kicad/pcbnew/class_drawsegment.cpp

1027 lines
27 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@verizon.net>
* Copyright (C) 1992-2018 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file class_drawsegment.cpp
* @brief Class and functions to handle a graphic segments.
*/
#include <fctsys.h>
#include <macros.h>
#include <gr_basic.h>
#include <bezier_curves.h>
#include <class_drawpanel.h>
#include <pcb_screen.h>
#include <trigo.h>
#include <msgpanel.h>
#include <bitmaps.h>
#include <pcb_edit_frame.h>
#include <pcbnew.h>
#include <class_board.h>
#include <class_module.h>
#include <class_drawsegment.h>
#include <base_units.h>
DRAWSEGMENT::DRAWSEGMENT( BOARD_ITEM* aParent, KICAD_T idtype ) :
BOARD_ITEM( aParent, idtype )
{
m_Type = 0;
m_Angle = 0;
m_Flags = 0;
m_Shape = S_SEGMENT;
m_Width = Millimeter2iu( DEFAULT_LINE_WIDTH );
}
DRAWSEGMENT::~DRAWSEGMENT()
{
}
void DRAWSEGMENT::SetPosition( const wxPoint& aPos )
{
m_Start = aPos;
}
const wxPoint DRAWSEGMENT::GetPosition() const
{
if( m_Shape == S_POLYGON )
return (wxPoint) m_Poly.CVertex( 0 );
else
return m_Start;
}
double DRAWSEGMENT::GetLength() const
{
double length = 0.0;
switch( m_Shape )
{
case S_CURVE:
for( size_t ii = 1; ii < m_BezierPoints.size(); ++ii )
length += GetLineLength( m_BezierPoints[ii - 1], m_BezierPoints[ii] );
break;
default:
length = GetLineLength( GetStart(), GetEnd() );
break;
}
return length;
}
void DRAWSEGMENT::Move( const wxPoint& aMoveVector )
{
m_Start += aMoveVector;
m_End += aMoveVector;
switch ( m_Shape )
{
case S_POLYGON:
for( auto iter = m_Poly.Iterate(); iter; iter++ )
{
(*iter) += VECTOR2I( aMoveVector );
}
break;
case S_CURVE:
m_BezierC1 += aMoveVector;
m_BezierC2 += aMoveVector;
for( unsigned int ii = 0; ii < m_BezierPoints.size(); ii++ )
{
m_BezierPoints[ii] += aMoveVector;
}
break;
default:
break;
}
}
void DRAWSEGMENT::Rotate( const wxPoint& aRotCentre, double aAngle )
{
switch( m_Shape )
{
case S_ARC:
case S_SEGMENT:
case S_CIRCLE:
// these can all be done by just rotating the start and end points
RotatePoint( &m_Start, aRotCentre, aAngle);
RotatePoint( &m_End, aRotCentre, aAngle);
break;
case S_POLYGON:
for( auto iter = m_Poly.Iterate(); iter; iter++ )
{
RotatePoint( *iter, VECTOR2I(aRotCentre), aAngle);
}
break;
case S_CURVE:
RotatePoint( &m_Start, aRotCentre, aAngle);
RotatePoint( &m_End, aRotCentre, aAngle);
RotatePoint( &m_BezierC1, aRotCentre, aAngle);
RotatePoint( &m_BezierC2, aRotCentre, aAngle);
for( unsigned int ii = 0; ii < m_BezierPoints.size(); ii++ )
{
RotatePoint( &m_BezierPoints[ii], aRotCentre, aAngle);
}
break;
case S_RECT:
default:
// un-handled edge transform
wxASSERT_MSG( false, wxT( "DRAWSEGMENT::Rotate not implemented for "
+ ShowShape( m_Shape ) ) );
break;
}
}
void DRAWSEGMENT::Flip( const wxPoint& aCentre )
{
m_Start.y = aCentre.y - (m_Start.y - aCentre.y);
