kicad/pcbnew/drc_clearance_test_function...

1162 lines
42 KiB
C++

/**
* @file drc_clearance_test_functions.cpp
*/
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2004-2016 Jean-Pierre Charras, jean-pierre.charras@gipsa-lab.inpg.fr
* Copyright (C) 2007 Dick Hollenbeck, dick@softplc.com
* Copyright (C) 2016 KiCad Developers, see change_log.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* DRC control: these functions make a DRC between pads, tracks and pads versus tracks
*/
#include <fctsys.h>
#include <wxPcbStruct.h>
#include <trigo.h>
#include <pcbnew.h>
#include <drc_stuff.h>
#include <class_board.h>
#include <class_module.h>
#include <class_track.h>
#include <class_zone.h>
#include <class_marker_pcb.h>
#include <math_for_graphics.h>
#include <polygon_test_point_inside.h>
#include <convert_basic_shapes_to_polygon.h>
/* compare 2 convex polygons and return true if distance > aDist
* i.e if for each edge of the first polygon distance from each edge of the other polygon
* is >= aDist
*/
bool poly2polyDRC( wxPoint* aTref, int aTrefCount,
wxPoint* aTcompare, int aTcompareCount, int aDist )
{
/* Test if one polygon is contained in the other and thus the polygon overlap.
* This case is not covered by the following check if one polygone is
* completely contained in the other (because edges don't intersect)!
*/
if( TestPointInsidePolygon( aTref, aTrefCount, aTcompare[0] ) )
return false;
if( TestPointInsidePolygon( aTcompare, aTcompareCount, aTref[0] ) )
return false;
for( int ii = 0, jj = aTrefCount - 1; ii < aTrefCount; jj = ii, ii++ )
{ // for all edges in aTref
for( int kk = 0, ll = aTcompareCount - 1; kk < aTcompareCount; ll = kk, kk++ )
{ // for all edges in aTcompare
double d;
int intersect = TestForIntersectionOfStraightLineSegments(
aTref[ii].x, aTref[ii].y, aTref[jj].x, aTref[jj].y,
aTcompare[kk].x, aTcompare[kk].y, aTcompare[ll].x, aTcompare[ll].y,
NULL, NULL, &d );
if( intersect || ( d< aDist ) )
return false;
}
}
return true;
}
/* compare a trapezoids (can be rectangle) and a segment and return true if distance > aDist
*/
bool poly2segmentDRC( wxPoint* aTref, int aTrefCount, wxPoint aSegStart, wxPoint aSegEnd, int aDist )
{
/* Test if the segment is contained in the polygon.
* This case is not covered by the following check if the segment is
* completely contained in the polygon (because edges don't intersect)!
*/
if( TestPointInsidePolygon( aTref, aTrefCount, aSegStart ) )
return false;
for( int ii = 0, jj = aTrefCount-1; ii < aTrefCount; jj = ii, ii++ )
{ // for all edges in polygon
double d;
int intersect = TestForIntersectionOfStraightLineSegments(
aTref[ii].x, aTref[ii].y, aTref[jj].x, aTref[jj].y,
aSegStart.x, aSegStart.y, aSegEnd.x, aSegEnd.y,
NULL, NULL, &d );
if( intersect || ( d < aDist) )
return false;
}
return true;
}
/* compare a polygon to a point and return true if distance > aDist
* do not use this function for horizontal or vertical rectangles
* because there is a faster an easier way to compare the distance
*/
bool convex2pointDRC( wxPoint* aTref, int aTrefCount, wxPoint aPcompare, int aDist )
{
/* Test if aPcompare point is contained in the polygon.
