kicad/include/boost/polygon/transform.hpp

467 lines
15 KiB
C++

// Boost.Polygon library point_data.hpp header file
// Copyright (c) Intel Corporation 2008.
// Copyright (c) 2008-2012 Simonson Lucanus.
// Copyright (c) 2012-2012 Andrii Sydorchuk.
// See http://www.boost.org for updates, documentation, and revision history.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_POLYGON_TRANSFORM_HPP
#define BOOST_POLYGON_TRANSFORM_HPP
#include "isotropy.hpp"
namespace boost {
namespace polygon {
// Transformation of Coordinate System.
// Enum meaning:
// Select which direction_2d to change the positive direction of each
// axis in the old coordinate system to map it to the new coordiante system.
// The first direction_2d listed for each enum is the direction to map the
// positive horizontal direction to.
// The second direction_2d listed for each enum is the direction to map the
// positive vertical direction to.
// The zero position bit (LSB) indicates whether the horizontal axis flips
// when transformed.
// The 1st postion bit indicates whether the vertical axis flips when
// transformed.
// The 2nd position bit indicates whether the horizontal and vertical axis
// swap positions when transformed.
// Enum Values:
// 000 EAST NORTH
// 001 WEST NORTH
// 010 EAST SOUTH
// 011 WEST SOUTH
// 100 NORTH EAST
// 101 SOUTH EAST
// 110 NORTH WEST
// 111 SOUTH WEST
class axis_transformation {
public:
enum ATR {
NULL_TRANSFORM = 0,
BEGIN_TRANSFORM = 0,
EN = 0, EAST_NORTH = 0,
WN = 1, WEST_NORTH = 1, FLIP_X = 1,
ES = 2, EAST_SOUTH = 2, FLIP_Y = 2,
WS = 3, WEST_SOUTH = 3, FLIP_XY = 3,
NE = 4, NORTH_EAST = 4, SWAP_XY = 4,
SE = 5, SOUTH_EAST = 5, ROTATE_LEFT = 5,
NW = 6, NORTH_WEST = 6, ROTATE_RIGHT = 6,
SW = 7, SOUTH_WEST = 7, FLIP_SWAP_XY = 7,
END_TRANSFORM = 7
};
// Individual axis enum values indicate which axis an implicit individual
// axis will be mapped to.
// The value of the enum paired with an axis provides the information
// about what the axis will transform to.
// Three individual axis values, one for each axis, are equivalent to one
// ATR enum value, but easier to work with because they are independent.
// Converting to and from the individual axis values from the ATR value
// is a convenient way to implement tranformation related functionality.
// Enum meanings:
// PX: map to positive x axis
// NX: map to negative x axis
// PY: map to positive y axis
// NY: map to negative y axis
enum INDIVIDUAL_AXIS {
PX = 0,
NX = 1,
PY = 2,
NY = 3
};
axis_transformation() : atr_(NULL_TRANSFORM) {}
explicit axis_transformation(ATR atr) : atr_(atr) {}
axis_transformation(const axis_transformation& atr) : atr_(atr.atr_) {}
explicit axis_transformation(const orientation_2d& orient) {
const ATR tmp[2] = {
NORTH_EAST, // sort x, then y
EAST_NORTH // sort y, then x
};
atr_ = tmp[orient.to_int()];
}
explicit axis_transformation(const direction_2d& dir) {
const ATR tmp[4] = {
SOUTH_EAST, // sort x, then y
NORTH_EAST, // sort x, then y
EAST_SOUTH, // sort y, then x
EAST_NORTH // sort y, then x
};
atr_ = tmp[dir.to_int()];
}
// assignment operator
axis_transformation& operator=(const axis_transformation& a) {
atr_ = a.atr_;
return *this;
}
// assignment operator
axis_transformation& operator=(const ATR& atr) {
atr_ = atr;
return *this;
}
// equivalence operator
bool operator==(const axis_transformation& a) const {
return atr_ == a.atr_;
}
// inequivalence operator
bool operator!=(const axis_transformation& a) const {
return !(*this == a);
}
// ordering
bool operator<(const axis_transformation& a) const {
return atr_ < a.atr_;
}
// concatenate this with that
axis_transformation& operator+=(const axis_transformation& a) {
bool abit2 = (a.atr_ & 4) != 0;
bool abit1 = (a.atr_ & 2) != 0;
bool abit0 = (a.atr_ & 1) != 0;
bool bit2 = (atr_ & 4) != 0;
bool bit1 = (atr_ & 2) != 0;
bool bit0 = (atr_ & 1) != 0;
int indexes[2][2] = {
