kicad/pcbnew/router/pns_kicad_iface.cpp

1728 lines
48 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2016 CERN
* Copyright (C) 2016-2021 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <board.h>
#include <board_connected_item.h>
#include <board_design_settings.h>
#include <fp_text.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_track.h>
#include <zone.h>
#include <pcb_shape.h>
#include <pcb_text.h>
#include <board_commit.h>
#include <layer_ids.h>
#include <geometry/convex_hull.h>
#include <confirm.h>
#include <pcb_painter.h>
#include <geometry/shape.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_arc.h>
#include <geometry/shape_simple.h>
#include <drc/drc_rule.h>
#include <drc/drc_engine.h>
#include <wx/log.h>
#include <memory>
#include <advanced_config.h>
#include "pns_kicad_iface.h"
#include "pns_arc.h"
#include "pns_routing_settings.h"
#include "pns_sizes_settings.h"
#include "pns_item.h"
#include "pns_solid.h"
#include "pns_segment.h"
#include "pns_node.h"
#include "pns_router.h"
#include "pns_debug_decorator.h"
#include "router_preview_item.h"
typedef VECTOR2I::extended_type ecoord;
class PNS_PCBNEW_RULE_RESOLVER : public PNS::RULE_RESOLVER
{
public:
PNS_PCBNEW_RULE_RESOLVER( BOARD* aBoard, PNS::ROUTER_IFACE* aRouterIface );
virtual ~PNS_PCBNEW_RULE_RESOLVER();
virtual int Clearance( const PNS::ITEM* aA, const PNS::ITEM* aB ) override;
virtual int HoleClearance( const PNS::ITEM* aA, const PNS::ITEM* aB ) override;
virtual int HoleToHoleClearance( const PNS::ITEM* aA, const PNS::ITEM* aB ) override;
virtual int DpCoupledNet( int aNet ) override;
virtual int DpNetPolarity( int aNet ) override;
virtual bool DpNetPair( const PNS::ITEM* aItem, int& aNetP, int& aNetN ) override;
virtual bool IsDiffPair( const PNS::ITEM* aA, const PNS::ITEM* aB ) override;
virtual bool QueryConstraint( PNS::CONSTRAINT_TYPE aType, const PNS::ITEM* aItemA,
const PNS::ITEM* aItemB, int aLayer,
PNS::CONSTRAINT* aConstraint ) override;
virtual wxString NetName( int aNet ) override;
int ClearanceEpsilon() const { return m_clearanceEpsilon; }
void ClearCacheForItem( const PNS::ITEM* aItem ) override;
private:
int holeRadius( const PNS::ITEM* aItem ) const;
/**
* Checks for netnamed differential pairs.
* This accepts nets named suffixed by 'P', 'N', '+', '-', as well as additional
* numbers and underscores following the suffix. So NET_P_123 is a valid positive net
* name matched to NET_N_123.
* @param aNetName Input net name to check for DP naming
* @param aComplementNet Generated net name for the pair
* @return -1 if found the negative pair, +1 if found the positive pair, 0 otherwise
*/
int matchDpSuffix( const wxString& aNetName, wxString& aComplementNet );
private:
PNS::ROUTER_IFACE* m_routerIface;
BOARD* m_board;
PCB_TRACK m_dummyTracks[2];
PCB_ARC m_dummyArcs[2];
PCB_VIA m_dummyVias[2];
int m_clearanceEpsilon;
std::map<std::pair<const PNS::ITEM*, const PNS::ITEM*>, int> m_clearanceCache;
std::map<std::pair<const PNS::ITEM*, const PNS::ITEM*>, int> m_holeClearanceCache;
std::map<std::pair<const PNS::ITEM*, const PNS::ITEM*>, int> m_holeToHoleClearanceCache;
};
PNS_PCBNEW_RULE_RESOLVER::PNS_PCBNEW_RULE_RESOLVER( BOARD* aBoard,
PNS::ROUTER_IFACE* aRouterIface ) :
m_routerIface( aRouterIface ),
m_board( aBoard ),
m_dummyTracks{ { aBoard }, { aBoard } },
m_dummyArcs{ { aBoard }, { aBoard } },
m_dummyVias{ { aBoard }, { aBoard } }
{
if( aBoard )
m_clearanceEpsilon = aBoard->GetDesignSettings().GetDRCEpsilon();
else
m_clearanceEpsilon = 0;
}
PNS_PCBNEW_RULE_RESOLVER::~PNS_PCBNEW_RULE_RESOLVER()
{
}
int PNS_PCBNEW_RULE_RESOLVER::holeRadius( const PNS::ITEM* aItem ) const
{
if( aItem->Kind() == PNS::ITEM::SOLID_T )
{
const PAD* pad = dynamic_cast<const PAD*>( aItem->Parent() );
if( pad && pad->GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE )
return pad->GetDrillSize().x / 2;
}
else if( aItem->Kind() == PNS::ITEM::VIA_T )
{
const PCB_VIA* via = dynamic_cast<const PCB_VIA*>( aItem->Parent() );
if( via )
return via->GetDrillValue() / 2;
}
return 0;
}
bool PNS_PCBNEW_RULE_RESOLVER::IsDiffPair( const PNS::ITEM* aA, const PNS::ITEM* aB )
{
int net_p, net_n;
if( !DpNetPair( aA, net_p, net_n ) )
return false;
if( aA->Net() == net_p && aB->Net() == net_n )
return true;
if( aB->Net() == net_p && aA->Net() == net_n )
return true;
return false;
}
bool isCopper( const PNS::ITEM* aItem )
{
BOARD_ITEM* parent = aItem->Parent();
if( parent && parent->Type() == PCB_PAD_T )
{
PAD* pad = static_cast<PAD*>( parent );
return pad->IsOnCopperLayer() && pad->GetAttribute() != PAD_ATTRIB::NPTH;
}
return true;
}
bool isEdge( const PNS::ITEM* aItem )
{
const BOARD_ITEM *parent = aItem->Parent();
if( parent )
{
return parent->GetLayer() == Edge_Cuts || parent->GetLayer () == Margin;
}
return false;
}
bool PNS_PCBNEW_RULE_RESOLVER::QueryConstraint( PNS::CONSTRAINT_TYPE aType,
const PNS::ITEM* aItemA, const PNS::ITEM* aItemB,
int aLayer, PNS::CONSTRAINT* aConstraint )
{
std::shared_ptr<DRC_ENGINE> drcEngine = m_board->GetDesignSettings().m_DRCEngine;
if( !drcEngine )
return false;
DRC_CONSTRAINT_T hostType;
switch ( aType )
{
case PNS::CONSTRAINT_TYPE::CT_CLEARANCE: hostType = CLEARANCE_CONSTRAINT; break;
case PNS::CONSTRAINT_TYPE::CT_WIDTH: hostType = TRACK_WIDTH_CONSTRAINT; break;
case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP: hostType = DIFF_PAIR_GAP_CONSTRAINT; break;
case PNS::CONSTRAINT_TYPE::CT_LENGTH: hostType = LENGTH_CONSTRAINT; break;
case PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER: hostType = VIA_DIAMETER_CONSTRAINT; break;
case PNS::CONSTRAINT_TYPE::CT_VIA_HOLE: hostType = HOLE_SIZE_CONSTRAINT; break;
case PNS::CONSTRAINT_TYPE::CT_HOLE_CLEARANCE: hostType = HOLE_CLEARANCE_CONSTRAINT; break;
case PNS::CONSTRAINT_TYPE::CT_EDGE_CLEARANCE: hostType = EDGE_CLEARANCE_CONSTRAINT; break;
case PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE: hostType = HOLE_TO_HOLE_CONSTRAINT; break;
default: return false; // should not happen
}
BOARD_ITEM* parentA = aItemA ? aItemA->Parent() : nullptr;
BOARD_ITEM* parentB = aItemB ? aItemB->Parent() : nullptr;
DRC_CONSTRAINT hostConstraint;
// A track being routed may not have a BOARD_ITEM associated yet.