* This case is not covered by the following check if this point is inside the polygon
*/
if( TestPointInsidePolygon( aTref, aTrefCount, aPcompare ) )
{
return false;
}
// Test distance between aPcompare and each segment of the polygon:
for( int ii = 0, jj = aTrefCount - 1; ii < aTrefCount; jj = ii, ii++ ) // for all edge in polygon
{
if( TestSegmentHit( aPcompare, aTref[ii], aTref[jj], aDist ) )
return false;
}
return true;
}
bool DRC::doTrackDrc( TRACK* aRefSeg, TRACK* aStart, bool testPads )
{
TRACK* track;
wxPoint delta; // lenght on X and Y axis of segments
LSET layerMask;
int net_code_ref;
wxPoint shape_pos;
NETCLASSPTR netclass = aRefSeg->GetNetClass();
BOARD_DESIGN_SETTINGS& dsnSettings = m_pcb->GetDesignSettings();
/* In order to make some calculations more easier or faster,
* pads and tracks coordinates will be made relative to the reference segment origin
*/
wxPoint origin = aRefSeg->GetStart(); // origin will be the origin of other coordinates
m_segmEnd = delta = aRefSeg->GetEnd() - origin;
m_segmAngle = 0;
layerMask = aRefSeg->GetLayerSet();
net_code_ref = aRefSeg->GetNetCode();
// Phase 0 : Test vias
if( aRefSeg->Type() == PCB_VIA_T )
{
const VIA *refvia = static_cast<const VIA*>( aRefSeg );
// test if the via size is smaller than minimum
if( refvia->GetViaType() == VIA_MICROVIA )
{
if( refvia->GetWidth() < dsnSettings.m_MicroViasMinSize )
{
m_currentMarker = fillMarker( refvia, NULL,
DRCE_TOO_SMALL_MICROVIA, m_currentMarker );
return false;
}
}
else
{
if( refvia->GetWidth() < dsnSettings.m_ViasMinSize )
{
m_currentMarker = fillMarker( refvia, NULL,
DRCE_TOO_SMALL_VIA, m_currentMarker );
return false;
}
}
// test if via's hole is bigger than its diameter
// This test is necessary since the via hole size and width can be modified
// and a default via hole can be bigger than some vias sizes
if( refvia->GetDrillValue() > refvia->GetWidth() )
{
m_currentMarker = fillMarker( refvia, NULL,
DRCE_VIA_HOLE_BIGGER, m_currentMarker );
return false;
}
// For microvias: test if they are blind vias and only between 2 layers
// because they are used for very small drill size and are drill by laser
// and **only one layer** can be drilled
if( refvia->GetViaType() == VIA_MICROVIA )
{
LAYER_ID layer1, layer2;
bool err = true;
refvia->LayerPair( &layer1, &layer2 );
if( layer1 > layer2 )
std::swap( layer1, layer2 );
if( layer2 == B_Cu && layer1 == m_pcb->GetDesignSettings().GetCopperLayerCount() - 2 )
err = false;
else if( layer1 == F_Cu && layer2 == In1_Cu )
err = false;
if( err )
{
m_currentMarker = fillMarker( refvia, NULL,
DRCE_MICRO_VIA_INCORRECT_LAYER_PAIR, m_currentMarker );
return false;
}
}
}
else // This is a track segment
{
if( aRefSeg->GetWidth() < dsnSettings.m_TrackMinWidth )
{
m_currentMarker = fillMarker( aRefSeg, NULL,
DRCE_TOO_SMALL_TRACK_WIDTH, m_currentMarker );
return false;
}
}
// for a non horizontal or vertical segment Compute the segment angle
// in tenths of degrees and its length
if( delta.x || delta.y )
{
// Compute the segment angle in 0,1 degrees
m_segmAngle = ArcTangente( delta.y, delta.x );
// Compute the segment length: we build an equivalent rotated segment,
// this segment is horizontal, therefore dx = length
RotatePoint( &delta, m_segmAngle ); // delta.x = length, delta.y = 0
}
m_segmLength = delta.x;
/******************************************/
/* Phase 1 : test DRC track to pads : */
/******************************************/
/* Use a dummy pad to test DRC tracks versus holes, for pads not on all copper layers
* but having a hole
* This dummy pad has the size and shape of the hole
* to test tracks to pad hole DRC, using checkClearanceSegmToPad test function.
* Therefore, this dummy pad is a circle or an oval.
* A pad must have a parent because some functions expect a non null parent
* to find the parent board, and some other data
*/
MODULE dummymodule( m_pcb ); // Creates a dummy parent
D_PAD dummypad( &dummymodule );
dummypad.SetLayerSet( LSET::AllCuMask() ); // Ensure the hole is on all layers
// Compute the min distance to pads
if( testPads )
{
unsigned pad_count = m_pcb->GetPadCount();
for( unsigned ii = 0; ii<pad_count; ++ii )
{
D_PAD* pad = m_pcb->GetPad( ii );
/* No problem if pads are on an other layer,
* But if a drill hole exists (a pad on a single layer can have a hole!)
* we must test the hole
*/
if( !( pad->GetLayerSet() & layerMask ).any() )
{
/* We must test the pad hole. In order to use the function
* checkClearanceSegmToPad(),a pseudo pad is used, with a shape and a
* size like the hole
*/
if( pad->GetDrillSize().x == 0 )
continue;
dummypad.SetSize( pad->GetDrillSize() );
dummypad.SetPosition( pad->GetPosition() );
dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ?
PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
dummypad.SetOrientation( pad->GetOrientation() );
m_padToTestPos = dummypad.GetPosition() - origin;
if( !checkClearanceSegmToPad( &dummypad, aRefSeg->GetWidth(),
netclass->GetClearance() ) )
{
m_currentMarker = fillMarker( aRefSeg, pad,
DRCE_TRACK_NEAR_THROUGH_HOLE, m_currentMarker );
return false;
}
continue;
}
// The pad must be in a net (i.e pt_pad->GetNet() != 0 )
// but no problem if the pad netcode is the current netcode (same net)
if( pad->GetNetCode() // the pad must be connected
&& net_code_ref == pad->GetNetCode() ) // the pad net is the same as current net -> Ok
continue;
// DRC for the pad
shape_pos = pad->ShapePos();
m_padToTestPos = shape_pos - origin;
if( !checkClearanceSegmToPad( pad, aRefSeg->GetWidth(), aRefSeg->GetClearance( pad ) ) )
{
m_currentMarker = fillMarker( aRefSeg, pad,
DRCE_TRACK_NEAR_PAD, m_currentMarker );
return false;
}
}
}
/***********************************************/
/* Phase 2: test DRC with other track segments */
/***********************************************/
// At this point the reference segment is the X axis
// Test the reference segment with other track segments
wxPoint segStartPoint;
wxPoint segEndPoint;
for( track = aStart; track; track = track->Next() )
{
// No problem if segments have the same net code:
if( net_code_ref == track->GetNetCode() )
continue;
// No problem if segment are on different layers :
if( !( layerMask & track->GetLayerSet() ).any() )
continue;
// the minimum distance = clearance plus half the reference track
// width plus half the other track's width
int w_dist = aRefSeg->GetClearance( track );
w_dist += (aRefSeg->GetWidth() + track->GetWidth()) / 2;
// If the reference segment is a via, we test it here
if( aRefSeg->Type() == PCB_VIA_T )
{
delta = track->GetEnd() - track->GetStart();
segStartPoint = aRefSeg->GetStart() - track->GetStart();
if( track->Type() == PCB_VIA_T )
{
// Test distance between two vias, i.e. two circles, trivial case
if( EuclideanNorm( segStartPoint ) < w_dist )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_VIA_NEAR_VIA, m_currentMarker );
return false;
}
}
else // test via to segment
{
// Compute l'angle du segment a tester;
double angle = ArcTangente( delta.y, delta.x );
// Compute new coordinates ( the segment become horizontal)
RotatePoint( &delta, angle );
RotatePoint( &segStartPoint, angle );
if( !checkMarginToCircle( segStartPoint, w_dist, delta.x ) )
{
m_currentMarker = fillMarker( track, aRefSeg,
DRCE_VIA_NEAR_TRACK, m_currentMarker );
return false;
}
}
continue;
}
/* We compute segStartPoint, segEndPoint = starting and ending point coordinates for
* the segment to test in the new axis : the new X axis is the
* reference segment. We must translate and rotate the segment to test
*/
segStartPoint = track->GetStart() - origin;
segEndPoint = track->GetEnd() - origin;
RotatePoint( &segStartPoint, m_segmAngle );
RotatePoint( &segEndPoint, m_segmAngle );
if( track->Type() == PCB_VIA_T )
{
if( checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
continue;
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_TRACK_NEAR_VIA, m_currentMarker );
return false;
}
/* We have changed axis:
* the reference segment is Horizontal.
* 3 cases : the segment to test can be parallel, perpendicular or have an other direction
*/
if( segStartPoint.y == segEndPoint.y ) // parallel segments
{
if( abs( segStartPoint.y ) >= w_dist )
continue;
// Ensure segStartPoint.x <= segEndPoint.x
if( segStartPoint.x > segEndPoint.x )
std::swap( segStartPoint.x, segEndPoint.x );
if( segStartPoint.x > (-w_dist) && segStartPoint.x < (m_segmLength + w_dist) ) /* possible error drc */
{
// the start point is inside the reference range
// X........
