kicad/include/boost/multi_array.hpp

500 lines
16 KiB
C++

// Copyright 2002 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Boost.MultiArray Library
// Authors: Ronald Garcia
// Jeremy Siek
// Andrew Lumsdaine
// See http://www.boost.org/libs/multi_array for documentation.
#ifndef BOOST_MULTI_ARRAY_RG071801_HPP
#define BOOST_MULTI_ARRAY_RG071801_HPP
//
// multi_array.hpp - contains the multi_array class template
// declaration and definition
//
#include "boost/multi_array/base.hpp"
#include "boost/multi_array/collection_concept.hpp"
#include "boost/multi_array/copy_array.hpp"
#include "boost/multi_array/iterator.hpp"
#include "boost/multi_array/subarray.hpp"
#include "boost/multi_array/multi_array_ref.hpp"
#include "boost/multi_array/algorithm.hpp"
#include "boost/array.hpp"
#include "boost/mpl/if.hpp"
#include "boost/type_traits.hpp"
#include <algorithm>
#include <cstddef>
#include <functional>
#include <numeric>
#include <vector>
namespace boost {
namespace detail {
namespace multi_array {
struct populate_index_ranges {
multi_array_types::index_range
// RG: underscore on extent_ to stifle strange MSVC warning.
operator()(multi_array_types::index base,
multi_array_types::size_type extent_) {
return multi_array_types::index_range(base,base+extent_);
}
};
#ifdef BOOST_NO_FUNCTION_TEMPLATE_ORDERING
//
// Compilers that don't support partial ordering may need help to
// disambiguate multi_array's templated constructors. Even vc6/7 are
// capable of some limited SFINAE, so we take the most-general version
// out of the overload set with disable_multi_array_impl.
//
template <typename T, std::size_t NumDims, typename TPtr>
char is_multi_array_impl_help(const_multi_array_view<T,NumDims,TPtr>&);
template <typename T, std::size_t NumDims, typename TPtr>
char is_multi_array_impl_help(const_sub_array<T,NumDims,TPtr>&);
template <typename T, std::size_t NumDims, typename TPtr>
char is_multi_array_impl_help(const_multi_array_ref<T,NumDims,TPtr>&);
char ( &is_multi_array_impl_help(...) )[2];
template <class T>
struct is_multi_array_impl
{
static T x;
BOOST_STATIC_CONSTANT(bool, value = sizeof((is_multi_array_impl_help)(x)) == 1);
typedef mpl::bool_<value> type;
};
template <bool multi_array = false>
struct disable_multi_array_impl_impl
{
typedef int type;
};
template <>
struct disable_multi_array_impl_impl<true>
{
// forming a pointer to a reference triggers SFINAE
typedef int& type;
};
template <class T>
struct disable_multi_array_impl :
disable_multi_array_impl_impl<is_multi_array_impl<T>::value>
{ };
template <>
struct disable_multi_array_impl<int>
{
typedef int type;
};
#endif
} //namespace multi_array
} // namespace detail
template<typename T, std::size_t NumDims,
typename Allocator>
class multi_array :
public multi_array_ref<T,NumDims>
{
typedef multi_array_ref<T,NumDims> super_type;
public:
typedef typename super_type::value_type value_type;
typedef typename super_type::reference reference;
typedef typename super_type::const_reference const_reference;
typedef typename super_type::iterator iterator;
typedef typename super_type::const_iterator const_iterator;
typedef typename super_type::reverse_iterator reverse_iterator;
typedef typename super_type::const_reverse_iterator const_reverse_iterator;
typedef typename super_type::element element;
typedef typename super_type::size_type size_type;
typedef typename super_type::difference_type difference_type;
typedef typename super_type::index index;
typedef typename super_type::extent_range extent_range;
template <std::size_t NDims>
struct const_array_view {
typedef boost::detail::multi_array::const_multi_array_view<T,NDims> type;
};
template <std::size_t NDims>
struct array_view {
typedef boost::detail::multi_array::multi_array_view<T,NDims> type;
};
explicit multi_array() :
super_type((T*)initial_base_,c_storage_order(),
/*index_bases=*/0, /*extents=*/0) {
allocate_space();
}
template <class ExtentList>
explicit multi_array(
ExtentList const& extents
#ifdef BOOST_NO_FUNCTION_TEMPLATE_ORDERING
, typename mpl::if_<
detail::multi_array::is_multi_array_impl<ExtentList>,
int&,int>::type* = 0
#endif
) :
super_type((T*)initial_base_,extents) {
boost::function_requires<
detail::multi_array::CollectionConcept<ExtentList> >();
allocate_space();
}
template <class ExtentList>
explicit multi_array(ExtentList const& extents,
const general_storage_order<NumDims>& so) :
super_type((T*)initial_base_,extents,so) {
boost::function_requires<
detail::multi_array::CollectionConcept<ExtentList> >();
allocate_space();
}
template <class ExtentList>
explicit multi_array(ExtentList const& extents,
const general_storage_order<NumDims>& so,
Allocator const& alloc) :
super_type((T*)initial_base_,extents,so), allocator_(alloc) {
boost::function_requires<
detail::multi_array::CollectionConcept<ExtentList> >();
allocate_space();
}
explicit multi_array(const detail::multi_array
::extent_gen<NumDims>& ranges) :
super_type((T*)initial_base_,ranges) {
allocate_space();
}
explicit multi_array(const detail::multi_array
::extent_gen<NumDims>& ranges,
const general_storage_order<NumDims>& so) :
super_type((T*)initial_base_,ranges,so) {
allocate_space();
}
explicit multi_array(const detail::multi_array
::extent_gen<NumDims>& ranges,
const general_storage_order<NumDims>& so,
Allocator const& alloc) :
super_type((T*)initial_base_,ranges,so), allocator_(alloc) {
allocate_space();
}
multi_array(const multi_array& rhs) :
super_type(rhs), allocator_(rhs.allocator_) {
allocate_space();
boost::detail::multi_array::copy_n(rhs.base_,rhs.num_elements(),base_);
}
//
// A multi_array is constructible from any multi_array_ref, subarray, or
// array_view object. The following constructors ensure that.