if( aItemA && !parentA )
{
switch( aItemA->Kind() )
{
case PNS::ITEM::ARC_T: parentA = &m_dummyArcs[0]; break;
case PNS::ITEM::VIA_T: parentA = &m_dummyVias[0]; break;
case PNS::ITEM::SEGMENT_T: parentA = &m_dummyTracks[0]; break;
case PNS::ITEM::LINE_T: parentA = &m_dummyTracks[0]; break;
default: break;
}
if( parentA )
{
parentA->SetLayer( (PCB_LAYER_ID) aLayer );
static_cast<BOARD_CONNECTED_ITEM*>( parentA )->SetNetCode( aItemA->Net(), true );
}
}
if( aItemB && !parentB )
{
switch( aItemB->Kind() )
{
case PNS::ITEM::ARC_T: parentB = &m_dummyArcs[1]; break;
case PNS::ITEM::VIA_T: parentB = &m_dummyVias[1]; break;
case PNS::ITEM::SEGMENT_T: parentB = &m_dummyTracks[1]; break;
case PNS::ITEM::LINE_T: parentB = &m_dummyTracks[1]; break;
default: break;
}
if( parentB )
{
parentB->SetLayer( (PCB_LAYER_ID) aLayer );
static_cast<BOARD_CONNECTED_ITEM*>( parentB )->SetNetCode( aItemB->Net(), true );
}
}
if( parentA )
hostConstraint = drcEngine->EvalRules( hostType, parentA, parentB, (PCB_LAYER_ID) aLayer );
if( hostConstraint.IsNull() )
return false;
switch ( aType )
{
case PNS::CONSTRAINT_TYPE::CT_CLEARANCE:
case PNS::CONSTRAINT_TYPE::CT_WIDTH:
case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP:
case PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER:
case PNS::CONSTRAINT_TYPE::CT_VIA_HOLE:
case PNS::CONSTRAINT_TYPE::CT_HOLE_CLEARANCE:
case PNS::CONSTRAINT_TYPE::CT_EDGE_CLEARANCE:
case PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE:
aConstraint->m_Value = hostConstraint.GetValue();
aConstraint->m_RuleName = hostConstraint.GetName();
aConstraint->m_Type = aType;
return true;
default:
return false;
}
}
void PNS_PCBNEW_RULE_RESOLVER::ClearCacheForItem( const PNS::ITEM* aItem )
{
m_clearanceCache.erase( std::make_pair( aItem, nullptr ) );
}
int PNS_PCBNEW_RULE_RESOLVER::Clearance( const PNS::ITEM* aA, const PNS::ITEM* aB )
{
std::pair<const PNS::ITEM*, const PNS::ITEM*> key( aA, aB );
auto it = m_clearanceCache.find( key );
if( it != m_clearanceCache.end() )
return it->second;
PNS::CONSTRAINT constraint;
int rv = 0;
int layer;
if( !aA->Layers().IsMultilayer() || !aB || aB->Layers().IsMultilayer() )
layer = aA->Layer();
else
layer = aB->Layer();
if( isCopper( aA ) && ( !aB || isCopper( aB ) ) )
{
if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_CLEARANCE, aA, aB, layer, &constraint ) )
rv = constraint.m_Value.Min() - m_clearanceEpsilon;
}
if( isEdge( aA ) || ( aB && isEdge( aB ) ) )
{
if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_EDGE_CLEARANCE, aA, aB, layer, &constraint ) )
{
if( constraint.m_Value.Min() > rv )
rv = constraint.m_Value.Min() - m_clearanceEpsilon;
}
}
m_clearanceCache[ key ] = rv;
return rv;
}
int PNS_PCBNEW_RULE_RESOLVER::HoleClearance( const PNS::ITEM* aA, const PNS::ITEM* aB )
{
std::pair<const PNS::ITEM*, const PNS::ITEM*> key( aA, aB );
auto it = m_holeClearanceCache.find( key );
if( it != m_holeClearanceCache.end() )
return it->second;
PNS::CONSTRAINT constraint;
int rv = 0;
int layer;
if( !aA->Layers().IsMultilayer() || !aB || aB->Layers().IsMultilayer() )
layer = aA->Layer();
else
layer = aB->Layer();
if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_CLEARANCE, aA, aB, layer, &constraint ) )
rv = constraint.m_Value.Min() - m_clearanceEpsilon;
m_holeClearanceCache[ key ] = rv;
return rv;
}
int PNS_PCBNEW_RULE_RESOLVER::HoleToHoleClearance( const PNS::ITEM* aA, const PNS::ITEM* aB )
{
std::pair<const PNS::ITEM*, const PNS::ITEM*> key( aA, aB );
auto it = m_holeToHoleClearanceCache.find( key );
if( it != m_holeToHoleClearanceCache.end() )
return it->second;
PNS::CONSTRAINT constraint;
int rv = 0;
int layer;
if( !aA->Layers().IsMultilayer() || !aB || aB->Layers().IsMultilayer() )
layer = aA->Layer();
else
layer = aB->Layer();
if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE, aA, aB, layer, &constraint ) )
rv = constraint.m_Value.Min() - m_clearanceEpsilon;
m_holeToHoleClearanceCache[ key ] = rv;
return rv;
}
bool PNS_KICAD_IFACE_BASE::inheritTrackWidth( PNS::ITEM* aItem, int* aInheritedWidth )
{
VECTOR2I p;
assert( aItem->Owner() != nullptr );
auto tryGetTrackWidth =
[]( PNS::ITEM* aPnsItem ) -> int
{
switch( aPnsItem->Kind() )
{
case PNS::ITEM::SEGMENT_T: return static_cast<PNS::SEGMENT*>( aPnsItem )->Width();
case PNS::ITEM::ARC_T: return static_cast<PNS::ARC*>( aPnsItem )->Width();
default: return -1;
}
};
int itemTrackWidth = tryGetTrackWidth( aItem );
if( itemTrackWidth > 0 )
{
*aInheritedWidth = itemTrackWidth;
return true;
}
switch( aItem->Kind() )
{
case PNS::ITEM::VIA_T:
p = static_cast<PNS::VIA*>( aItem )->Pos();
break;
case PNS::ITEM::SOLID_T:
p = static_cast<PNS::SOLID*>( aItem )->Pos();
break;
default:
return false;
}
PNS::JOINT* jt = static_cast<PNS::NODE*>( aItem->Owner() )->FindJoint( p, aItem );