// O--REF--+
// Fine test : we consider the rounded shape of each end of the track segment:
if( segStartPoint.x >= 0 && segStartPoint.x <= m_segmLength )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_TRACK_ENDS1, m_currentMarker );
return false;
}
if( !checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_TRACK_ENDS2, m_currentMarker );
return false;
}
}
if( segEndPoint.x > (-w_dist) && segEndPoint.x < (m_segmLength + w_dist) )
{
// the end point is inside the reference range
// .....X
// O--REF--+
// Fine test : we consider the rounded shape of the ends
if( segEndPoint.x >= 0 && segEndPoint.x <= m_segmLength )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_TRACK_ENDS3, m_currentMarker );
return false;
}
if( !checkMarginToCircle( segEndPoint, w_dist, m_segmLength ) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_TRACK_ENDS4, m_currentMarker );
return false;
}
}
if( segStartPoint.x <=0 && segEndPoint.x >= 0 )
{
// the segment straddles the reference range (this actually only
// checks if it straddles the origin, because the other cases where already
// handled)
// X.............X
// O--REF--+
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_TRACK_SEGMENTS_TOO_CLOSE, m_currentMarker );
return false;
}
}
else if( segStartPoint.x == segEndPoint.x ) // perpendicular segments
{
if( ( segStartPoint.x <= (-w_dist) ) || ( segStartPoint.x >= (m_segmLength + w_dist) ) )
continue;
// Test if segments are crossing
if( segStartPoint.y > segEndPoint.y )
std::swap( segStartPoint.y, segEndPoint.y );
if( (segStartPoint.y < 0) && (segEndPoint.y > 0) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_TRACKS_CROSSING, m_currentMarker );
return false;
}
// At this point the drc error is due to an end near a reference segm end
if( !checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_ENDS_PROBLEM1, m_currentMarker );
return false;
}
if( !checkMarginToCircle( segEndPoint, w_dist, m_segmLength ) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_ENDS_PROBLEM2, m_currentMarker );
return false;
}
}
else // segments quelconques entre eux
{
// calcul de la "surface de securite du segment de reference
// First rought 'and fast) test : the track segment is like a rectangle
m_xcliplo = m_ycliplo = -w_dist;
m_xcliphi = m_segmLength + w_dist;
m_ycliphi = w_dist;
// A fine test is needed because a serment is not exactly a
// rectangle, it has rounded ends
if( !checkLine( segStartPoint, segEndPoint ) )
{
/* 2eme passe : the track has rounded ends.
* we must a fine test for each rounded end and the
* rectangular zone
*/
m_xcliplo = 0;
m_xcliphi = m_segmLength;
if( !checkLine( segStartPoint, segEndPoint ) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_ENDS_PROBLEM3, m_currentMarker );
return false;
}
else // The drc error is due to the starting or the ending point of the reference segment
{
// Test the starting and the ending point
segStartPoint = track->GetStart();
segEndPoint = track->GetEnd();
delta = segEndPoint - segStartPoint;
// Compute the segment orientation (angle) en 0,1 degre
double angle = ArcTangente( delta.y, delta.x );
// Compute the segment lenght: delta.x = lenght after rotation
RotatePoint( &delta, angle );
/* Comute the reference segment coordinates relatives to a
* X axis = current tested segment
*/
wxPoint relStartPos = aRefSeg->GetStart() - segStartPoint;
wxPoint relEndPos = aRefSeg->GetEnd() - segStartPoint;
RotatePoint( &relStartPos, angle );
RotatePoint( &relEndPos, angle );
if( !checkMarginToCircle( relStartPos, w_dist, delta.x ) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_ENDS_PROBLEM4, m_currentMarker );
return false;
}
if( !checkMarginToCircle( relEndPos, w_dist, delta.x ) )
{
m_currentMarker = fillMarker( aRefSeg, track,
DRCE_ENDS_PROBLEM5, m_currentMarker );
return false;
}
}
}
}
}
return true;
}
/* test DRC between 2 pads.
* this function can be also used to test DRC between a pad and a hole,
* because a hole is like a round or oval pad.
*/
bool DRC::checkClearancePadToPad( D_PAD* aRefPad, D_PAD* aPad )
{
int dist;
double pad_angle;
// Get the clearance between the 2 pads. this is the min distance between aRefPad and aPad
int dist_min = aRefPad->GetClearance( aPad );
// relativePadPos is the aPad shape position relative to the aRefPad shape position
wxPoint relativePadPos = aPad->ShapePos() - aRefPad->ShapePos();
dist = KiROUND( EuclideanNorm( relativePadPos ) );
// Quick test: Clearance is OK if the bounding circles are further away than "dist_min"
if( (dist - aRefPad->GetBoundingRadius() - aPad->GetBoundingRadius()) >= dist_min )
return true;
/* Here, pads are near and DRC depend on the pad shapes
* We must compare distance using a fine shape analysis
* Because a circle or oval shape is the easier shape to test, try to have
* aRefPad shape type = PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL.