m_End.y = aCentre.y - (m_End.y - aCentre.y);
switch ( m_Shape )
{
case S_ARC:
m_Angle = -m_Angle;
break;
case S_POLYGON:
for( auto iter = m_Poly.Iterate(); iter; iter++ )
{
iter->y = aCentre.y - (iter->y - aCentre.y);
}
break;
case S_CURVE:
{
m_BezierC1.y = aCentre.y - (m_BezierC1.y - aCentre.y);
m_BezierC2.y = aCentre.y - (m_BezierC2.y - aCentre.y);
// Rebuild the poly points shape
std::vector<wxPoint> ctrlPoints = { m_Start, m_BezierC1, m_BezierC2, m_End };
BEZIER_POLY converter( ctrlPoints );
converter.GetPoly( m_BezierPoints, m_Width );
}
break;
default:
break;
}
// DRAWSEGMENT items are not allowed on copper layers, so
// copper layers count is not taken in account in Flip transform
SetLayer( FlipLayer( GetLayer() ) );
}
void DRAWSEGMENT::RebuildBezierToSegmentsPointsList( int aMinSegLen )
{
// Has meaning only for S_CURVE DRAW_SEGMENT shape
if( m_Shape != S_CURVE )
{
m_BezierPoints.clear();
return;
}
// Rebuild the m_BezierPoints vertex list that approximate the Bezier curve
std::vector<wxPoint> ctrlPoints = { m_Start, m_BezierC1, m_BezierC2, m_End };
BEZIER_POLY converter( ctrlPoints );
converter.GetPoly( m_BezierPoints, aMinSegLen );
}
const wxPoint DRAWSEGMENT::GetCenter() const
{
wxPoint c;
switch( m_Shape )
{
case S_ARC:
case S_CIRCLE:
c = m_Start;
break;
case S_SEGMENT:
// Midpoint of the line
c = ( GetStart() + GetEnd() ) / 2;
break;
case S_POLYGON:
case S_RECT:
case S_CURVE:
c = GetBoundingBox().Centre();
break;
default:
wxASSERT_MSG( false, "DRAWSEGMENT::GetCentre not implemented for shape"
+ ShowShape( GetShape() ) );
break;
}
return c;
}
const wxPoint DRAWSEGMENT::GetArcEnd() const
{
wxPoint endPoint( m_End ); // start of arc
switch( m_Shape )
{
case S_ARC:
// rotate the starting point of the arc, given by m_End, through the
// angle m_Angle to get the ending point of the arc.
// m_Start is the arc centre
endPoint = m_End; // m_End = start point of arc
RotatePoint( &endPoint, m_Start, -m_Angle );
break;
default:
break;
}
return endPoint; // after rotation, the end of the arc.
}
const wxPoint DRAWSEGMENT::GetArcMid() const
{
wxPoint endPoint( m_End );
switch( m_Shape )
{
case S_ARC:
// rotate the starting point of the arc, given by m_End, through half
// the angle m_Angle to get the middle of the arc.
// m_Start is the arc centre
endPoint = m_End; // m_End = start point of arc
RotatePoint( &endPoint, m_Start, -m_Angle / 2.0 );
break;
default:
break;
}
return endPoint; // after rotation, the end of the arc.
}
double DRAWSEGMENT::GetArcAngleStart() const
{
// due to the Y axis orient atan2 needs - y value
double angleStart = ArcTangente( GetArcStart().y - GetCenter().y,
GetArcStart().x - GetCenter().x );
// Normalize it to 0 ... 360 deg, to avoid discontinuity for angles near 180 deg
// because 180 deg and -180 are very near angles when ampping betewwen -180 ... 180 deg.
