kicad/pcbnew/plot_brditems_plotter.cpp

970 lines
33 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 1992-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <algorithm> // for min
#include <bitset> // for bitset, operator&, __bi...
#include <math.h> // for abs
#include <geometry/seg.h> // for SEG
#include <geometry/shape_circle.h>
#include <geometry/shape_line_chain.h> // for SHAPE_LINE_CHAIN
#include <geometry/shape_poly_set.h> // for SHAPE_POLY_SET, SHAPE_P...
#include <geometry/shape_segment.h>
#include <string_utils.h>
#include <macros.h>
#include <math/util.h> // for KiROUND, Clamp
#include <math/vector2d.h> // for VECTOR2I
#include <plotters/plotter_gerber.h>
#include <trigo.h>
#include <core/typeinfo.h> // for dyn_cast, PCB_DIMENSION_T
#include <gbr_metadata.h>
#include <gbr_netlist_metadata.h> // for GBR_NETLIST_METADATA
#include <layer_ids.h> // for LSET, IsCopperLayer
#include <pcbplot.h>
#include <pcb_plot_params.h> // for PCB_PLOT_PARAMS, PCB_PL...
#include <advanced_config.h>
#include <pcb_dimension.h>
#include <pcb_shape.h>
#include <footprint.h>
#include <pcb_track.h>
#include <pad.h>
#include <pcb_target.h>
#include <pcb_text.h>
#include <pcb_textbox.h>
#include <zone.h>
#include <wx/debug.h> // for wxASSERT_MSG
COLOR4D BRDITEMS_PLOTTER::getColor( int aLayer ) const
{
COLOR4D color = ColorSettings()->GetColor( aLayer );
// A hack to avoid plotting a white item in white color on white paper
if( color == COLOR4D::WHITE )
color = COLOR4D( LIGHTGRAY );
return color;
}
void BRDITEMS_PLOTTER::PlotPad( const PAD* aPad, const COLOR4D& aColor, OUTLINE_MODE aPlotMode )
{
VECTOR2I shape_pos = aPad->ShapePos();
GBR_METADATA metadata;
bool plotOnCopperLayer = ( m_layerMask & LSET::AllCuMask() ).any();
bool plotOnExternalCopperLayer = ( m_layerMask & LSET::ExternalCuMask() ).any();
// Pad not on the solder mask layer cannot be soldered.
// therefore it can have a specific aperture attribute.
// Not yet in use.
// bool isPadOnBoardTechLayers = ( aPad->GetLayerSet() & LSET::AllBoardTechMask() ).any();
metadata.SetCmpReference( aPad->GetParentFootprint()->GetReference() );
if( plotOnCopperLayer )
{
metadata.SetNetAttribType( GBR_NETINFO_ALL );
metadata.SetCopper( true );
// Gives a default attribute, for instance for pads used as tracks in net ties:
// Connector pads and SMD pads are on external layers
// if on internal layers, they are certainly used as net tie
// and are similar to tracks: just conductor items
metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_CONDUCTOR );
const bool useUTF8 = false;
const bool useQuoting = false;
metadata.SetPadName( aPad->GetNumber(), useUTF8, useQuoting );
if( !aPad->GetNumber().IsEmpty() )
metadata.SetPadPinFunction( aPad->GetPinFunction(), useUTF8, useQuoting );
metadata.SetNetName( aPad->GetNetname() );
// Some pads are mechanical pads ( through hole or smd )
// when this is the case, they have no pad name and/or are not plated.
// In this case gerber files have slightly different attributes.
if( aPad->GetAttribute() == PAD_ATTRIB::NPTH || aPad->GetNumber().IsEmpty() )
metadata.m_NetlistMetadata.m_NotInNet = true;
if( !plotOnExternalCopperLayer )
{
// the .P object attribute (GBR_NETLIST_METADATA::GBR_NETINFO_PAD)
// is used on outer layers, unless the component is embedded
// or a "etched" component (fp only drawn, not a physical component)
// Currently, Pcbnew does not handle embedded component, so we disable the .P
// attribute on internal layers
// Note the Gerber doc is not really clear about through holes pads about the .P
metadata.SetNetAttribType( GBR_NETLIST_METADATA::GBR_NETINFO_NET |
GBR_NETLIST_METADATA::GBR_NETINFO_CMP );
}
// Some attributes are reserved to the external copper layers:
// GBR_APERTURE_ATTRIB_CONNECTORPAD and GBR_APERTURE_ATTRIB_SMDPAD_CUDEF
// for instance.