* if aRefPad = TRAP. and aPad = RECT, also swap pads
* Swap aRefPad and aPad if needed
*/
bool swap_pads;
swap_pads = false;
// swap pads to make comparisons easier
// Note also a ROUNDRECT pad with a corner radius = r can be considered as
// a smaller RECT (size - 2*r) with a clearance increased by r
// priority is aRefPad = ROUND then OVAL then RECT/ROUNDRECT then other
if( aRefPad->GetShape() != aPad->GetShape() && aRefPad->GetShape() != PAD_SHAPE_CIRCLE )
{
// pad ref shape is here oval, rect, roundrect, trapezoid or custom
switch( aPad->GetShape() )
{
case PAD_SHAPE_CIRCLE:
swap_pads = true;
break;
case PAD_SHAPE_OVAL:
swap_pads = true;
break;
case PAD_SHAPE_RECT:
case PAD_SHAPE_ROUNDRECT:
if( aRefPad->GetShape() != PAD_SHAPE_OVAL )
swap_pads = true;
break;
default:
break;
}
}
if( swap_pads )
{
std::swap( aRefPad, aPad );
relativePadPos = -relativePadPos;
}
// corners of aRefPad (used only for rect/roundrect/trap pad)
wxPoint polyref[4];
// corners of aRefPad (used only for custom pad)
SHAPE_POLY_SET polysetref;
// corners of aPad (used only for rect/roundrect/trap pad)
wxPoint polycompare[4];
// corners of aPad (used only custom pad)
SHAPE_POLY_SET polysetcompare;
/* Because pad exchange, aRefPad shape is PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL,
* if one of the 2 pads was a PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL.
* Therefore, if aRefPad is a PAD_SHAPE_RECT, PAD_SHAPE_ROUNDRECT or a PAD_SHAPE_TRAPEZOID,
* aPad is also a PAD_SHAPE_RECT, PAD_SHAPE_ROUNDRECT or a PAD_SHAPE_TRAPEZOID
*/
bool diag = true;
switch( aRefPad->GetShape() )
{
case PAD_SHAPE_CIRCLE:
/* One can use checkClearanceSegmToPad to test clearance
* aRefPad is like a track segment with a null length and a witdth = GetSize().x
*/
m_segmLength = 0;
m_segmAngle = 0;
m_segmEnd.x = m_segmEnd.y = 0;
m_padToTestPos = relativePadPos;
diag = checkClearanceSegmToPad( aPad, aRefPad->GetSize().x, dist_min );
break;
case PAD_SHAPE_TRAPEZOID:
case PAD_SHAPE_ROUNDRECT:
case PAD_SHAPE_RECT:
// pad_angle = pad orient relative to the aRefPad orient
pad_angle = aRefPad->GetOrientation() + aPad->GetOrientation();
NORMALIZE_ANGLE_POS( pad_angle );
if( aRefPad->GetShape() == PAD_SHAPE_ROUNDRECT )
{
int padRadius = aRefPad->GetRoundRectCornerRadius();
dist_min += padRadius;
GetRoundRectCornerCenters( polyref, padRadius, wxPoint( 0, 0 ),
aRefPad->GetSize(), aRefPad->GetOrientation() );
}
else
aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() );
switch( aPad->GetShape() )
{
case PAD_SHAPE_ROUNDRECT:
case PAD_SHAPE_RECT:
case PAD_SHAPE_TRAPEZOID:
if( aPad->GetShape() == PAD_SHAPE_ROUNDRECT )
{
int padRadius = aPad->GetRoundRectCornerRadius();
dist_min += padRadius;
GetRoundRectCornerCenters( polycompare, padRadius, relativePadPos,
aPad->GetSize(), aPad->GetOrientation() );
}
else
{
aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() );
// Move aPad shape to relativePadPos
for( int ii = 0; ii < 4; ii++ )
polycompare[ii] += relativePadPos;
}
// And now test polygons:
if( polysetref.OutlineCount() )
{
const SHAPE_LINE_CHAIN& refpoly = polysetref.COutline( 0 );
// And now test polygons:
if( !poly2polyDRC( (wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(),
polycompare, 4, dist_min ) )
diag = false;
}
else if( !poly2polyDRC( polyref, 4, polycompare, 4, dist_min ) )
diag = false;
break;
default:
wxLogDebug( wxT( "DRC::checkClearancePadToPad: unexpected pad shape %d" ), aPad->GetShape() );
break;
}
break;
case PAD_SHAPE_OVAL: /* an oval pad is like a track segment */
{
/* Create a track segment with same dimensions as the oval aRefPad
* and use checkClearanceSegmToPad function to test aPad to aRefPad clearance
*/
int segm_width;
m_segmAngle = aRefPad->GetOrientation(); // Segment orient.
