to force rebuild shapes to draw (after geometry change for instance)
mutable bool m_shapesDirty;
mutable std::mutex m_shapesBuildingLock;
mutable BOX2I m_effectiveBoundingBox;
mutable std::shared_ptr<SHAPE_COMPOUND> m_effectiveShape;
mutable std::shared_ptr<SHAPE_SEGMENT> m_effectiveHoleShape;
mutable bool m_polyDirty[2];
mutable std::mutex m_polyBuildingLock;
mutable std::shared_ptr<SHAPE_POLY_SET> m_effectivePolygon[2];
mutable int m_effectiveBoundingRadius;
int m_subRatsnest; // Variable used to handle subnet (block) number in
// ratsnest computations
PAD_ATTRIB m_attribute = PAD_ATTRIB::PTH;
PAD_PROP m_property; // Property in fab files (BGA, FIDUCIAL, TESTPOINT, etc.)
EDA_ANGLE m_orient;
int m_lengthPadToDie; // Length net from pad to die, inside the package
std::mutex m_zoneLayerOverridesMutex;
std::array<ZONE_LAYER_OVERRIDE, MAX_CU_LAYERS> m_zoneLayerOverrides;
};
#endif // PAD_H