// Pad with type PAD_ATTRIB::CONN or PAD_ATTRIB::SMD that is not on outer layer
// has its aperture attribute set to GBR_APERTURE_ATTRIB_CONDUCTOR
switch( aPad->GetAttribute() )
{
case PAD_ATTRIB::NPTH: // Mechanical pad through hole
metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_WASHERPAD );
break;
case PAD_ATTRIB::PTH : // Pad through hole, a hole is also expected
metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_COMPONENTPAD );
break;
case PAD_ATTRIB::CONN: // Connector pads, no solder paste but with solder mask.
if( plotOnExternalCopperLayer )
metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_CONNECTORPAD );
break;
case PAD_ATTRIB::SMD: // SMD pads (on external copper layer only)
// with solder paste and mask
if( plotOnExternalCopperLayer )
metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_SMDPAD_CUDEF );
break;
}
// Fabrication properties can have specific GBR_APERTURE_METADATA options
// that replace previous aperture attribute:
switch( aPad->GetProperty() )
{
case PAD_PROP::BGA: // Only applicable to outer layers
if( plotOnExternalCopperLayer )
metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_BGAPAD_CUDEF );
break;
case PAD_PROP::FIDUCIAL_GLBL:
metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_FIDUCIAL_GLBL );
break;
case PAD_PROP::FIDUCIAL_LOCAL:
metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_FIDUCIAL_LOCAL );
break;
case PAD_PROP::TESTPOINT: // Only applicable to outer layers
if( plotOnExternalCopperLayer )
metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_TESTPOINT );
break;
case PAD_PROP::HEATSINK:
metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_HEATSINKPAD );
break;
case PAD_PROP::CASTELLATED:
metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_CASTELLATEDPAD );
break;
case PAD_PROP::NONE:
break;
}
// Ensure NPTH pads have *always* the GBR_APERTURE_ATTRIB_WASHERPAD attribute
if( aPad->GetAttribute() == PAD_ATTRIB::NPTH )
metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_WASHERPAD );
}
else
{
metadata.SetNetAttribType( GBR_NETLIST_METADATA::GBR_NETINFO_CMP );
}
// Set plot color (change WHITE to LIGHTGRAY because
// the white items are not seen on a white paper or screen
m_plotter->SetColor( aColor != WHITE ? aColor : LIGHTGRAY);
if( aPlotMode == SKETCH )
m_plotter->SetCurrentLineWidth( GetSketchPadLineWidth(), &metadata );
switch( aPad->GetShape() )
{
case PAD_SHAPE::CIRCLE:
m_plotter->FlashPadCircle( shape_pos, aPad->GetSize().x, aPlotMode, &metadata );
break;
case PAD_SHAPE::OVAL:
m_plotter->FlashPadOval( shape_pos, aPad->GetSize(), aPad->GetOrientation(), aPlotMode,
&metadata );
break;
case PAD_SHAPE::RECTANGLE:
m_plotter->FlashPadRect( shape_pos, aPad->GetSize(), aPad->GetOrientation(), aPlotMode,
&metadata );
break;
case PAD_SHAPE::ROUNDRECT:
m_plotter->FlashPadRoundRect( shape_pos, aPad->GetSize(), aPad->GetRoundRectCornerRadius(),
aPad->GetOrientation(), aPlotMode, &metadata );
break;
case PAD_SHAPE::TRAPEZOID:
{
// Build the pad polygon in coordinates relative to the pad
// (i.e. for a pad at pos 0,0, rot 0.0). Needed to use aperture macros,
// to be able to create a pattern common to all trapezoid pads having the same shape
VECTOR2I coord[4];
// Order is lower left, lower right, upper right, upper left.