assert( jt != nullptr );
int mval = INT_MAX;
PNS::ITEM_SET linkedSegs = jt->Links();
linkedSegs.ExcludeItem( aItem ).FilterKinds( PNS::ITEM::SEGMENT_T | PNS::ITEM::ARC_T );
for( PNS::ITEM* item : linkedSegs.Items() )
{
int w = tryGetTrackWidth( item );
assert( w > 0 );
mval = std::min( w, mval );
}
if( mval == INT_MAX )
return false;
*aInheritedWidth = mval;
return true;
}
bool PNS_KICAD_IFACE_BASE::ImportSizes( PNS::SIZES_SETTINGS& aSizes, PNS::ITEM* aStartItem,
int aNet )
{
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
PNS::CONSTRAINT constraint;
if( aStartItem && m_startLayer < 0 )
m_startLayer = aStartItem->Layer();
aSizes.SetMinClearance( bds.m_MinClearance );
int trackWidth = bds.m_TrackMinWidth;
bool found = false;
if( bds.m_UseConnectedTrackWidth && !bds.m_TempOverrideTrackWidth && aStartItem != nullptr )
{
found = inheritTrackWidth( aStartItem, &trackWidth );
if( found )
aSizes.SetWidthSource( _( "existing track" ) );
}
if( !found && bds.UseNetClassTrack() && aStartItem )
{
if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_WIDTH, aStartItem, nullptr,
m_startLayer, &constraint ) )
{
trackWidth = std::max( trackWidth, constraint.m_Value.Opt() );
found = true;
if( trackWidth == constraint.m_Value.Opt() )
aSizes.SetWidthSource( constraint.m_RuleName );
else
aSizes.SetWidthSource( _( "board minimum width" ) );
}
}
if( !found )
{
trackWidth = std::max( trackWidth, bds.GetCurrentTrackWidth() );
if( bds.UseNetClassTrack() )
aSizes.SetWidthSource( _( "netclass 'Default'" ) );
else if( trackWidth == bds.GetCurrentTrackWidth() )
aSizes.SetWidthSource( _( "user choice" ) );
else
aSizes.SetWidthSource( _( "board minimum width" ) );
}
aSizes.SetTrackWidth( trackWidth );
aSizes.SetTrackWidthIsExplicit( !bds.m_UseConnectedTrackWidth || bds.m_TempOverrideTrackWidth );
int viaDiameter = bds.m_ViasMinSize;
int viaDrill = bds.m_MinThroughDrill;
if( bds.UseNetClassVia() && aStartItem ) // netclass value
{
if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER, aStartItem,
nullptr, m_startLayer, &constraint ) )
{
viaDiameter = std::max( viaDiameter, constraint.m_Value.Opt() );
}
if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_VIA_HOLE, aStartItem, nullptr,
m_startLayer, &constraint ) )
{
viaDrill = std::max( viaDrill, constraint.m_Value.Opt() );
}
}
else
{
viaDiameter = bds.GetCurrentViaSize();
viaDrill = bds.GetCurrentViaDrill();
}
aSizes.SetViaDiameter( viaDiameter );
aSizes.SetViaDrill( viaDrill );
int diffPairWidth = bds.m_TrackMinWidth;
int diffPairGap = bds.m_MinClearance;
int diffPairViaGap = bds.m_MinClearance;
found = false;
// First try to pick up diff pair width from starting track, if enabled
if( bds.m_UseConnectedTrackWidth && aStartItem )
found = inheritTrackWidth( aStartItem, &diffPairWidth );
// Next, pick up gap from netclass, and width also if we didn't get a starting width above
if( bds.UseNetClassDiffPair() && aStartItem )
{
if( !found && m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_WIDTH, aStartItem,
nullptr, m_startLayer, &constraint ) )
{
diffPairWidth = std::max( diffPairWidth, constraint.m_Value.Opt() );
}
if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP, aStartItem,
nullptr, m_startLayer, &constraint ) )
{
diffPairGap = std::max( diffPairGap, constraint.m_Value.Opt() );
diffPairViaGap = std::max( diffPairViaGap, constraint.m_Value.Opt() );
}
}
else
{
diffPairWidth = bds.GetCurrentDiffPairWidth();
diffPairGap = bds.GetCurrentDiffPairGap();
diffPairViaGap = bds.GetCurrentDiffPairViaGap();
}
aSizes.SetDiffPairWidth( diffPairWidth );
aSizes.SetDiffPairGap( diffPairGap );
aSizes.SetDiffPairViaGap( diffPairViaGap );
int holeToHoleMin = bds.m_HoleToHoleMin;
PNS::VIA dummyVia;
if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE, &dummyVia,
&dummyVia, UNDEFINED_LAYER, &constraint ) )
{
holeToHoleMin = constraint.m_Value.Min();
}
aSizes.SetHoleToHole( holeToHoleMin );
aSizes.ClearLayerPairs();
return true;
}
int PNS_KICAD_IFACE_BASE::StackupHeight( int aFirstLayer, int aSecondLayer ) const
{
if( !m_board || !m_board->GetDesignSettings().m_UseHeightForLengthCalcs )
return 0;
BOARD_STACKUP& stackup = m_board->GetDesignSettings().GetStackupDescriptor();
return stackup.GetLayerDistance( ToLAYER_ID( aFirstLayer ), ToLAYER_ID( aSecondLayer ) );
}
int PNS_PCBNEW_RULE_RESOLVER::matchDpSuffix( const wxString& aNetName, wxString& aComplementNet )
{
int rv = 0;
int count = 0;
for( auto it = aNetName.rbegin(); it != aNetName.rend() && rv == 0; ++it, ++count )
{
int ch = *it;
if( ( ch >= '0' && ch <= '9' ) || ch == '_' )
{
continue;
}
else if( ch == '+' )
{
aComplementNet = "-";
rv = 1;
}
else if( ch == '-' )
{
aComplementNet = "+";
rv = -1;
}
else if( ch == 'N' )
{
aComplementNet = "P";
rv = -1;