if( aRefPad->GetSize().y < aRefPad->GetSize().x ) // Build an horizontal equiv segment
{
segm_width = aRefPad->GetSize().y;
m_segmLength = aRefPad->GetSize().x - aRefPad->GetSize().y;
}
else // Vertical oval: build an horizontal equiv segment and rotate 90.0 deg
{
segm_width = aRefPad->GetSize().x;
m_segmLength = aRefPad->GetSize().y - aRefPad->GetSize().x;
m_segmAngle += 900;
}
/* the start point must be 0,0 and currently relativePadPos
* is relative the center of pad coordinate */
wxPoint segstart;
segstart.x = -m_segmLength / 2; // Start point coordinate of the horizontal equivalent segment
RotatePoint( &segstart, m_segmAngle ); // actual start point coordinate of the equivalent segment
// Calculate segment end position relative to the segment origin
m_segmEnd.x = -2 * segstart.x;
m_segmEnd.y = -2 * segstart.y;
// Recalculate the equivalent segment angle in 0,1 degrees
// to prepare a call to checkClearanceSegmToPad()
m_segmAngle = ArcTangente( m_segmEnd.y, m_segmEnd.x );
// move pad position relative to the segment origin
m_padToTestPos = relativePadPos - segstart;
// Use segment to pad check to test the second pad:
diag = checkClearanceSegmToPad( aPad, segm_width, dist_min );
break;
}
default:
wxLogDebug( wxT( "DRC::checkClearancePadToPad: unknown pad shape" ) );
break;
}
return diag;
}
/* test if distance between a segment is > aMinDist
* segment start point is assumed in (0,0) and segment start point in m_segmEnd
* and its orientation is m_segmAngle (m_segmAngle must be already initialized)
* and have aSegmentWidth.
*/
bool DRC::checkClearanceSegmToPad( const D_PAD* aPad, int aSegmentWidth, int aMinDist )
{
wxSize padHalfsize; // half dimension of the pad
int r;
int segmHalfWidth = aSegmentWidth / 2;
int distToLine = segmHalfWidth + aMinDist;
padHalfsize.x = aPad->GetSize().x >> 1;
padHalfsize.y = aPad->GetSize().y >> 1;
if( aPad->GetShape() == PAD_SHAPE_TRAPEZOID ) // The size is bigger, due to GetDelta() extra size
{
padHalfsize.x += std::abs(aPad->GetDelta().y) / 2; // Remember: GetDelta().y is the GetSize().x change
padHalfsize.y += std::abs(aPad->GetDelta().x) / 2; // Remember: GetDelta().x is the GetSize().y change
}
if( aPad->GetShape() == PAD_SHAPE_CIRCLE )
{
/* Easy case: just test the distance between segment and pad centre
* calculate pad coordinates in the X,Y axis with X axis = segment to test
*/
RotatePoint( &m_padToTestPos, m_segmAngle );
return checkMarginToCircle( m_padToTestPos, distToLine + padHalfsize.x, m_segmLength );
}
/* calculate the bounding box of the pad, including the clearance and the segment width
* if the line from 0 to m_segmEnd does not intersect this bounding box,
* the clearance is always OK
* But if intersect, a better analysis of the pad shape must be done.
*/
m_xcliplo = m_padToTestPos.x - distToLine - padHalfsize.x;
m_ycliplo = m_padToTestPos.y - distToLine - padHalfsize.y;
m_xcliphi = m_padToTestPos.x + distToLine + padHalfsize.x;
m_ycliphi = m_padToTestPos.y + distToLine + padHalfsize.y;
wxPoint startPoint;
wxPoint endPoint = m_segmEnd;
double orient = aPad->GetOrientation();
RotatePoint( &startPoint, m_padToTestPos, -orient );
RotatePoint( &endPoint, m_padToTestPos, -orient );
if( checkLine( startPoint, endPoint ) )
return true;
/* segment intersects the bounding box. But there is not always a DRC error.
* A fine analysis of the pad shape must be done.
*/
switch( aPad->GetShape() )
{
default:
return false;
case PAD_SHAPE_OVAL:
{
/* an oval is a complex shape, but is a rectangle and 2 circles
* these 3 basic shapes are more easy to test.
*
* In calculations we are using a vertical oval shape
* (i.e. a vertical rounded segment)
* for horizontal oval shapes, swap x and y size and rotate the shape
*/
if( padHalfsize.x > padHalfsize.y )
{
std::swap( padHalfsize.x, padHalfsize.y );
orient = AddAngles( orient, 900 );
}
// here, padHalfsize.x is the radius of rounded ends.