//
// Due to limited support for partial template ordering,
// MSVC 6&7 confuse the following with the most basic ExtentList
// constructor.
#ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING
template <typename OPtr>
multi_array(const const_multi_array_ref<T,NumDims,OPtr>& rhs,
const general_storage_order<NumDims>& so = c_storage_order())
: super_type(0,so,rhs.index_bases(),rhs.shape())
{
allocate_space();
// Warning! storage order may change, hence the following copy technique.
std::copy(rhs.begin(),rhs.end(),this->begin());
}
template <typename OPtr>
multi_array(const detail::multi_array::
const_sub_array<T,NumDims,OPtr>& rhs,
const general_storage_order<NumDims>& so = c_storage_order())
: super_type(0,so,rhs.index_bases(),rhs.shape())
{
allocate_space();
std::copy(rhs.begin(),rhs.end(),this->begin());
}
template <typename OPtr>
multi_array(const detail::multi_array::
const_multi_array_view<T,NumDims,OPtr>& rhs,
const general_storage_order<NumDims>& so = c_storage_order())
: super_type(0,so,rhs.index_bases(),rhs.shape())
{
allocate_space();
std::copy(rhs.begin(),rhs.end(),this->begin());
}
#else // BOOST_NO_FUNCTION_TEMPLATE_ORDERING
// More limited support for MSVC
multi_array(const const_multi_array_ref<T,NumDims>& rhs)
: super_type(0,c_storage_order(),rhs.index_bases(),rhs.shape())
{
allocate_space();
// Warning! storage order may change, hence the following copy technique.
std::copy(rhs.begin(),rhs.end(),this->begin());
}
multi_array(const const_multi_array_ref<T,NumDims>& rhs,
const general_storage_order<NumDims>& so)
: super_type(0,so,rhs.index_bases(),rhs.shape())
{
allocate_space();
// Warning! storage order may change, hence the following copy technique.
std::copy(rhs.begin(),rhs.end(),this->begin());
}
multi_array(const detail::multi_array::
const_sub_array<T,NumDims>& rhs)
: super_type(0,c_storage_order(),rhs.index_bases(),rhs.shape())
{
allocate_space();
std::copy(rhs.begin(),rhs.end(),this->begin());
}
multi_array(const detail::multi_array::
const_sub_array<T,NumDims>& rhs,
const general_storage_order<NumDims>& so)
: super_type(0,so,rhs.index_bases(),rhs.shape())
{
allocate_space();
std::copy(rhs.begin(),rhs.end(),this->begin());
}
multi_array(const detail::multi_array::
const_multi_array_view<T,NumDims>& rhs)
: super_type(0,c_storage_order(),rhs.index_bases(),rhs.shape())
{
allocate_space();
std::copy(rhs.begin(),rhs.end(),this->begin());
}
multi_array(const detail::multi_array::
const_multi_array_view<T,NumDims>& rhs,
const general_storage_order<NumDims>& so)
: super_type(0,so,rhs.index_bases(),rhs.shape())
{
allocate_space();
std::copy(rhs.begin(),rhs.end(),this->begin());
}
#endif // !BOOST_NO_FUNCTION_TEMPLATE_ORDERING
// Thes constructors are necessary because of more exact template matches.
multi_array(const multi_array_ref<T,NumDims>& rhs)
: super_type(0,c_storage_order(),rhs.index_bases(),rhs.shape())
{
allocate_space();
// Warning! storage order may change, hence the following copy technique.
std::copy(rhs.begin(),rhs.end(),this->begin());
}
multi_array(const multi_array_ref<T,NumDims>& rhs,
const general_storage_order<NumDims>& so)
: super_type(0,so,rhs.index_bases(),rhs.shape())
{
allocate_space();
// Warning! storage order may change, hence the following copy technique.