}
else if ( ch == 'P' )
{
aComplementNet = "N";
rv = 1;
}
else
{
break;
}
}
if( rv != 0 && count >= 1 )
{
aComplementNet = aNetName.Left( aNetName.length() - count ) + aComplementNet
+ aNetName.Right( count - 1 );
}
return rv;
}
int PNS_PCBNEW_RULE_RESOLVER::DpCoupledNet( int aNet )
{
wxString refName = m_board->FindNet( aNet )->GetNetname();
wxString coupledNetName;
if( matchDpSuffix( refName, coupledNetName ) )
{
NETINFO_ITEM* net = m_board->FindNet( coupledNetName );
if( !net )
return -1;
return net->GetNetCode();
}
return -1;
}
wxString PNS_PCBNEW_RULE_RESOLVER::NetName( int aNet )
{
return m_board->FindNet( aNet )->GetNetname();
}
int PNS_PCBNEW_RULE_RESOLVER::DpNetPolarity( int aNet )
{
wxString refName = m_board->FindNet( aNet )->GetNetname();
wxString dummy1;
return matchDpSuffix( refName, dummy1 );
}
bool PNS_PCBNEW_RULE_RESOLVER::DpNetPair( const PNS::ITEM* aItem, int& aNetP, int& aNetN )
{
if( !aItem || !aItem->Parent() || !aItem->Parent()->IsConnected() )
return false;
BOARD_CONNECTED_ITEM* cItem = static_cast<BOARD_CONNECTED_ITEM*>( aItem->Parent() );
NETINFO_ITEM* netInfo = cItem->GetNet();
if( !netInfo )
return false;
wxString netNameP = netInfo->GetNetname();
wxString netNameN, netNameCoupled;
int r = matchDpSuffix( netNameP, netNameCoupled );
if( r == 0 )
{
return false;
}
else if( r == 1 )
{
netNameN = netNameCoupled;
}
else
{
netNameN = netNameP;
netNameP = netNameCoupled;
}
NETINFO_ITEM* netInfoP = m_board->FindNet( netNameP );
NETINFO_ITEM* netInfoN = m_board->FindNet( netNameN );
if( !netInfoP || !netInfoN )
return false;
aNetP = netInfoP->GetNetCode();
aNetN = netInfoN->GetNetCode();
return true;
}
class PNS_PCBNEW_DEBUG_DECORATOR: public PNS::DEBUG_DECORATOR
{
public:
PNS_PCBNEW_DEBUG_DECORATOR( KIGFX::VIEW* aView = nullptr ) :
PNS::DEBUG_DECORATOR(),
m_view( nullptr ),
m_items( nullptr )
{
SetView( aView );
}
~PNS_PCBNEW_DEBUG_DECORATOR()
{
PNS_PCBNEW_DEBUG_DECORATOR::Clear();
delete m_items;
}
void SetView( KIGFX::VIEW* aView )
{
Clear();
delete m_items;
m_items = nullptr;
m_view = aView;
if( m_view == nullptr )
return;
m_items = new KIGFX::VIEW_GROUP( m_view );
m_items->SetLayer( LAYER_SELECT_OVERLAY ) ;
m_view->Add( m_items );
}
virtual void AddPoint( const VECTOR2I& aP, const COLOR4D& aColor, int aSize,
const std::string& aName,
const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) override
{
SHAPE_LINE_CHAIN l;
l.Append( aP - VECTOR2I( -aSize, -aSize ) );
l.Append( aP + VECTOR2I( -aSize, -aSize ) );
AddLine( l, aColor, 10000, aName );
l.Clear();
l.Append( aP - VECTOR2I( aSize, -aSize ) );
l.Append( aP + VECTOR2I( aSize, -aSize ) );
AddLine( l, aColor, 10000, aName );
}
virtual void AddBox( const BOX2I& aB, const COLOR4D& aColor, const std::string& aName,
const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) override
{
SHAPE_LINE_CHAIN l;
VECTOR2I o = aB.GetOrigin();
VECTOR2I s = aB.GetSize();
l.Append( o );
l.Append( o.x + s.x, o.y );
l.Append( o.x + s.x, o.y + s.y );
l.Append( o.x, o.y + s.y );
l.Append( o );
AddLine( l, aColor, 10000, aName, aSrcLoc );
}
virtual void AddSegment( const SEG& aS, const COLOR4D& aColor, const std::string& aName,
const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) override
{
SHAPE_LINE_CHAIN l;
l.Append( aS.A );
l.Append( aS.B );
AddLine( l, aColor, 10000, aName, aSrcLoc );
}
virtual void AddLine( const SHAPE_LINE_CHAIN& aLine, const COLOR4D& aColor,
int aWidth, const std::string& aName,
const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) override
{
if( !m_view )
return;
ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( nullptr, m_view );
pitem->SetColor( aColor );
pitem->Line( aLine, aWidth );
// Should not be needed, as m_items has been passed as a parent group in alloc;
m_items->Add( pitem );
m_view->Update( m_items );
}
void Clear() override
{
if( m_view && m_items )
{
m_items->FreeItems();
m_view->Update( m_items );
}
}
private:
KIGFX::VIEW* m_view;
KIGFX::VIEW_GROUP* m_items;
};
PNS::DEBUG_DECORATOR* PNS_KICAD_IFACE_BASE::GetDebugDecorator()
{
return m_debugDecorator;
}
PNS_KICAD_IFACE_BASE::PNS_KICAD_IFACE_BASE()
{
m_ruleResolver = nullptr;
m_board = nullptr;
m_world = nullptr;
m_debugDecorator = nullptr;
m_startLayer = -1;
}
PNS_KICAD_IFACE::PNS_KICAD_IFACE()
{
m_tool = nullptr;
m_view = nullptr;
m_previewItems = nullptr;
m_dispOptions = nullptr;
}
PNS_KICAD_IFACE_BASE::~PNS_KICAD_IFACE_BASE()
{
}
PNS_KICAD_IFACE::~PNS_KICAD_IFACE()
{
delete m_ruleResolver;
delete m_debugDecorator;
if( m_previewItems )
{
m_previewItems->FreeItems();
delete m_previewItems;
}
}
std::unique_ptr<PNS::SOLID> PNS_KICAD_IFACE_BASE::syncPad( PAD* aPad )
{
LAYER_RANGE layers( 0, MAX_CU_LAYERS - 1 );
// ignore non-copper pads except for those with holes