// and this is not easy to handle in calculations
NORMALIZE_ANGLE_POS( angleStart );
return angleStart;
}
void DRAWSEGMENT::SetAngle( double aAngle )
{
// m_Angle must be >= -360 and <= +360 degrees
m_Angle = NormalizeAngle360Max( aAngle );
}
MODULE* DRAWSEGMENT::GetParentModule() const
{
if( !m_Parent || m_Parent->Type() != PCB_MODULE_T )
return NULL;
return (MODULE*) m_Parent;
}
void DRAWSEGMENT::Draw( EDA_DRAW_PANEL* panel, wxDC* DC, GR_DRAWMODE draw_mode,
const wxPoint& aOffset )
{
int ux0, uy0, dx, dy;
int l_trace;
int radius;
PCB_LAYER_ID curr_layer = ( (PCB_SCREEN*) panel->GetScreen() )->m_Active_Layer;
BOARD * brd = GetBoard( );
if( brd->IsLayerVisible( GetLayer() ) == false )
return;
auto frame = static_cast<PCB_EDIT_FRAME*> ( panel->GetParent() );
auto color = frame->Settings().Colors().GetLayerColor( GetLayer() );
auto displ_opts = (PCB_DISPLAY_OPTIONS*) panel->GetDisplayOptions();
if( ( draw_mode & GR_ALLOW_HIGHCONTRAST ) && displ_opts && displ_opts->m_ContrastModeDisplay )
{
if( !IsOnLayer( curr_layer ) && !IsOnLayer( Edge_Cuts ) )
color = COLOR4D( DARKDARKGRAY );
}
GRSetDrawMode( DC, draw_mode );
l_trace = m_Width >> 1; // half trace width
// Line start point or Circle and Arc center
ux0 = m_Start.x + aOffset.x;
uy0 = m_Start.y + aOffset.y;
// Line end point or circle and arc start point
dx = m_End.x + aOffset.x;
dy = m_End.y + aOffset.y;
bool filled = displ_opts ? displ_opts->m_DisplayDrawItemsFill : FILLED;
if( m_Flags & FORCE_SKETCH )
filled = SKETCH;
switch( m_Shape )
{
case S_CIRCLE:
radius = KiROUND( Distance( ux0, uy0, dx, dy ) );
if( filled )
{
GRCircle( panel->GetClipBox(), DC, ux0, uy0, radius, m_Width, color );
}
else
{
GRCircle( panel->GetClipBox(), DC, ux0, uy0, radius - l_trace, color );
GRCircle( panel->GetClipBox(), DC, ux0, uy0, radius + l_trace, color );
}
break;
case S_ARC:
double StAngle, EndAngle;
radius = KiROUND( Distance( ux0, uy0, dx, dy ) );
StAngle = ArcTangente( dy - uy0, dx - ux0 );
EndAngle = StAngle + m_Angle;
if( !panel->GetPrintMirrored() )
{
if( StAngle > EndAngle )
std::swap( StAngle, EndAngle );
}
else // Mirrored mode: arc orientation is reversed
{
#ifdef __WXMAC__ // wxWidgets OSX print driver handles arc mirroring for us
if( StAngle > EndAngle )
std::swap( StAngle, EndAngle );
#else
if( StAngle < EndAngle )
std::swap( StAngle, EndAngle );
#endif
}
if( filled )
{
GRArc( panel->GetClipBox(), DC, ux0, uy0, StAngle, EndAngle,
radius, m_Width, color );
}
else
{
GRArc( panel->GetClipBox(), DC, ux0, uy0, StAngle, EndAngle,
radius - l_trace, color );
GRArc( panel->GetClipBox(), DC, ux0, uy0, StAngle, EndAngle,
radius + l_trace, color );
}
break;
case S_CURVE:
{
RebuildBezierToSegmentsPointsList( m_Width );
wxPoint& startp = m_BezierPoints[0];
for( unsigned int i = 1; i < m_BezierPoints.size(); i++ )
{
wxPoint& endp = m_BezierPoints[i];
if( filled )
GRFilledSegment( panel->GetClipBox(), DC,
startp+aOffset, endp+aOffset, m_Width, color );
else
GRCSegm( panel->GetClipBox(), DC,