VECTOR2I half_size = aPad->GetSize() / 2;
VECTOR2I trap_delta = aPad->GetDelta() / 2;
coord[0] = VECTOR2I( -half_size.x - trap_delta.y, half_size.y + trap_delta.x );
coord[1] = VECTOR2I( half_size.x + trap_delta.y, half_size.y - trap_delta.x );
coord[2] = VECTOR2I( half_size.x - trap_delta.y, -half_size.y + trap_delta.x );
coord[3] = VECTOR2I( -half_size.x + trap_delta.y, -half_size.y - trap_delta.x );
m_plotter->FlashPadTrapez( shape_pos, coord, aPad->GetOrientation(), aPlotMode, &metadata );
}
break;
case PAD_SHAPE::CHAMFERED_RECT:
if( m_plotter->GetPlotterType() == PLOT_FORMAT::GERBER )
{
GERBER_PLOTTER* gerberPlotter = static_cast<GERBER_PLOTTER*>( m_plotter );
gerberPlotter->FlashPadChamferRoundRect( shape_pos, aPad->GetSize(),
aPad->GetRoundRectCornerRadius(),
aPad->GetChamferRectRatio(),
aPad->GetChamferPositions(),
aPad->GetOrientation(), aPlotMode, &metadata );
break;
}
KI_FALLTHROUGH;
default:
case PAD_SHAPE::CUSTOM:
{
const std::shared_ptr<SHAPE_POLY_SET>& polygons = aPad->GetEffectivePolygon();
if( polygons->OutlineCount() )
{
m_plotter->FlashPadCustom( shape_pos, aPad->GetSize(), aPad->GetOrientation(),
polygons.get(), aPlotMode, &metadata );
}
}
break;
}
}
void BRDITEMS_PLOTTER::PlotFootprintTextItems( const FOOTPRINT* aFootprint )
{
if( !GetPlotFPText() )
return;
const PCB_TEXT* textItem = &aFootprint->Reference();
PCB_LAYER_ID textLayer = textItem->GetLayer();
// Reference and value have special controls for forcing their plotting
if( GetPlotReference() && m_layerMask[textLayer]
&& ( textItem->IsVisible() || GetPlotInvisibleText() ) )
{
PlotText( textItem, textLayer, textItem->IsKnockout(), textItem->GetFontMetrics() );
}
textItem = &aFootprint->Value();
textLayer = textItem->GetLayer();
if( GetPlotValue() && m_layerMask[textLayer]
&& ( textItem->IsVisible() || GetPlotInvisibleText() ) )
{
PlotText( textItem, textLayer, textItem->IsKnockout(), textItem->GetFontMetrics() );
}
std::vector<PCB_TEXT*> texts;
// Skip the reference and value texts that are handled specially
for( PCB_FIELD* field : aFootprint->Fields() )
{
if( field->IsReference() || field->IsValue() )
continue;
texts.push_back( field );
}
for( BOARD_ITEM* item : aFootprint->GraphicalItems() )
{
textItem = dynamic_cast<const PCB_TEXT*>( item );
if( textItem )
texts.push_back( static_cast<PCB_TEXT*>( item ) );
}
for( const PCB_TEXT* text : texts )
{
if( !text->IsVisible() )
continue;
textLayer = text->GetLayer();
if( textLayer == Edge_Cuts || textLayer >= PCB_LAYER_ID_COUNT )
continue;
if( !m_layerMask[textLayer] || aFootprint->GetPrivateLayers().test( textLayer ) )
continue;
if( text->GetText() == wxT( "${REFERENCE}" ) && !GetPlotReference() )
continue;
if( text->GetText() == wxT( "${VALUE}" ) && !GetPlotValue() )
continue;
PlotText( text, textLayer, text->IsKnockout(), text->GetFontMetrics() );
}
}
void BRDITEMS_PLOTTER::PlotBoardGraphicItem( const BOARD_ITEM* item )
{
switch( item->Type() )
{
case PCB_SHAPE_T:
PlotShape( static_cast<const PCB_SHAPE*>( item ) );
break;
case PCB_TEXT_T:
{
const PCB_TEXT* text = static_cast<const PCB_TEXT*>( item );
PlotText( text, text->GetLayer(), text->IsKnockout(), text->GetFontMetrics() );
break;
}
case PCB_TEXTBOX_T:
{
const PCB_TEXTBOX* textbox = static_cast<const PCB_TEXTBOX*>( item );
PlotText( textbox, textbox->GetLayer(), textbox->IsKnockout(), textbox->GetFontMetrics() );
PlotShape( textbox );
break;
}
case PCB_DIM_ALIGNED_T:
case PCB_DIM_CENTER_T:
case PCB_DIM_RADIAL_T:
case PCB_DIM_ORTHOGONAL_T:
case PCB_DIM_LEADER_T:
PlotDimension( static_cast<const PCB_DIMENSION_BASE*>( item ) );
break;
case PCB_TARGET_T:
PlotPcbTarget( static_cast<const PCB_TARGET*>( item ) );
break;
default:
break;
}
}
void BRDITEMS_PLOTTER::PlotDimension( const PCB_DIMENSION_BASE* aDim )
{
if( !m_layerMask[aDim->GetLayer()] )
return;
COLOR4D color = ColorSettings()->GetColor( aDim->GetLayer() );
// Set plot color (change WHITE to LIGHTGRAY because
// the white items are not seen on a white paper or screen
m_plotter->SetColor( color != WHITE ? color : LIGHTGRAY);
PlotText( aDim, aDim->GetLayer(), false, aDim->GetFontMetrics() );
PCB_SHAPE temp_item;
temp_item.SetStroke( STROKE_PARAMS( aDim->GetLineThickness(), PLOT_DASH_TYPE::SOLID ) );
temp_item.SetLayer( aDim->GetLayer() );
for( const std::shared_ptr<SHAPE>& shape : aDim->GetShapes() )
{
switch( shape->Type() )
{
case SH_SEGMENT:
{
const SEG& seg = static_cast<const SHAPE_SEGMENT*>( shape.get() )->GetSeg();
temp_item.SetShape( SHAPE_T::SEGMENT );
temp_item.SetStart( seg.A );
temp_item.SetEnd( seg.B );
PlotShape( &temp_item );
break;
}
case SH_CIRCLE:
{
VECTOR2I start( shape->Centre() );
int radius = static_cast<const SHAPE_CIRCLE*>( shape.get() )->GetRadius();
temp_item.SetShape( SHAPE_T::CIRCLE );
temp_item.SetFilled( false );
temp_item.SetStart( start );
temp_item.SetEnd( VECTOR2I( start.x + radius, start.y ) );
PlotShape( &temp_item );
break;
}
default:
break;
}
}
}
void BRDITEMS_PLOTTER::PlotPcbTarget( const PCB_TARGET* aMire )
{
int dx1, dx2, dy1, dy2, radius;
if( !m_layerMask[aMire->GetLayer()] )
return;
m_plotter->SetColor( getColor( aMire->GetLayer() ) );
PCB_SHAPE temp_item;
temp_item.SetShape( SHAPE_T::CIRCLE );
temp_item.SetFilled( false );
temp_item.SetStroke( STROKE_PARAMS( aMire->GetWidth(), PLOT_DASH_TYPE::SOLID ) );
temp_item.SetLayer( aMire->GetLayer() );
temp_item.SetStart( aMire->GetPosition() );
radius = aMire->GetSize() / 3;
if( aMire->GetShape() ) // temp_item X
radius = aMire->GetSize() / 2;
// Draw the circle
temp_item.SetEnd( VECTOR2I( temp_item.GetStart().x + radius, temp_item.GetStart().y ) );
PlotShape( &temp_item );
temp_item.SetShape( SHAPE_T::SEGMENT );
radius = aMire->GetSize() / 2;
dx1 = radius;
dy1 = 0;
dx2 = 0;
dy2 = radius;
if( aMire->GetShape() ) // Shape X
{
dx1 = dy1 = radius;
dx2 = dx1;
dy2 = -dy1;
}
VECTOR2I mirePos( aMire->GetPosition() );
// Draw the X or + temp_item:
temp_item.SetStart( VECTOR2I( mirePos.x - dx1, mirePos.y - dy1 ) );
temp_item.SetEnd( VECTOR2I( mirePos.x + dx1, mirePos.y + dy1 ) );
PlotShape( &temp_item );
temp_item.SetStart( VECTOR2I( mirePos.x - dx2, mirePos.y - dy2 ) );
temp_item.SetEnd( VECTOR2I( mirePos.x + dx2, mirePos.y + dy2 ) );
PlotShape( &temp_item );
}
void BRDITEMS_PLOTTER::PlotFootprintGraphicItems( const FOOTPRINT* aFootprint )
{
for( const BOARD_ITEM* item : aFootprint->GraphicalItems() )
{
if( aFootprint->GetPrivateLayers().test( item->GetLayer() ) )