if( ( aPad->GetLayerSet() & LSET::AllCuMask() ).none() && aPad->GetDrillSize().x == 0 )
return nullptr;
switch( aPad->GetAttribute() )
{
case PAD_ATTRIB::PTH:
case PAD_ATTRIB::NPTH:
break;
case PAD_ATTRIB::CONN:
case PAD_ATTRIB::SMD:
{
LSET lmsk = aPad->GetLayerSet();
bool is_copper = false;
for( int i = 0; i < MAX_CU_LAYERS; i++ )
{
if( lmsk[i] )
{
is_copper = true;
if( aPad->GetAttribute() != PAD_ATTRIB::NPTH )
layers = LAYER_RANGE( i );
break;
}
}
if( !is_copper )
return nullptr;
break;
}
default:
wxLogTrace( "PNS", "unsupported pad type 0x%x", aPad->GetAttribute() );
return nullptr;
}
std::unique_ptr<PNS::SOLID> solid = std::make_unique<PNS::SOLID>();
if( aPad->GetAttribute() == PAD_ATTRIB::NPTH )
solid->SetRoutable( false );
solid->SetLayers( layers );
solid->SetNet( aPad->GetNetCode() );
solid->SetParent( aPad );
solid->SetPadToDie( aPad->GetPadToDieLength() );
solid->SetOrientation( aPad->GetOrientation() );
wxPoint wx_c = aPad->ShapePos();
wxPoint offset = aPad->GetOffset();
VECTOR2I c( wx_c.x, wx_c.y );
RotatePoint( &offset, aPad->GetOrientation() );
solid->SetPos( VECTOR2I( c.x - offset.x, c.y - offset.y ) );
solid->SetOffset( VECTOR2I( offset.x, offset.y ) );
if( aPad->GetDrillSize().x > 0 )
{
SHAPE_SEGMENT* slot = (SHAPE_SEGMENT*) aPad->GetEffectiveHoleShape()->Clone();
if( aPad->GetAttribute() != PAD_ATTRIB::NPTH )
{
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
slot->SetWidth( slot->GetWidth() + bds.GetHolePlatingThickness() * 2 );
}
solid->SetHole( slot );
}
std::shared_ptr<SHAPE> shape = aPad->GetEffectiveShape();
if( shape->HasIndexableSubshapes() && shape->GetIndexableSubshapeCount() == 1 )
{
std::vector<SHAPE*> subshapes;
shape->GetIndexableSubshapes( subshapes );
solid->SetShape( subshapes[0]->Clone() );
}
else
{
solid->SetShape( shape->Clone() );
}
return solid;
}
std::unique_ptr<PNS::SEGMENT> PNS_KICAD_IFACE_BASE::syncTrack( PCB_TRACK* aTrack )
{
auto segment = std::make_unique<PNS::SEGMENT>( SEG( aTrack->GetStart(), aTrack->GetEnd() ),
aTrack->GetNetCode() );
segment->SetWidth( aTrack->GetWidth() );
segment->SetLayers( LAYER_RANGE( aTrack->GetLayer() ) );
segment->SetParent( aTrack );
if( aTrack->IsLocked() )
segment->Mark( PNS::MK_LOCKED );
return segment;
}
std::unique_ptr<PNS::ARC> PNS_KICAD_IFACE_BASE::syncArc( PCB_ARC* aArc )
{
auto arc = std::make_unique<PNS::ARC>(
SHAPE_ARC( aArc->GetStart(), aArc->GetMid(), aArc->GetEnd(), aArc->GetWidth() ),
aArc->GetNetCode() );
arc->SetLayers( LAYER_RANGE( aArc->GetLayer() ) );
arc->SetParent( aArc );
if( aArc->IsLocked() )
arc->Mark( PNS::MK_LOCKED );
return arc;
}
std::unique_ptr<PNS::VIA> PNS_KICAD_IFACE_BASE::syncVia( PCB_VIA* aVia )
{
PCB_LAYER_ID top, bottom;
aVia->LayerPair( &top, &bottom );
auto via = std::make_unique<PNS::VIA>( aVia->GetPosition(),
LAYER_RANGE( aVia->TopLayer(), aVia->BottomLayer() ),
aVia->GetWidth(),
aVia->GetDrillValue(),
aVia->GetNetCode(),
aVia->GetViaType() );
via->SetParent( aVia );
if( aVia->IsLocked() )
via->Mark( PNS::MK_LOCKED );
via->SetIsFree( aVia->GetIsFree() );
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
via->SetHole( SHAPE_CIRCLE( aVia->GetPosition(),
aVia->GetDrillValue() / 2 + bds.GetHolePlatingThickness() ) );
return via;
}
bool PNS_KICAD_IFACE_BASE::syncZone( PNS::NODE* aWorld, ZONE* aZone, SHAPE_POLY_SET* aBoardOutline )
{
SHAPE_POLY_SET* poly;
if( !aZone->GetIsRuleArea() && aZone->GetZoneName().IsEmpty() )
return false;
// Required by expression function insideArea()
aZone->CacheBoundingBox();
// TODO handle aZone->GetDoNotAllowVias()
// TODO handle rules which disallow tracks & vias
if( !aZone->GetIsRuleArea() || !aZone->GetDoNotAllowTracks() )
return false;
LSET layers = aZone->GetLayerSet();
EDA_UNITS units = EDA_UNITS::MILLIMETRES; // TODO: get real units
poly = aZone->Outline();
poly->CacheTriangulation( false );
if( !poly->IsTriangulationUpToDate() )
{
KIDIALOG dlg( nullptr, wxString::Format( _( "%s is malformed." ),
aZone->GetSelectMenuText( units ) ),
KIDIALOG::KD_WARNING );
dlg.ShowDetailedText( wxString::Format( _( "This zone cannot be handled by the router.\n"
"Please verify it is not a self-intersecting "
"polygon." ) ) );
dlg.DoNotShowCheckbox( __FILE__, __LINE__ );
dlg.ShowModal();
return false;
}
for( int layer = F_Cu; layer <= B_Cu; layer++ )
{
if( !layers[ layer ] )
continue;
for( int outline = 0; outline < poly->OutlineCount(); outline++ )
{
const SHAPE_POLY_SET::TRIANGULATED_POLYGON* tri = poly->TriangulatedPolygon( outline );
for( size_t i = 0; i < tri->GetTriangleCount(); i++)
{
VECTOR2I a, b, c;
tri->GetTriangle( i, a, b, c );
SHAPE_SIMPLE* triShape = new SHAPE_SIMPLE;
triShape->Append( a );
triShape->Append( b );
triShape->Append( c );
std::unique_ptr<PNS::SOLID> solid = std::make_unique<PNS::SOLID>();
solid->SetLayer( layer );