startp+aOffset, endp+aOffset, m_Width, color );
startp = m_BezierPoints[i];
}
}
break;
case S_POLYGON:
{
SHAPE_POLY_SET& outline = GetPolyShape();
// Draw the polygon: only one polygon is expected
// However we provide a multi polygon shape drawing
// ( for the future or to show a non expected shape )
for( int jj = 0; jj < outline.OutlineCount(); ++jj )
{
SHAPE_LINE_CHAIN& poly = outline.Outline( jj );
GRClosedPoly( panel->GetClipBox(), DC, poly.PointCount(),
(wxPoint*)&poly.Point( 0 ), IsPolygonFilled(), GetWidth(),
color, color );
}
}
break;
default:
if( filled )
{
GRFillCSegm( panel->GetClipBox(), DC, ux0, uy0, dx, dy, m_Width, color );
}
else
{
GRCSegm( panel->GetClipBox(), DC, ux0, uy0, dx, dy, m_Width, color );
}
break;
}
}
void DRAWSEGMENT::GetMsgPanelInfo( EDA_UNITS_T aUnits, std::vector< MSG_PANEL_ITEM >& aList )
{
wxString msg;
msg = _( "Drawing" );
aList.push_back( MSG_PANEL_ITEM( _( "Type" ), msg, DARKCYAN ) );
wxString shape = _( "Shape" );
switch( m_Shape )
{
case S_CIRCLE:
aList.push_back( MSG_PANEL_ITEM( shape, _( "Circle" ), RED ) );
msg = MessageTextFromValue( aUnits, GetLineLength( m_Start, m_End ) );
aList.push_back( MSG_PANEL_ITEM( _( "Radius" ), msg, RED ) );
break;
case S_ARC:
aList.push_back( MSG_PANEL_ITEM( shape, _( "Arc" ), RED ) );
msg.Printf( wxT( "%.1f" ), m_Angle / 10.0 );
aList.push_back( MSG_PANEL_ITEM( _( "Angle" ), msg, RED ) );
msg = MessageTextFromValue( aUnits, GetLineLength( m_Start, m_End ) );
aList.push_back( MSG_PANEL_ITEM( _( "Radius" ), msg, RED ) );
break;
case S_CURVE:
aList.push_back( MSG_PANEL_ITEM( shape, _( "Curve" ), RED ) );
msg = MessageTextFromValue( aUnits, GetLength() );
aList.push_back( MSG_PANEL_ITEM( _( "Length" ), msg, DARKGREEN ) );
break;
default:
{
aList.push_back( MSG_PANEL_ITEM( shape, _( "Segment" ), RED ) );
msg = MessageTextFromValue( aUnits, GetLineLength( m_Start, m_End ) );
aList.push_back( MSG_PANEL_ITEM( _( "Length" ), msg, DARKGREEN ) );
// angle counter-clockwise from 3'o-clock
const double deg = RAD2DEG( atan2( (double)( m_Start.y - m_End.y ),
(double)( m_End.x - m_Start.x ) ) );
msg.Printf( wxT( "%.1f" ), deg );
aList.push_back( MSG_PANEL_ITEM( _( "Angle" ), msg, DARKGREEN ) );
}
}
wxString start = wxString::Format( "@(%s, %s)",
MessageTextFromValue( aUnits, GetStart().x ),
MessageTextFromValue( aUnits, GetStart().y ) );
wxString end = wxString::Format( "@(%s, %s)",
MessageTextFromValue( aUnits, GetEnd().x ),
MessageTextFromValue( aUnits, GetEnd().y ) );
aList.push_back( MSG_PANEL_ITEM( start, end, DARKGREEN ) );
aList.push_back( MSG_PANEL_ITEM( _( "Layer" ), GetLayerName(), DARKBROWN ) );
msg = MessageTextFromValue( aUnits, m_Width, true );
aList.push_back( MSG_PANEL_ITEM( _( "Width" ), msg, DARKCYAN ) );
}
const EDA_RECT DRAWSEGMENT::GetBoundingBox() const
{
EDA_RECT bbox;
bbox.SetOrigin( m_Start );
switch( m_Shape )
{
case S_SEGMENT:
bbox.SetEnd( m_End );
break;
case S_CIRCLE:
bbox.Inflate( GetRadius() );
break;
case S_ARC:
computeArcBBox( bbox );
break;
case S_POLYGON:
if( m_Poly.IsEmpty() )
break;
{
wxPoint p_end;
MODULE* module = GetParentModule();
bool first = true;
for( auto iter = m_Poly.CIterate(); iter; iter++ )
{
wxPoint pt ( iter->x, iter->y );
if( module ) // Transform, if we belong to a module
{
RotatePoint( &pt, module->GetOrientation() );
pt += module->GetPosition();
}
if( first )
{
p_end = pt;
bbox.SetX( pt.x );
bbox.SetY( pt.y );
first = false;
}
else
{
bbox.SetX( std::min( bbox.GetX(), pt.x ) );
bbox.SetY( std::min( bbox.GetY(), pt.y ) );
p_end.x = std::max( p_end.x, pt.x );
p_end.y = std::max( p_end.y, pt.y );
}
}
bbox.SetEnd( p_end );
break;
}
case S_CURVE:
for( unsigned ii = 0; ii < m_BezierPoints.size(); ++ii )
bbox.Merge( m_BezierPoints[ii] );
break;
default:
break;
}
bbox.Inflate( ((m_Width+1) / 2) + 1 );
bbox.Normalize();
return bbox;
}
bool DRAWSEGMENT::HitTest( const wxPoint& aPosition, int aAccuracy ) const
{
int maxdist = aAccuracy + ( m_Width / 2 );
switch( m_Shape )
{
case S_CIRCLE:
case S_ARC:
{
wxPoint relPos = aPosition - GetCenter();
int radius = GetRadius();
int dist = KiROUND( EuclideanNorm( relPos ) );
if( abs( radius - dist ) <= maxdist )
{
if( m_Shape == S_CIRCLE )
return true;
// For arcs, the test point angle must be >= arc angle start
// and <= arc angle end
// However angle values > 360 deg are not easy to handle
// so we calculate the relative angle between arc start point and teast point
// this relative arc should be < arc angle if arc angle > 0 (CW arc)
// and > arc angle if arc angle < 0 (CCW arc)
double arc_angle_start = GetArcAngleStart(); // Always 0.0 ... 360 deg, in 0.1 deg
double arc_hittest = ArcTangente( relPos.y, relPos.x );
// Calculate relative angle between the starting point of the arc, and the test point
arc_hittest -= arc_angle_start;
// Normalise arc_hittest between 0 ... 360 deg
NORMALIZE_ANGLE_POS( arc_hittest );
// Check angle: inside the arc angle when it is > 0
// and outside the not drawn arc when it is < 0
if( GetAngle() >= 0.0 )
{
if( arc_hittest <= GetAngle() )
return true;
}
else
{
if( arc_hittest >= (3600.0 + GetAngle()) )
return true;
}
}
}
break;
case S_CURVE:
((DRAWSEGMENT*)this)->RebuildBezierToSegmentsPointsList( m_Width );
for( unsigned int i= 1; i < m_BezierPoints.size(); i++)
{
if( TestSegmentHit( aPosition, m_BezierPoints[i-1], m_BezierPoints[i-1], maxdist ) )
return true;
}
break;
case S_SEGMENT:
if( TestSegmentHit( aPosition, m_Start, m_End, maxdist ) )
return true;
break;
case S_POLYGON:
{
if( !IsPolygonFilled() )
{
SHAPE_POLY_SET::VERTEX_INDEX i;
auto poly = m_Poly; //todo: Fix CollideEdge to be const
return poly.CollideEdge( VECTOR2I( aPosition ), i,
std::max( maxdist, Millimeter2iu( 0.25 ) ) );
}
else
return m_Poly.Collide( VECTOR2I( aPosition ), maxdist );
}
break;
default:
wxASSERT_MSG( 0, wxString::Format( "unknown DRAWSEGMENT shape: %d", m_Shape ) );
break;
}
return false;
}
bool DRAWSEGMENT::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const
