kicad/pcbnew/router/pns_meander_placer_base.cpp

307 lines
8.1 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2015 CERN
* Copyright (C) 2016-2021 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "pns_meander_placer_base.h"
#include "pns_meander.h"
#include "pns_router.h"
#include "pns_solid.h"
#include "pns_arc.h"
namespace PNS {
MEANDER_PLACER_BASE::MEANDER_PLACER_BASE( ROUTER* aRouter ) :
PLACEMENT_ALGO( aRouter )
{
m_world = nullptr;
m_currentWidth = 0;
m_padToDieLength = 0;
}
MEANDER_PLACER_BASE::~MEANDER_PLACER_BASE()
{
}
void MEANDER_PLACER_BASE::AmplitudeStep( int aSign )
{
int a = m_settings.m_maxAmplitude + aSign * m_settings.m_step;
a = std::max( a, m_settings.m_minAmplitude );
m_settings.m_maxAmplitude = a;
}
void MEANDER_PLACER_BASE::SpacingStep( int aSign )
{
int s = m_settings.m_spacing + aSign * m_settings.m_step;
s = std::max( s, m_currentWidth + Clearance() );
m_settings.m_spacing = s;
}
int MEANDER_PLACER_BASE::Clearance()
{
// Assumption: All tracks are part of the same net class.
// It shouldn't matter which track we pick. They should all have the same clearance if
// they are part of the same net class. Therefore, pick the first one on the list.
ITEM* itemToCheck = Traces().CItems().front().item;
PNS::CONSTRAINT constraint;
Router()->GetRuleResolver()->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_CLEARANCE, itemToCheck,
nullptr, CurrentLayer(), &constraint );
wxCHECK_MSG( constraint.m_Value.HasMin(), m_currentWidth, wxT( "No minimum clearance?" ) );
return constraint.m_Value.Min();
}
void MEANDER_PLACER_BASE::UpdateSettings( const MEANDER_SETTINGS& aSettings )
{
m_settings = aSettings;
}
void MEANDER_PLACER_BASE::cutTunedLine( const SHAPE_LINE_CHAIN& aOrigin, const VECTOR2I& aTuneStart,
const VECTOR2I& aCursorPos, SHAPE_LINE_CHAIN& aPre,
SHAPE_LINE_CHAIN& aTuned, SHAPE_LINE_CHAIN& aPost )
{
VECTOR2I cp ( aCursorPos );
if( cp == aTuneStart ) // we don't like tuning segments with 0 length
{
int idx = aOrigin.FindSegment( cp );
if( idx >= 0 )
{
const SEG& s = aOrigin.CSegment( idx );
cp += ( s.B - s.A ).Resize( 2 );
}
else
{
cp += VECTOR2I( 2, 5 ); // some arbitrary value that is not 45 degrees oriented
}
}
VECTOR2I n = aOrigin.NearestPoint( cp, false );
VECTOR2I m = aOrigin.NearestPoint( aTuneStart, false );
SHAPE_LINE_CHAIN l( aOrigin );
l.Split( n );
l.Split( m );
int i_start = l.Find( m );
int i_end = l.Find( n );
if( i_start > i_end )
{
l = l.Reverse();
i_start = l.Find( m );
i_end = l.Find( n );
}
aPre = l.Slice( 0, i_start );
aPost = l.Slice( i_end, -1 );
aTuned = l.Slice( i_start, i_end );
aTuned.Simplify();
}
void MEANDER_PLACER_BASE::tuneLineLength( MEANDERED_LINE& aTuned, long long int aElongation )
{
long long int remaining = aElongation;
bool finished = false;
for( MEANDER_SHAPE* m : aTuned.Meanders() )
{
if( m->Type() != MT_CORNER && m->Type() != MT_ARC )
{
if( remaining >= 0 )
remaining -= m->MaxTunableLength() - m->BaselineLength();
if( remaining < 0 )
{