solid->SetNet( -1 );
solid->SetParent( aZone );
solid->SetShape( triShape );
solid->SetIsCompoundShapePrimitive();
solid->SetRoutable( false );
aWorld->Add( std::move( solid ) );
}
}
}
return true;
}
bool PNS_KICAD_IFACE_BASE::syncTextItem( PNS::NODE* aWorld, EDA_TEXT* aText, PCB_LAYER_ID aLayer )
{
if( !IsCopperLayer( aLayer ) )
return false;
int textWidth = aText->GetEffectiveTextPenWidth();
std::vector<wxPoint> textShape = aText->TransformToSegmentList();
if( textShape.size() < 2 )
return false;
for( size_t jj = 0; jj < textShape.size(); jj += 2 )
{
VECTOR2I start( textShape[jj] );
VECTOR2I end( textShape[jj+1] );
std::unique_ptr<PNS::SOLID> solid = std::make_unique<PNS::SOLID>();
solid->SetLayer( aLayer );
solid->SetNet( -1 );
solid->SetParent( dynamic_cast<BOARD_ITEM*>( aText ) );
solid->SetShape( new SHAPE_SEGMENT( start, end, textWidth ) );
solid->SetIsCompoundShapePrimitive();
solid->SetRoutable( false );
aWorld->Add( std::move( solid ) );
}
return true;
/* A coarser (but faster) method:
*
SHAPE_POLY_SET outline;
SHAPE_SIMPLE* shape = new SHAPE_SIMPLE();
aText->TransformBoundingBoxWithClearanceToPolygon( &outline, 0 );
for( auto iter = outline.CIterate( 0 ); iter; iter++ )
shape->Append( *iter );
solid->SetShape( shape );
solid->SetLayer( aLayer );
solid->SetNet( -1 );
solid->SetParent( nullptr );
solid->SetRoutable( false );
aWorld->Add( std::move( solid ) );
return true;
*/
}
bool PNS_KICAD_IFACE_BASE::syncGraphicalItem( PNS::NODE* aWorld, PCB_SHAPE* aItem )
{
if( aItem->GetLayer() == Edge_Cuts
|| aItem->GetLayer() == Margin
|| IsCopperLayer( aItem->GetLayer() ) )
{
// TODO: where do we handle filled polygons on copper layers?
if( aItem->GetShape() == SHAPE_T::POLY && aItem->IsFilled() )
return false;
std::vector<SHAPE*> shapes = aItem->MakeEffectiveShapes();
for( SHAPE* shape : shapes )
{
std::unique_ptr<PNS::SOLID> solid = std::make_unique<PNS::SOLID>();
if( aItem->GetLayer() == Edge_Cuts || aItem->GetLayer() == Margin )
solid->SetLayers( LAYER_RANGE( F_Cu, B_Cu ) );
else
solid->SetLayer( aItem->GetLayer() );
if( aItem->GetLayer() == Edge_Cuts )
{
switch( shape->Type() )
{
case SH_SEGMENT: static_cast<SHAPE_SEGMENT*>( shape )->SetWidth( 0 ); break;
case SH_ARC: static_cast<SHAPE_ARC*>( shape )->SetWidth( 0 ); break;
case SH_LINE_CHAIN: static_cast<SHAPE_LINE_CHAIN*>( shape )->SetWidth( 0 ); break;
default: /* remaining shapes don't have width */ break;
}
}
solid->SetNet( -1 );
solid->SetParent( aItem );
solid->SetShape( shape ); // takes ownership
if( shapes.size() > 1 )
solid->SetIsCompoundShapePrimitive();
solid->SetRoutable( false );
aWorld->Add( std::move( solid ) );
}
return true;
}
return false;
}
void PNS_KICAD_IFACE_BASE::SetBoard( BOARD* aBoard )
{
m_board = aBoard;
wxLogTrace( "PNS", "m_board = %p", m_board );
}
bool PNS_KICAD_IFACE::IsAnyLayerVisible( const LAYER_RANGE& aLayer ) const
{
if( !m_view )
return false;
for( int i = aLayer.Start(); i <= aLayer.End(); i++ )
{
if( m_view->IsLayerVisible( i ) )
return true;
}
return false;
}
bool PNS_KICAD_IFACE::IsFlashedOnLayer( const PNS::ITEM* aItem, int aLayer ) const
{
/// Default is all layers
if( aLayer < 0 )
return true;
if( aItem->Parent() )
{
switch( aItem->Parent()->Type() )
{
case PCB_VIA_T:
{
const PCB_VIA* via = static_cast<const PCB_VIA*>( aItem->Parent() );
return via->FlashLayer( static_cast<PCB_LAYER_ID>( aLayer ) );
}
case PCB_PAD_T:
{
const PAD* pad = static_cast<const PAD*>( aItem->Parent() );
return pad->FlashLayer( static_cast<PCB_LAYER_ID>( aLayer ) );
}
default:
break;
}
}
return aItem->Layers().Overlaps( aLayer );
}
bool PNS_KICAD_IFACE::IsItemVisible( const PNS::ITEM* aItem ) const
{
// by default, all items are visible (new ones created by the router have parent == NULL
// as they have not been committed yet to the BOARD)
if( !m_view || !aItem->Parent() )
return true;
BOARD_ITEM* item = aItem->Parent();
bool isOnVisibleLayer = true;
RENDER_SETTINGS* settings = m_view->GetPainter()->GetSettings();
if( settings->GetHighContrast() )
isOnVisibleLayer = item->IsOnLayer( settings->GetPrimaryHighContrastLayer() );
if( m_view->IsVisible( item ) && isOnVisibleLayer
&& item->ViewGetLOD( item->GetLayer(), m_view ) < m_view->GetScale() )
{
return true;
}
// Items hidden in the router are not hidden on the board
if( m_hiddenItems.find( item ) != m_hiddenItems.end() )
return true;
return false;
}
void PNS_KICAD_IFACE_BASE::SyncWorld( PNS::NODE *aWorld )
{
if( !m_board )
{
wxLogTrace( "PNS", "No board attached, aborting sync." );
return;
}
int worstClearance = m_board->GetDesignSettings().GetBiggestClearanceValue();
m_world = aWorld;
for( BOARD_ITEM* gitem : m_board->Drawings() )
{
if ( gitem->Type() == PCB_SHAPE_T )
{
syncGraphicalItem( aWorld, static_cast<PCB_SHAPE*>( gitem ) );