{
EDA_RECT arect = aRect;
arect.Normalize();
arect.Inflate( aAccuracy );
EDA_RECT arcRect;
EDA_RECT bb = GetBoundingBox();
switch( m_Shape )
{
case S_CIRCLE:
// Test if area intersects or contains the circle:
if( aContained )
return arect.Contains( bb );
else
{
// If the rectangle does not intersect the bounding box, this is a much quicker test
if( !aRect.Intersects( bb ) )
{
return false;
}
else
{
return arect.IntersectsCircleEdge( GetCenter(), GetRadius(), GetWidth() );
}
}
break;
case S_ARC:
// Test for full containment of this arc in the rect
if( aContained )
{
return arect.Contains( bb );
}
// Test if the rect crosses the arc
else
{
arcRect = bb.Common( arect );
/* All following tests must pass:
* 1. Rectangle must intersect arc BoundingBox
* 2. Rectangle must cross the outside of the arc
*/
return arcRect.Intersects( arect ) &&
arcRect.IntersectsCircleEdge( GetCenter(), GetRadius(), GetWidth() );
}
break;
case S_SEGMENT:
if( aContained )
{
return arect.Contains( GetStart() ) && aRect.Contains( GetEnd() );
}
else
{
// Account for the width of the line
arect.Inflate( GetWidth() / 2 );
return arect.Intersects( GetStart(), GetEnd() );
}
break;
case S_POLYGON:
if( aContained )
{
return arect.Contains( bb );
}
else
{
// Fast test: if aRect is outside the polygon bounding box,
// rectangles cannot intersect
if( !arect.Intersects( bb ) )
return false;
// Account for the width of the line
arect.Inflate( GetWidth() / 2 );
int count = m_Poly.TotalVertices();
for( int ii = 0; ii < count; ii++ )
{
auto vertex = m_Poly.CVertex( ii );
auto vertexNext = m_Poly.CVertex( ( ii + 1 ) % count );
// Test if the point is within aRect
if( arect.Contains( ( wxPoint ) vertex ) )
return true;
// Test if this edge intersects aRect
if( arect.Intersects( ( wxPoint ) vertex, ( wxPoint ) vertexNext ) )
return true;
}
}
break;
case S_CURVE: // not yet handled
if( aContained )
{
return arect.Contains( bb );
}
else
{
// Fast test: if aRect is outside the polygon bounding box,
// rectangles cannot intersect
if( !arect.Intersects( bb ) )
return false;
// Account for the width of the line
arect.Inflate( GetWidth() / 2 );
unsigned count = m_BezierPoints.size();
for( unsigned ii = 1; ii < count; ii++ )
{
wxPoint vertex = m_BezierPoints[ii-1];
wxPoint vertexNext = m_BezierPoints[ii];
// Test if the point is within aRect
if( arect.Contains( ( wxPoint ) vertex ) )
return true;
// Test if this edge intersects aRect
if( arect.Intersects( vertex, vertexNext ) )
return true;
}
}
break;
default:
wxASSERT_MSG( 0, wxString::Format( "unknown DRAWSEGMENT shape: %d", m_Shape ) );
break;
}
return false;
}
wxString DRAWSEGMENT::GetSelectMenuText( EDA_UNITS_T aUnits ) const
{
return wxString::Format( _( "Pcb Graphic %s, length %s on %s" ),
ShowShape( m_Shape ),
MessageTextFromValue( aUnits, GetLength() ),
GetLayerName() );
}
BITMAP_DEF DRAWSEGMENT::GetMenuImage() const
{
return add_dashed_line_xpm;
}
EDA_ITEM* DRAWSEGMENT::Clone() const
{