continue;
switch( item->Type() )
{
case PCB_SHAPE_T:
{
const PCB_SHAPE* shape = static_cast<const PCB_SHAPE*>( item );
if( m_layerMask[ shape->GetLayer() ] )
PlotShape( shape );
break;
}
case PCB_TEXTBOX_T:
{
const PCB_TEXTBOX* textbox = static_cast<const PCB_TEXTBOX*>( item );
if( m_layerMask[ textbox->GetLayer() ] )
{
PlotText( textbox, textbox->GetLayer(), textbox->IsKnockout(),
textbox->GetFontMetrics() );
PlotShape( textbox );
}
break;
}
case PCB_DIM_ALIGNED_T:
case PCB_DIM_CENTER_T:
case PCB_DIM_RADIAL_T:
case PCB_DIM_ORTHOGONAL_T:
case PCB_DIM_LEADER_T:
{
const PCB_DIMENSION_BASE* dimension = static_cast<const PCB_DIMENSION_BASE*>( item );
if( m_layerMask[ dimension->GetLayer() ] )
PlotDimension( dimension );
break;
}
case PCB_TEXT_T:
// Plotted in PlotFootprintTextItems()
break;
default:
UNIMPLEMENTED_FOR( item->GetClass() );
}
}
}
#include <font/stroke_font.h>
void BRDITEMS_PLOTTER::PlotText( const EDA_TEXT* aText, PCB_LAYER_ID aLayer, bool aIsKnockout,
const KIFONT::METRICS& aFontMetrics )
{
KIFONT::FONT* font = aText->GetFont();
if( !font )
{
wxString defaultFontName; // empty string is the KiCad stroke font
if( m_plotter->RenderSettings() )
defaultFontName = m_plotter->RenderSettings()->GetDefaultFont();
font = KIFONT::FONT::GetFont( defaultFontName, aText->IsBold(), aText->IsItalic() );
}
wxString shownText( aText->GetShownText( true ) );
if( shownText.IsEmpty() )
return;
if( !m_layerMask[aLayer] )
return;
GBR_METADATA gbr_metadata;
if( IsCopperLayer( aLayer ) )
gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_NONCONDUCTOR );
COLOR4D color = getColor( aLayer );
m_plotter->SetColor( color );
VECTOR2I pos = aText->GetTextPos();
TEXT_ATTRIBUTES attrs = aText->GetAttributes();
attrs.m_StrokeWidth = aText->GetEffectiveTextPenWidth();
attrs.m_Angle = aText->GetDrawRotation();
attrs.m_Multiline = false;
m_plotter->SetCurrentLineWidth( attrs.m_StrokeWidth );
if( aIsKnockout )
{
const PCB_TEXT* text = static_cast<const PCB_TEXT*>( aText );
SHAPE_POLY_SET finalPoly;
text->TransformTextToPolySet( finalPoly, 0, m_board->GetDesignSettings().m_MaxError,
ERROR_INSIDE );
finalPoly.Fracture( SHAPE_POLY_SET::PM_FAST );
for( int ii = 0; ii < finalPoly.OutlineCount(); ++ii )
m_plotter->PlotPoly( finalPoly.Outline( ii ), FILL_T::FILLED_SHAPE, 0, &gbr_metadata );
}
else if( aText->IsMultilineAllowed() )
{
std::vector<VECTOR2I> positions;
wxArrayString strings_list;
wxStringSplit( shownText, strings_list, '\n' );
positions.reserve( strings_list.Count() );
aText->GetLinePositions( positions, strings_list.Count() );
for( unsigned ii = 0; ii < strings_list.Count(); ii++ )
{
wxString& txt = strings_list.Item( ii );
m_plotter->PlotText( positions[ii], color, txt, attrs, font, aFontMetrics, &gbr_metadata );
}
}
else
{
m_plotter->PlotText( pos, color, shownText, attrs, font, aFontMetrics, &gbr_metadata );
}
}
void BRDITEMS_PLOTTER::PlotZone( const ZONE* aZone, PCB_LAYER_ID aLayer,
const SHAPE_POLY_SET& aPolysList )
{
if( aPolysList.IsEmpty() )
return;
GBR_METADATA gbr_metadata;
if( aZone->IsOnCopperLayer() )
{
gbr_metadata.SetNetName( aZone->GetNetname() );
gbr_metadata.SetCopper( true );
// Zones with no net name can exist.