std::copy(rhs.begin(),rhs.end(),this->begin());
}
multi_array(const detail::multi_array::
sub_array<T,NumDims>& rhs)
: super_type(0,c_storage_order(),rhs.index_bases(),rhs.shape())
{
allocate_space();
std::copy(rhs.begin(),rhs.end(),this->begin());
}
multi_array(const detail::multi_array::
sub_array<T,NumDims>& rhs,
const general_storage_order<NumDims>& so)
: super_type(0,so,rhs.index_bases(),rhs.shape())
{
allocate_space();
std::copy(rhs.begin(),rhs.end(),this->begin());
}
multi_array(const detail::multi_array::
multi_array_view<T,NumDims>& rhs)
: super_type(0,c_storage_order(),rhs.index_bases(),rhs.shape())
{
allocate_space();
std::copy(rhs.begin(),rhs.end(),this->begin());
}
multi_array(const detail::multi_array::
multi_array_view<T,NumDims>& rhs,
const general_storage_order<NumDims>& so)
: super_type(0,so,rhs.index_bases(),rhs.shape())
{
allocate_space();
std::copy(rhs.begin(),rhs.end(),this->begin());
}
// Since assignment is a deep copy, multi_array_ref
// contains all the necessary code.
template <typename ConstMultiArray>
multi_array& operator=(const ConstMultiArray& other) {
super_type::operator=(other);
return *this;
}
multi_array& operator=(const multi_array& other) {
if (&other != this) {
super_type::operator=(other);
}
return *this;
}
template <typename ExtentList>
multi_array& resize(const ExtentList& extents) {
boost::function_requires<
detail::multi_array::CollectionConcept<ExtentList> >();
typedef detail::multi_array::extent_gen<NumDims> gen_type;
gen_type ranges;
for (int i=0; i != NumDims; ++i) {
typedef typename gen_type::range range_type;
ranges.ranges_[i] = range_type(0,extents[i]);
}
return this->resize(ranges);
}
multi_array& resize(const detail::multi_array
::extent_gen<NumDims>& ranges) {
// build a multi_array with the specs given
multi_array new_array(ranges,this->storage_order());
// build a view of tmp with the minimum extents
// Get the minimum extents of the arrays.
boost::array<size_type,NumDims> min_extents;
const size_type& (*min)(const size_type&, const size_type&) =
std::min;
std::transform(new_array.extent_list_.begin(),new_array.extent_list_.end(),
this->extent_list_.begin(),
min_extents.begin(),
min);
// typedef boost::array<index,NumDims> index_list;
// Build index_gen objects to create views with the same shape
// these need to be separate to handle non-zero index bases
typedef detail::multi_array::index_gen<NumDims,NumDims> index_gen;
index_gen old_idxes;
index_gen new_idxes;
std::transform(new_array.index_base_list_.begin(),
new_array.index_base_list_.end(),
min_extents.begin(),new_idxes.ranges_.begin(),
detail::multi_array::populate_index_ranges());
std::transform(this->index_base_list_.begin(),
this->index_base_list_.end(),
min_extents.begin(),old_idxes.ranges_.begin(),
detail::multi_array::populate_index_ranges());
// Build same-shape views of the two arrays
typename
multi_array::BOOST_NESTED_TEMPLATE array_view<NumDims>::type view_old = (*this)[old_idxes];
typename
multi_array::BOOST_NESTED_TEMPLATE array_view<NumDims>::type view_new = new_array[new_idxes];
// Set the right portion of the new array
view_new = view_old;
using std::swap;
// Swap the internals of these arrays.
swap(this->super_type::base_,new_array.super_type::base_);
swap(this->storage_,new_array.storage_);
swap(this->extent_list_,new_array.extent_list_);
swap(this->stride_list_,new_array.stride_list_);
swap(this->index_base_list_,new_array.index_base_list_);
swap(this->origin_offset_,new_array.origin_offset_);
swap(this->directional_offset_,new_array.directional_offset_);
swap(this->num_elements_,new_array.num_elements_);
swap(this->allocator_,new_array.allocator_);
swap(this->base_,new_array.base_);
swap(this->allocated_elements_,new_array.allocated_elements_);
return *this;
}
~multi_array() {
deallocate_space();
}
private:
void allocate_space() {
typename Allocator::const_pointer no_hint=0;
base_ = allocator_.allocate(this->num_elements(),no_hint);
this->set_base_ptr(base_);
allocated_elements_ = this->num_elements();
std::uninitialized_fill_n(base_,allocated_elements_,T());
}
void deallocate_space() {
if(base_) {
for(T* i = base_; i != base_+allocated_elements_; ++i)
allocator_.destroy(i);
allocator_.deallocate(base_,allocated_elements_);
}
}
typedef boost::array<size_type,NumDims> size_list;
typedef boost::array<index,NumDims> index_list;
Allocator allocator_;
T* base_;
size_type allocated_elements_;
enum {initial_base_ = 0};
};
} // namespace boost
#endif // BOOST_MULTI_ARRAY_RG071801_HPP