}
else if( gitem->Type() == PCB_TEXT_T )
{
syncTextItem( aWorld, static_cast<PCB_TEXT*>( gitem ), gitem->GetLayer() );
}
}
SHAPE_POLY_SET buffer;
SHAPE_POLY_SET* boardOutline = nullptr;
if( m_board->GetBoardPolygonOutlines( buffer ) )
boardOutline = &buffer;
for( ZONE* zone : m_board->Zones() )
{
syncZone( aWorld, zone, boardOutline );
}
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
{
if( std::unique_ptr<PNS::SOLID> solid = syncPad( pad ) )
aWorld->Add( std::move( solid ) );
worstClearance = std::max( worstClearance, pad->GetLocalClearance() );
}
syncTextItem( aWorld, &footprint->Reference(), footprint->Reference().GetLayer() );
syncTextItem( aWorld, &footprint->Value(), footprint->Value().GetLayer() );
for( FP_ZONE* zone : footprint->Zones() )
syncZone( aWorld, zone, boardOutline );
if( footprint->IsNetTie() )
continue;
for( BOARD_ITEM* mgitem : footprint->GraphicalItems() )
{
if( mgitem->Type() == PCB_FP_SHAPE_T )
{
syncGraphicalItem( aWorld, static_cast<PCB_SHAPE*>( mgitem ) );
}
else if( mgitem->Type() == PCB_FP_TEXT_T )
{
syncTextItem( aWorld, static_cast<FP_TEXT*>( mgitem ), mgitem->GetLayer() );
}
}
}
for( PCB_TRACK* t : m_board->Tracks() )
{
KICAD_T type = t->Type();
if( type == PCB_TRACE_T )
{
if( auto segment = syncTrack( t ) )
aWorld->Add( std::move( segment ) );
}
else if( type == PCB_ARC_T )
{
if( auto arc = syncArc( static_cast<PCB_ARC*>( t ) ) )
aWorld->Add( std::move( arc ) );
}
else if( type == PCB_VIA_T )
{
if( auto via = syncVia( static_cast<PCB_VIA*>( t ) ) )
aWorld->Add( std::move( via ) );
}
}
// NB: if this were ever to become a long-lived object we would need to dirty its
// clearance cache here....
delete m_ruleResolver;
m_ruleResolver = new PNS_PCBNEW_RULE_RESOLVER( m_board, this );
aWorld->SetRuleResolver( m_ruleResolver );
aWorld->SetMaxClearance( worstClearance + m_ruleResolver->ClearanceEpsilon() );
}
void PNS_KICAD_IFACE::EraseView()
{
for( auto item : m_hiddenItems )
m_view->SetVisible( item, true );
m_hiddenItems.clear();
if( m_previewItems )
{
m_previewItems->FreeItems();
m_view->Update( m_previewItems );
}
if( m_debugDecorator )
m_debugDecorator->Clear();
}
void PNS_KICAD_IFACE_BASE::SetDebugDecorator( PNS::DEBUG_DECORATOR *aDec )
{
m_debugDecorator = aDec;
}
void PNS_KICAD_IFACE::DisplayItem( const PNS::ITEM* aItem, int aClearance, bool aEdit )
{
if( aItem->IsVirtual() )
return;
ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aItem, m_view );
// Note: SEGMENT_T is used for placed tracks; LINE_T is used for the routing head
static int tracks = PNS::ITEM::SEGMENT_T | PNS::ITEM::ARC_T | PNS::ITEM::LINE_T;
static int tracksOrVias = tracks | PNS::ITEM::VIA_T;
if( aClearance >= 0 )
{
pitem->SetClearance( aClearance );
switch( m_dispOptions->m_ShowTrackClearanceMode )
{
case PCB_DISPLAY_OPTIONS::SHOW_TRACK_CLEARANCE_WITH_VIA_ALWAYS:
case PCB_DISPLAY_OPTIONS::SHOW_WHILE_ROUTING_OR_DRAGGING:
pitem->ShowClearance( aItem->OfKind( tracksOrVias ) );
break;
case PCB_DISPLAY_OPTIONS::SHOW_TRACK_CLEARANCE_WITH_VIA_WHILE_ROUTING:
pitem->ShowClearance( aItem->OfKind( tracksOrVias ) && !aEdit );
break;
case PCB_DISPLAY_OPTIONS::SHOW_TRACK_CLEARANCE_WHILE_ROUTING:
pitem->ShowClearance( aItem->OfKind( tracks ) && !aEdit );
break;
default:
pitem->ShowClearance( false );
break;
}
}
m_previewItems->Add( pitem );
m_view->Update( m_previewItems );
}
void PNS_KICAD_IFACE::DisplayRatline( const SHAPE_LINE_CHAIN& aRatline, int aColor )
{
ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( nullptr, m_view );
pitem->Line( aRatline, 10000, aColor );
m_previewItems->Add( pitem );
m_view->Update( m_previewItems );
}
void PNS_KICAD_IFACE::HideItem( PNS::ITEM* aItem )
{
BOARD_ITEM* parent = aItem->Parent();
if( parent )
{
if( m_view->IsVisible( parent ) )
m_hiddenItems.insert( parent );
m_view->SetVisible( parent, false );
m_view->Update( parent, KIGFX::APPEARANCE );
}
}
void PNS_KICAD_IFACE_BASE::RemoveItem( PNS::ITEM* aItem )
{
}
void PNS_KICAD_IFACE::RemoveItem( PNS::ITEM* aItem )
{
BOARD_ITEM* parent = aItem->Parent();
if( aItem->OfKind( PNS::ITEM::SOLID_T ) )
{
PAD* pad = static_cast<PAD*>( parent );
VECTOR2I pos = static_cast<PNS::SOLID*>( aItem )->Pos();
m_fpOffsets[ pad ].p_old = pos;
return;
}
if( parent )
{
m_commit->Remove( parent );
}
}
void PNS_KICAD_IFACE_BASE::UpdateItem( PNS::ITEM* aItem )
{
}
void PNS_KICAD_IFACE::UpdateItem( PNS::ITEM* aItem )
{
BOARD_ITEM* board_item = aItem->Parent();
m_commit->Modify( board_item );
switch( aItem->Kind() )
{
case PNS::ITEM::ARC_T:
{
PNS::ARC* arc = static_cast<PNS::ARC*>( aItem );
PCB_ARC* arc_board = static_cast<PCB_ARC*>( board_item );
const SHAPE_ARC* arc_shape = static_cast<const SHAPE_ARC*>( arc->Shape() );
arc_board->SetStart( wxPoint( arc_shape->GetP0() ) );