// they are not used to connect items, so the aperture attribute cannot
// be set as conductor
if( aZone->GetNetname().IsEmpty() )
{
gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_NONCONDUCTOR );
}
else
{
gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_CONDUCTOR );
gbr_metadata.SetNetAttribType( GBR_NETLIST_METADATA::GBR_NETINFO_NET );
}
}
m_plotter->SetColor( getColor( aLayer ) );
m_plotter->StartBlock( nullptr ); // Clean current object attributes
/*
* In non filled mode the outline is plotted, but not the filling items
*/
for( int idx = 0; idx < aPolysList.OutlineCount(); ++idx )
{
const SHAPE_LINE_CHAIN& outline = aPolysList.Outline( idx );
// Plot the current filled area (as region for Gerber plotter to manage attributes)
if( GetPlotMode() == FILLED )
{
if( m_plotter->GetPlotterType() == PLOT_FORMAT::GERBER )
{
static_cast<GERBER_PLOTTER*>( m_plotter )->PlotGerberRegion( outline,
&gbr_metadata );
}
else
{
m_plotter->PlotPoly( outline, FILL_T::FILLED_SHAPE, 0, &gbr_metadata );
}
}
else
{
m_plotter->SetCurrentLineWidth( -1 );
}
}
m_plotter->EndBlock( nullptr ); // Clear object attributes
}
void BRDITEMS_PLOTTER::PlotShape( const PCB_SHAPE* aShape )
{
if( !m_layerMask[aShape->GetLayer()] )
return;
bool sketch = GetPlotMode() == SKETCH;
int thickness = aShape->GetWidth();
PLOT_DASH_TYPE lineStyle = aShape->GetStroke().GetPlotStyle();
m_plotter->SetColor( getColor( aShape->GetLayer() ) );
const FOOTPRINT* parentFP = aShape->GetParentFootprint();
GBR_METADATA gbr_metadata;
if( parentFP )
{
gbr_metadata.SetCmpReference( parentFP->GetReference() );
gbr_metadata.SetNetAttribType( GBR_NETLIST_METADATA::GBR_NETINFO_CMP );
}
if( aShape->GetLayer() == Edge_Cuts )
{
gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_EDGECUT );
}
else if( IsCopperLayer( aShape->GetLayer() ) )
{
if( parentFP )
{
gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_ETCHEDCMP );
gbr_metadata.SetCopper( true );
}
else if( aShape->GetNetCode() > 0 )
{
gbr_metadata.SetCopper( true );
gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_CONDUCTOR );
gbr_metadata.SetNetAttribType( GBR_NETLIST_METADATA::GBR_NETINFO_NET );
gbr_metadata.SetNetName( aShape->GetNetname() );
}
else
{
// Graphic items (PCB_SHAPE, TEXT) having no net have the NonConductor attribute
// Graphic items having a net have the Conductor attribute, but are not (yet?)