if( !finished )
{
MEANDER_TYPE newType;
if( m->Type() == MT_START || m->Type() == MT_SINGLE )
newType = MT_SINGLE;
else
newType = MT_FINISH;
m->SetType( newType );
m->Recalculate();
finished = true;
}
else
{
m->MakeEmpty();
}
}
}
}
remaining = aElongation;
int meanderCount = 0;
for( MEANDER_SHAPE* m : aTuned.Meanders() )
{
if( m->Type() != MT_CORNER && m->Type() != MT_ARC && m->Type() != MT_EMPTY )
{
if(remaining >= 0)
{
remaining -= m->MaxTunableLength() - m->BaselineLength();
meanderCount ++;
}
}
}
long long int balance = 0;
if( meanderCount )
balance = -remaining / meanderCount;
if( balance >= 0 )
{
for( MEANDER_SHAPE* m : aTuned.Meanders() )
{
if( m->Type() != MT_CORNER && m->Type() != MT_ARC && m->Type() != MT_EMPTY )
{
m->Resize( std::max( m->Amplitude() - balance / 2,
(long long int) m_settings.m_minAmplitude ) );
}
}
}
}
int MEANDER_PLACER_BASE::GetTotalPadToDieLength( const LINE& aLine ) const
{
int length = 0;
JOINT start;
JOINT end;
m_world->FindLineEnds( aLine, start, end );
// Extract the length of the pad to die for start and end pads
for( auto& link : start.LinkList() )
{
if( const SOLID* solid = dynamic_cast<const SOLID*>( link.item ) )
{
// If there are overlapping pads, choose the first with a non-zero length
if( solid->GetPadToDie() > 0 )
{
length += solid->GetPadToDie();
break;
}
}
}
for( auto& link : end.LinkList() )
{
if( const SOLID* solid = dynamic_cast<const SOLID*>( link.item ) )
{
if( solid->GetPadToDie() > 0 )
{
length += solid->GetPadToDie();
break;
}
}
}
return length;
}
const MEANDER_SETTINGS& MEANDER_PLACER_BASE::MeanderSettings() const
{
return m_settings;
}
int MEANDER_PLACER_BASE::compareWithTolerance(
long long int aValue, long long int aExpected, long long int aTolerance ) const
{
if( aValue < aExpected - aTolerance )
return -1;
else if( aValue > aExpected + aTolerance )
return 1;
else
return 0;
}
VECTOR2I MEANDER_PLACER_BASE::getSnappedStartPoint( LINKED_ITEM* aStartItem, VECTOR2I aStartPoint )
{
if( aStartItem->Kind() == ITEM::SEGMENT_T )
{
return static_cast<SEGMENT*>( aStartItem )->Seg().NearestPoint( aStartPoint );
}
else
{
wxASSERT( aStartItem->Kind() == ITEM::ARC_T );
ARC* arc = static_cast<ARC*>( aStartItem );
if( ( VECTOR2I( arc->Anchor( 0 ) - aStartPoint ) ).SquaredEuclideanNorm() <=
( VECTOR2I( arc->Anchor( 1 ) - aStartPoint ) ).SquaredEuclideanNorm() )
{
return arc->Anchor( 0 );
}
else
{
return arc->Anchor( 1 );
}
}
}
long long int MEANDER_PLACER_BASE::lineLength( const ITEM_SET& aLine ) const
{
long long int total = 0;
for( int idx = 0; idx < aLine.Size(); idx++ )
{
const ITEM* item = aLine[idx];
if( const LINE* l = dyn_cast<const LINE*>( item ) )
{
total += l->CLine().Length();
}
else if( item->OfKind( ITEM::VIA_T ) && idx > 0 && idx < aLine.Size() - 1 )
{
int layerPrev = aLine[idx - 1]->Layer();
int layerNext = aLine[idx + 1]->Layer();
if( layerPrev != layerNext )
total += m_router->GetInterface()->StackupHeight( layerPrev, layerNext );
}
}
return total;
}
}