int deltay = padHalfsize.y - padHalfsize.x;
// here: padHalfsize.x = radius,
// deltay = dist between the centre pad and the centre of a rounded end
// Test the rectangular area between the two circles (the rounded ends)
m_xcliplo = m_padToTestPos.x - distToLine - padHalfsize.x;
m_ycliplo = m_padToTestPos.y - deltay;
m_xcliphi = m_padToTestPos.x + distToLine + padHalfsize.x;
m_ycliphi = m_padToTestPos.y + deltay;
if( !checkLine( startPoint, endPoint ) )
{
return false;
}
// test the first circle
startPoint.x = m_padToTestPos.x; // startPoint = centre of the upper circle of the oval shape
startPoint.y = m_padToTestPos.y + deltay;
// Calculate the actual position of the circle, given the pad orientation:
RotatePoint( &startPoint, m_padToTestPos, orient );
// Calculate the actual position of the circle in the new X,Y axis:
RotatePoint( &startPoint, m_segmAngle );
if( !checkMarginToCircle( startPoint, padHalfsize.x + distToLine, m_segmLength ) )
{
return false;
}
// test the second circle
startPoint.x = m_padToTestPos.x; // startPoint = centre of the lower circle of the oval shape
startPoint.y = m_padToTestPos.y - deltay;
RotatePoint( &startPoint, m_padToTestPos, orient );
RotatePoint( &startPoint, m_segmAngle );
if( !checkMarginToCircle( startPoint, padHalfsize.x + distToLine, m_segmLength ) )
{
return false;
}
}
break;
case PAD_SHAPE_ROUNDRECT:
// a round rect is a smaller rect, with a clearance augmented by the corners radius
r = aPad->GetRoundRectCornerRadius();
padHalfsize.x -= r;
padHalfsize.y -= r;
distToLine += r;
// Fall through
case PAD_SHAPE_RECT:
// the area to test is a rounded rectangle.
// this can be done by testing 2 rectangles and 4 circles (the corners)
// Testing the first rectangle dimx + distToLine, dimy:
m_xcliplo = m_padToTestPos.x - padHalfsize.x - distToLine;
m_ycliplo = m_padToTestPos.y - padHalfsize.y;
m_xcliphi = m_padToTestPos.x + padHalfsize.x + distToLine;
m_ycliphi = m_padToTestPos.y + padHalfsize.y;
if( !checkLine( startPoint, endPoint ) )
return false;
// Testing the second rectangle dimx , dimy + distToLine
m_xcliplo = m_padToTestPos.x - padHalfsize.x;
m_ycliplo = m_padToTestPos.y - padHalfsize.y - distToLine;
m_xcliphi = m_padToTestPos.x + padHalfsize.x;
m_ycliphi = m_padToTestPos.y + padHalfsize.y + distToLine;
if( !checkLine( startPoint, endPoint ) )
return false;
// testing the 4 circles which are the clearance area of each corner:
// testing the left top corner of the rectangle
startPoint.x = m_padToTestPos.x - padHalfsize.x;
startPoint.y = m_padToTestPos.y - padHalfsize.y;
RotatePoint( &startPoint, m_padToTestPos, orient );
RotatePoint( &startPoint, m_segmAngle );
if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
return false;
// testing the right top corner of the rectangle
startPoint.x = m_padToTestPos.x + padHalfsize.x;
startPoint.y = m_padToTestPos.y - padHalfsize.y;
RotatePoint( &startPoint, m_padToTestPos, orient );
RotatePoint( &startPoint, m_segmAngle );
if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
return false;
// testing the left bottom corner of the rectangle
startPoint.x = m_padToTestPos.x - padHalfsize.x;
startPoint.y = m_padToTestPos.y + padHalfsize.y;
RotatePoint( &startPoint, m_padToTestPos, orient );
RotatePoint( &startPoint, m_segmAngle );
if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
return false;
// testing the right bottom corner of the rectangle
startPoint.x = m_padToTestPos.x + padHalfsize.x;
startPoint.y = m_padToTestPos.y + padHalfsize.y;
RotatePoint( &startPoint, m_padToTestPos, orient );
RotatePoint( &startPoint, m_segmAngle );
if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
return false;
break;
case PAD_SHAPE_TRAPEZOID:
{
wxPoint poly[4];
aPad->BuildPadPolygon( poly, wxSize( 0, 0 ), orient );
// Move shape to m_padToTestPos
for( int ii = 0; ii < 4; ii++ )
{
poly[ii] += m_padToTestPos;