// supported in Pcbnew
gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_NONCONDUCTOR );
}
}
if( lineStyle <= PLOT_DASH_TYPE::FIRST_TYPE )
{
switch( aShape->GetShape() )
{
case SHAPE_T::SEGMENT:
m_plotter->ThickSegment( aShape->GetStart(), aShape->GetEnd(), thickness, GetPlotMode(),
&gbr_metadata );
break;
case SHAPE_T::CIRCLE:
if( aShape->IsFilled() )
{
m_plotter->FilledCircle( aShape->GetStart(), aShape->GetRadius() * 2 + thickness,
GetPlotMode(), &gbr_metadata );
}
else
{
m_plotter->ThickCircle( aShape->GetStart(), aShape->GetRadius() * 2, thickness,
GetPlotMode(), &gbr_metadata );
}
break;
case SHAPE_T::ARC:
{
// when startAngle == endAngle ThickArc() doesn't know whether it's 0 deg and 360 deg
// but it is a circle
if( std::abs( aShape->GetArcAngle().AsDegrees() ) == 360.0 )
{
m_plotter->ThickCircle( aShape->GetCenter(), aShape->GetRadius() * 2, thickness,
GetPlotMode(), &gbr_metadata );
}
else
{
m_plotter->ThickArc( *aShape, GetPlotMode(), &gbr_metadata );
}
break;
}
case SHAPE_T::BEZIER:
m_plotter->BezierCurve( aShape->GetStart(), aShape->GetBezierC1(),
aShape->GetBezierC2(), aShape->GetEnd(), 0, thickness );
break;
case SHAPE_T::POLY:
if( aShape->IsPolyShapeValid() )
{
if( sketch )
{
for( auto it = aShape->GetPolyShape().CIterateSegments( 0 ); it; it++ )
{
auto seg = it.Get();
m_plotter->ThickSegment( seg.A, seg.B, thickness, GetPlotMode(),
&gbr_metadata );
}
}
else
{
m_plotter->SetCurrentLineWidth( thickness, &gbr_metadata );
// Draw the polygon: only one polygon is expected
// However we provide a multi polygon shape drawing
// ( for the future or to show a non expected shape )
// This must be simplified and fractured to prevent overlapping polygons
// from generating invalid Gerber files
SHAPE_POLY_SET tmpPoly = aShape->GetPolyShape().CloneDropTriangulation();
tmpPoly.Fracture( SHAPE_POLY_SET::PM_FAST );
FILL_T fill = aShape->IsFilled() ? FILL_T::FILLED_SHAPE : FILL_T::NO_FILL;
for( int jj = 0; jj < tmpPoly.OutlineCount(); ++jj )
{
SHAPE_LINE_CHAIN& poly = tmpPoly.Outline( jj );
// Ensure the polygon is closed:
poly.SetClosed( true );
// Plot the current filled area
// (as region for Gerber plotter to manage attributes)
if( m_plotter->GetPlotterType() == PLOT_FORMAT::GERBER )
{
static_cast<GERBER_PLOTTER*>( m_plotter )->
PlotPolyAsRegion( poly, fill, thickness, &gbr_metadata );
}
else
{
m_plotter->PlotPoly( poly, fill, thickness, &gbr_metadata );
}
}
}
}
break;
case SHAPE_T::RECTANGLE:
{
std::vector<VECTOR2I> pts = aShape->GetRectCorners();
if( sketch )
{
m_plotter->ThickSegment( pts[0], pts[1], thickness, GetPlotMode(), &gbr_metadata );
m_plotter->ThickSegment( pts[1], pts[2], thickness, GetPlotMode(), &gbr_metadata );
m_plotter->ThickSegment( pts[2], pts[3], thickness, GetPlotMode(), &gbr_metadata );
m_plotter->ThickSegment( pts[3], pts[0], thickness, GetPlotMode(), &gbr_metadata );
}
if( !sketch )
{
SHAPE_LINE_CHAIN poly;
for( const VECTOR2I& pt : pts )
poly.Append( pt );
poly.Append( pts[0] ); // Close polygon.