return new DRAWSEGMENT( *this );
}
const BOX2I DRAWSEGMENT::ViewBBox() const
{
// For arcs - do not include the center point in the bounding box,
// it is redundant for displaying an arc
if( m_Shape == S_ARC )
{
EDA_RECT bbox;
bbox.SetOrigin( m_End );
computeArcBBox( bbox );
return BOX2I( bbox.GetOrigin(), bbox.GetSize() );
}
return EDA_ITEM::ViewBBox();
}
void DRAWSEGMENT::computeArcBBox( EDA_RECT& aBBox ) const
{
// Do not include the center, which is not necessarily
// inside the BB of a arc with a small angle
aBBox.SetOrigin( m_End );
wxPoint end = m_End;
RotatePoint( &end, m_Start, -m_Angle );
aBBox.Merge( end );
// Determine the starting quarter
// 0 right-bottom
// 1 left-bottom
// 2 left-top
// 3 right-top
unsigned int quarter = 0; // assume right-bottom
if( m_End.x < m_Start.x )
{
if( m_End.y <= m_Start.y )
quarter = 2;
else // ( m_End.y > m_Start.y )
quarter = 1;
}
else if( m_End.x >= m_Start.x )
{
if( m_End.y < m_Start.y )
quarter = 3;
else if( m_End.x == m_Start.x )
quarter = 1;
}
int radius = GetRadius();
int angle = (int) GetArcAngleStart() % 900 + m_Angle;
bool directionCW = ( m_Angle > 0 ); // Is the direction of arc clockwise?
// Make the angle positive, so we go clockwise and merge points belonging to the arc
if( !directionCW )
{
angle = 900 - angle;
quarter = ( quarter + 3 ) % 4; // -1 modulo arithmetic
}
while( angle > 900 )
{
switch( quarter )
{
case 0:
aBBox.Merge( wxPoint( m_Start.x, m_Start.y + radius ) ); // down
break;
case 1:
aBBox.Merge( wxPoint( m_Start.x - radius, m_Start.y ) ); // left
break;
case 2:
aBBox.Merge( wxPoint( m_Start.x, m_Start.y - radius ) ); // up
break;
case 3:
aBBox.Merge( wxPoint( m_Start.x + radius, m_Start.y ) ); // right
break;
}
if( directionCW )
++quarter;
else
quarter += 3; // -1 modulo arithmetic
quarter %= 4;
angle -= 900;
}
}
void DRAWSEGMENT::SetPolyPoints( const std::vector<wxPoint>& aPoints )
{
m_Poly.RemoveAllContours();
m_Poly.NewOutline();
for ( auto p : aPoints )
{
m_Poly.Append( p.x, p.y );
}
}
const std::vector<wxPoint> DRAWSEGMENT::BuildPolyPointsList() const
{
std::vector<wxPoint> rv;
if( m_Poly.OutlineCount() )
{
if( m_Poly.COutline( 0 ).PointCount() )
{
for ( auto iter = m_Poly.CIterate(); iter; iter++ )
{
rv.push_back( wxPoint( iter->x, iter->y ) );
}
}
}
return rv;
}
bool DRAWSEGMENT::IsPolyShapeValid() const
{
// return true if the polygonal shape is valid (has more than 2 points)
if( GetPolyShape().OutlineCount() == 0 )
return false;
const SHAPE_LINE_CHAIN& outline = ((SHAPE_POLY_SET&)GetPolyShape()).Outline( 0 );
return outline.PointCount() > 2;
}
int DRAWSEGMENT::GetPointCount() const
{
// return the number of corners of the polygonal shape
// this shape is expected to be only one polygon without hole
if( GetPolyShape().OutlineCount() )
return GetPolyShape().VertexCount( 0 );
return 0;
}
void DRAWSEGMENT::SwapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_LINE_T );
std::swap( *((DRAWSEGMENT*) this), *((DRAWSEGMENT*) aImage) );
}