arc_board->SetEnd( wxPoint( arc_shape->GetP1() ) );
arc_board->SetMid( wxPoint( arc_shape->GetArcMid() ) );
arc_board->SetWidth( arc->Width() );
break;
}
case PNS::ITEM::SEGMENT_T:
{
PNS::SEGMENT* seg = static_cast<PNS::SEGMENT*>( aItem );
PCB_TRACK* track = static_cast<PCB_TRACK*>( board_item );
const SEG& s = seg->Seg();
track->SetStart( wxPoint( s.A.x, s.A.y ) );
track->SetEnd( wxPoint( s.B.x, s.B.y ) );
track->SetWidth( seg->Width() );
break;
}
case PNS::ITEM::VIA_T:
{
PCB_VIA* via_board = static_cast<PCB_VIA*>( board_item );
PNS::VIA* via = static_cast<PNS::VIA*>( aItem );
via_board->SetPosition( wxPoint( via->Pos().x, via->Pos().y ) );
via_board->SetWidth( via->Diameter() );
via_board->SetDrill( via->Drill() );
via_board->SetNetCode( via->Net() > 0 ? via->Net() : 0 );
via_board->SetViaType( via->ViaType() ); // MUST be before SetLayerPair()
via_board->SetIsFree( via->IsFree() );
via_board->SetLayerPair( ToLAYER_ID( via->Layers().Start() ),
ToLAYER_ID( via->Layers().End() ) );
break;
}
case PNS::ITEM::SOLID_T:
{
PAD* pad = static_cast<PAD*>( aItem->Parent() );
VECTOR2I pos = static_cast<PNS::SOLID*>( aItem )->Pos();
m_fpOffsets[ pad ].p_old = pad->GetPosition();
m_fpOffsets[ pad ].p_new = pos;
break;
}
default:
break;
}
}
void PNS_KICAD_IFACE_BASE::AddItem( PNS::ITEM* aItem )
{
}
void PNS_KICAD_IFACE::AddItem( PNS::ITEM* aItem )
{
BOARD_CONNECTED_ITEM* newBI = nullptr;
switch( aItem->Kind() )
{
case PNS::ITEM::ARC_T:
{
PNS::ARC* arc = static_cast<PNS::ARC*>( aItem );
PCB_ARC* new_arc = new PCB_ARC( m_board, static_cast<const SHAPE_ARC*>( arc->Shape() ) );
new_arc->SetWidth( arc->Width() );
new_arc->SetLayer( ToLAYER_ID( arc->Layers().Start() ) );
new_arc->SetNetCode( std::max<int>( 0, arc->Net() ) );
newBI = new_arc;
break;
}
case PNS::ITEM::SEGMENT_T:
{
PNS::SEGMENT* seg = static_cast<PNS::SEGMENT*>( aItem );
PCB_TRACK* track = new PCB_TRACK( m_board );
const SEG& s = seg->Seg();
track->SetStart( wxPoint( s.A.x, s.A.y ) );
track->SetEnd( wxPoint( s.B.x, s.B.y ) );
track->SetWidth( seg->Width() );
track->SetLayer( ToLAYER_ID( seg->Layers().Start() ) );
track->SetNetCode( seg->Net() > 0 ? seg->Net() : 0 );
newBI = track;
break;
}
case PNS::ITEM::VIA_T:
{
PCB_VIA* via_board = new PCB_VIA( m_board );
PNS::VIA* via = static_cast<PNS::VIA*>( aItem );
via_board->SetPosition( wxPoint( via->Pos().x, via->Pos().y ) );
via_board->SetWidth( via->Diameter() );
via_board->SetDrill( via->Drill() );
via_board->SetNetCode( via->Net() > 0 ? via->Net() : 0 );
via_board->SetViaType( via->ViaType() ); // MUST be before SetLayerPair()
via_board->SetIsFree( via->IsFree() );
via_board->SetLayerPair( ToLAYER_ID( via->Layers().Start() ),
ToLAYER_ID( via->Layers().End() ) );
newBI = via_board;
break;
}
case PNS::ITEM::SOLID_T:
{
PAD* pad = static_cast<PAD*>( aItem->Parent() );
VECTOR2I pos = static_cast<PNS::SOLID*>( aItem )->Pos();
m_fpOffsets[ pad ].p_new = pos;
return;
}
default:
break;
}
if( newBI )
{
//newBI->SetLocalRatsnestVisible( m_dispOptions->m_ShowGlobalRatsnest );
aItem->SetParent( newBI );
newBI->ClearFlags();
m_commit->Add( newBI );
}
}
void PNS_KICAD_IFACE::Commit()
{
std::set<FOOTPRINT*> processedFootprints;
EraseView();
for( auto fpOffset : m_fpOffsets )
{
VECTOR2I offset = fpOffset.second.p_new - fpOffset.second.p_old;
FOOTPRINT* footprint = fpOffset.first->GetParent();
VECTOR2I p_orig = footprint->GetPosition();
VECTOR2I p_new = p_orig + offset;
if( processedFootprints.find( footprint ) != processedFootprints.end() )
continue;
processedFootprints.insert( footprint );
m_commit->Modify( footprint );
footprint->SetPosition( wxPoint( p_new.x, p_new.y ) );
}
m_fpOffsets.clear();
m_commit->Push( _( "Interactive Router" ) );
m_commit = std::make_unique<BOARD_COMMIT>( m_tool );
}
void PNS_KICAD_IFACE::SetView( KIGFX::VIEW* aView )
{
wxLogTrace( "PNS", "SetView %p", aView );
if( m_previewItems )
{
m_previewItems->FreeItems();
delete m_previewItems;
}
m_view = aView;
m_previewItems = new KIGFX::VIEW_GROUP( m_view );
m_previewItems->SetLayer( LAYER_SELECT_OVERLAY ) ;
if(m_view)
m_view->Add( m_previewItems );
delete m_debugDecorator;
auto dec = new PNS_PCBNEW_DEBUG_DECORATOR();
m_debugDecorator = dec;
dec->SetDebugEnabled( ADVANCED_CFG::GetCfg().m_ShowRouterDebugGraphics );
if( ADVANCED_CFG::GetCfg().m_ShowRouterDebugGraphics )
dec->SetView( m_view );
}
void PNS_KICAD_IFACE::UpdateNet( int aNetCode )
{
wxLogTrace( "PNS", "Update-net %d", aNetCode );
}
PNS::RULE_RESOLVER* PNS_KICAD_IFACE_BASE::GetRuleResolver()
{
return m_ruleResolver;
}
void PNS_KICAD_IFACE::SetHostTool( PCB_TOOL_BASE* aTool )
{
m_tool = aTool;
m_commit = std::make_unique<BOARD_COMMIT>( m_tool );
}
void PNS_KICAD_IFACE::SetDisplayOptions( const PCB_DISPLAY_OPTIONS* aDispOptions )
{
m_dispOptions = aDispOptions;
}