FILL_T fill_mode = aShape->IsFilled() ? FILL_T::FILLED_SHAPE : FILL_T::NO_FILL;
if( m_plotter->GetPlotterType() == PLOT_FORMAT::GERBER )
{
static_cast<GERBER_PLOTTER*>( m_plotter )->
PlotPolyAsRegion( poly, fill_mode, thickness, &gbr_metadata );
}
else
{
m_plotter->PlotPoly( poly, fill_mode, thickness, &gbr_metadata );
}
}
break;
}
default:
UNIMPLEMENTED_FOR( aShape->SHAPE_T_asString() );
}
}
else
{
std::vector<SHAPE*> shapes = aShape->MakeEffectiveShapes( true );
for( SHAPE* shape : shapes )
{
STROKE_PARAMS::Stroke( shape, lineStyle, thickness, m_plotter->RenderSettings(),
[&]( const VECTOR2I& a, const VECTOR2I& b )
{
m_plotter->ThickSegment( a, b, thickness, GetPlotMode(),
&gbr_metadata );
} );
}
for( SHAPE* shape : shapes )
delete shape;
}
}
void BRDITEMS_PLOTTER::plotOneDrillMark( PAD_DRILL_SHAPE_T aDrillShape, const VECTOR2I& aDrillPos,
const VECTOR2I& aDrillSize, const VECTOR2I& aPadSize,
const EDA_ANGLE& aOrientation, int aSmallDrill )
{
VECTOR2I drillSize = aDrillSize;
// Small drill marks have no significance when applied to slots
if( aSmallDrill && aDrillShape == PAD_DRILL_SHAPE_CIRCLE )
drillSize.x = std::min( aSmallDrill, drillSize.x );
// Round holes only have x diameter, slots have both
drillSize.x -= getFineWidthAdj();
drillSize.x = Clamp( 1, drillSize.x, aPadSize.x - 1 );
if( aDrillShape == PAD_DRILL_SHAPE_OBLONG )
{
drillSize.y -= getFineWidthAdj();
drillSize.y = Clamp( 1, drillSize.y, aPadSize.y - 1 );
m_plotter->FlashPadOval( aDrillPos, drillSize, aOrientation, GetPlotMode(), nullptr );
}
else
{
m_plotter->FlashPadCircle( aDrillPos, drillSize.x, GetPlotMode(), nullptr );
}
}
void BRDITEMS_PLOTTER::PlotDrillMarks()
{
/* If small drills marks were requested prepare a clamp value to pass
to the helper function */
int smallDrill = GetDrillMarksType() == DRILL_MARKS::SMALL_DRILL_SHAPE
? pcbIUScale.mmToIU( ADVANCED_CFG::GetCfg().m_SmallDrillMarkSize ) : 0;
/* In the filled trace mode drill marks are drawn white-on-black to scrape
the underlying pad. This works only for drivers supporting color change,
obviously... it means that:
- PS, SVG and PDF output is correct (i.e. you have a 'donut' pad)
- In HPGL you can't see them
- In gerbers you can't see them, too. This is arguably the right thing to
do since having drill marks and high speed drill stations is a sure
recipe for broken tools and angry manufacturers. If you *really* want them
you could start a layer with negative polarity to scrape the film.
- In DXF they go into the 'WHITE' layer. This could be useful.
*/
if( GetPlotMode() == FILLED )
m_plotter->SetColor( WHITE );
for( PCB_TRACK* track : m_board->Tracks() )
{
if( track->Type() == PCB_VIA_T )
{
const PCB_VIA* via = static_cast<const PCB_VIA*>( track );
// Via are not always on all layers
if( ( via->GetLayerSet() & m_layerMask ).none() )
continue;
plotOneDrillMark( PAD_DRILL_SHAPE_CIRCLE, via->GetStart(),
VECTOR2I( via->GetDrillValue(), 0 ), VECTOR2I( via->GetWidth(), 0 ),
ANGLE_0, smallDrill );
}
}
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
{
if( pad->GetDrillSize().x == 0 )
continue;
plotOneDrillMark( pad->GetDrillShape(), pad->GetPosition(), pad->GetDrillSize(),
pad->GetSize(), pad->GetOrientation(), smallDrill );
}
}
if( GetPlotMode() == FILLED )
m_plotter->SetColor( BLACK );
}