RotatePoint( &poly[ii], m_segmAngle );
}
if( !poly2segmentDRC( poly, 4, wxPoint( 0, 0 ), wxPoint(m_segmLength,0), distToLine ) )
return false;
break;
}
}
return true;
}
/**
* Helper function checkMarginToCircle
* Check the distance between a circle (round pad, via or round end of track)
* and a segment. the segment is expected starting at 0,0, and on the X axis
* return true if distance >= aRadius
*/
bool DRC::checkMarginToCircle( wxPoint aCentre, int aRadius, int aLength )
{
if( abs( aCentre.y ) > aRadius ) // trivial case
return true;
// Here, distance between aCentre and X axis is < aRadius
if( (aCentre.x >= -aRadius ) && ( aCentre.x <= (aLength + aRadius) ) )
{
if( (aCentre.x >= 0) && (aCentre.x <= aLength) )
return false; // aCentre is between the starting point and the ending point of the segm
if( aCentre.x > aLength ) // aCentre is after the ending point
aCentre.x -= aLength; // move aCentre to the starting point of the segment
if( EuclideanNorm( aCentre ) < aRadius )
// distance between aCentre and the starting point or the ending point is < aRadius
return false;
}
return true;
}
// Helper function used in checkLine::
static inline int USCALE( unsigned arg, unsigned num, unsigned den )
{
int ii;
ii = KiROUND( ( (double) arg * num ) / den );
return ii;
}
/** Helper function checkLine
* Test if a line intersects a bounding box (a rectangle)
* The rectangle is defined by m_xcliplo, m_ycliplo and m_xcliphi, m_ycliphi
* return true if the line from aSegStart to aSegEnd is outside the bounding box
*/
bool DRC::checkLine( wxPoint aSegStart, wxPoint aSegEnd )
{
#define WHEN_OUTSIDE return true
#define WHEN_INSIDE
int temp;
if( aSegStart.x > aSegEnd.x )
std::swap( aSegStart, aSegEnd );
if( (aSegEnd.x < m_xcliplo) || (aSegStart.x > m_xcliphi) )
{
WHEN_OUTSIDE;
}
if( aSegStart.y < aSegEnd.y )
{
if( (aSegEnd.y < m_ycliplo) || (aSegStart.y > m_ycliphi) )
{
WHEN_OUTSIDE;
}
if( aSegStart.y < m_ycliplo )
{
temp = USCALE( (aSegEnd.x - aSegStart.x), (m_ycliplo - aSegStart.y),
(aSegEnd.y - aSegStart.y) );
if( (aSegStart.x += temp) > m_xcliphi )
{
WHEN_OUTSIDE;
}
aSegStart.y = m_ycliplo;
WHEN_INSIDE;
}
if( aSegEnd.y > m_ycliphi )
{
temp = USCALE( (aSegEnd.x - aSegStart.x), (aSegEnd.y - m_ycliphi),
(aSegEnd.y - aSegStart.y) );
if( (aSegEnd.x -= temp) < m_xcliplo )
{
WHEN_OUTSIDE;
}
aSegEnd.y = m_ycliphi;
WHEN_INSIDE;
}
if( aSegStart.x < m_xcliplo )
{
temp = USCALE( (aSegEnd.y - aSegStart.y), (m_xcliplo - aSegStart.x),
(aSegEnd.x - aSegStart.x) );
aSegStart.y += temp;
aSegStart.x = m_xcliplo;
WHEN_INSIDE;
}
if( aSegEnd.x > m_xcliphi )
{
temp = USCALE( (aSegEnd.y - aSegStart.y), (aSegEnd.x - m_xcliphi),
(aSegEnd.x - aSegStart.x) );
aSegEnd.y -= temp;
aSegEnd.x = m_xcliphi;
WHEN_INSIDE;
}
}
else
{
if( (aSegStart.y < m_ycliplo) || (aSegEnd.y > m_ycliphi) )
{
WHEN_OUTSIDE;
}
if( aSegStart.y > m_ycliphi )
{
temp = USCALE( (aSegEnd.x - aSegStart.x), (aSegStart.y - m_ycliphi),
(aSegStart.y - aSegEnd.y) );
if( (aSegStart.x += temp) > m_xcliphi )
{
WHEN_OUTSIDE;
}
aSegStart.y = m_ycliphi;
WHEN_INSIDE;
}
if( aSegEnd.y < m_ycliplo )
{
temp = USCALE( (aSegEnd.x - aSegStart.x), (m_ycliplo - aSegEnd.y),
(aSegStart.y - aSegEnd.y) );
if( (aSegEnd.x -= temp) < m_xcliplo )
{
WHEN_OUTSIDE;
}
aSegEnd.y = m_ycliplo;
WHEN_INSIDE;
}
if( aSegStart.x < m_xcliplo )
{
temp = USCALE( (aSegStart.y - aSegEnd.y), (m_xcliplo - aSegStart.x),
(aSegEnd.x - aSegStart.x) );
aSegStart.y -= temp;
aSegStart.x = m_xcliplo;
WHEN_INSIDE;
}
if( aSegEnd.x > m_xcliphi )
{
temp = USCALE( (aSegStart.y - aSegEnd.y), (aSegEnd.x - m_xcliphi),
(aSegEnd.x - aSegStart.x) );
aSegEnd.y += temp;
aSegEnd.x = m_xcliphi;
WHEN_INSIDE;
}
}
if( ( (aSegEnd.x + aSegStart.x) / 2 <= m_xcliphi )
&& ( (aSegEnd.x + aSegStart.x) / 2 >= m_xcliplo ) \
&& ( (aSegEnd.y + aSegStart.y) / 2 <= m_ycliphi )
&& ( (aSegEnd.y + aSegStart.y) / 2 >= m_ycliplo ) )
{
return false;
}
else
{
return true;
}
}