{ (int)bit2, (int)(!bit2) },
{ (int)abit2, (int)(!abit2) }
};
int zero_bits[2][2] = {
{bit0, bit1}, {abit0, abit1}
};
int nbit1 = zero_bits[0][1] ^ zero_bits[1][indexes[0][1]];
int nbit0 = zero_bits[0][0] ^ zero_bits[1][indexes[0][0]];
indexes[0][0] = indexes[1][indexes[0][0]];
indexes[0][1] = indexes[1][indexes[0][1]];
int nbit2 = indexes[0][0] & 1; // swap xy
atr_ = (ATR)((nbit2 << 2) + (nbit1 << 1) + nbit0);
return *this;
}
// concatenation operator
axis_transformation operator+(const axis_transformation& a) const {
axis_transformation retval(*this);
return retval+=a;
}
// populate_axis_array writes the three INDIVIDUAL_AXIS values that the
// ATR enum value of 'this' represent into axis_array
void populate_axis_array(INDIVIDUAL_AXIS axis_array[]) const {
bool bit2 = (atr_ & 4) != 0;
bool bit1 = (atr_ & 2) != 0;
bool bit0 = (atr_ & 1) != 0;
axis_array[1] = (INDIVIDUAL_AXIS)(((int)(!bit2) << 1) + bit1);
axis_array[0] = (INDIVIDUAL_AXIS)(((int)(bit2) << 1) + bit0);
}
// it is recommended that the directions stored in an array
// in the caller code for easier isotropic access by orientation value
void get_directions(direction_2d& horizontal_dir,
direction_2d& vertical_dir) const {
bool bit2 = (atr_ & 4) != 0;
bool bit1 = (atr_ & 2) != 0;
bool bit0 = (atr_ & 1) != 0;
vertical_dir = direction_2d((direction_2d_enum)(((int)(!bit2) << 1) + !bit1));
horizontal_dir = direction_2d((direction_2d_enum)(((int)(bit2) << 1) + !bit0));
}
// combine_axis_arrays concatenates this_array and that_array overwriting
// the result into this_array
static void combine_axis_arrays(INDIVIDUAL_AXIS this_array[],
const INDIVIDUAL_AXIS that_array[]) {
int indexes[2] = { this_array[0] >> 1, this_array[1] >> 1 };
int zero_bits[2][2] = {
{ this_array[0] & 1, this_array[1] & 1 },
{ that_array[0] & 1, that_array[1] & 1 }
};
this_array[0] = (INDIVIDUAL_AXIS)((int)this_array[0] |
((int)zero_bits[0][0] ^
(int)zero_bits[1][indexes[0]]));
this_array[1] = (INDIVIDUAL_AXIS)((int)this_array[1] |
((int)zero_bits[0][1] ^
(int)zero_bits[1][indexes[1]]));
}
// write_back_axis_array converts an array of three INDIVIDUAL_AXIS values
// to the ATR enum value and sets 'this' to that value
void write_back_axis_array(const INDIVIDUAL_AXIS this_array[]) {
int bit2 = ((int)this_array[0] & 2) != 0; // swap xy
int bit1 = ((int)this_array[1] & 1);
int bit0 = ((int)this_array[0] & 1);
atr_ = ATR((bit2 << 2) + (bit1 << 1) + bit0);
}
// behavior is deterministic but undefined in the case where illegal
// combinations of directions are passed in.
axis_transformation& set_directions(const direction_2d& horizontal_dir,
const direction_2d& vertical_dir) {
int bit2 = (static_cast<orientation_2d>(horizontal_dir).to_int()) != 0;
int bit1 = !(vertical_dir.to_int() & 1);
int bit0 = !(horizontal_dir.to_int() & 1);
atr_ = ATR((bit2 << 2) + (bit1 << 1) + bit0);
return *this;
}
// transform the three coordinates by reference
template <typename coordinate_type>
void transform(coordinate_type& x, coordinate_type& y) const {
int bit2 = (atr_ & 4) != 0;
int bit1 = (atr_ & 2) != 0;
int bit0 = (atr_ & 1) != 0;
x *= -((bit0 << 1) - 1);
y *= -((bit1 << 1) - 1);
predicated_swap(bit2 != 0, x, y);
}
// invert this axis_transformation
axis_transformation& invert() {
int bit2 = ((atr_ & 4) != 0);
int bit1 = ((atr_ & 2) != 0);
int bit0 = ((atr_ & 1) != 0);
// swap bit 0 and bit 1 if bit2 is 1
predicated_swap(bit2 != 0, bit0, bit1);
bit1 = bit1 << 1;
atr_ = (ATR)(atr_ & (32+16+8+4)); // mask away bit0 and bit1
atr_ = (ATR)(atr_ | bit0 | bit1);
return *this;
}
// get the inverse axis_transformation of this
axis_transformation inverse() const {
axis_transformation retval(*this);
return retval.invert();
}
private:
ATR atr_;
};
// Scaling object to be used to store the scale factor for each axis.
// For use by the transformation object, in that context the scale factor
// is the amount that each axis scales by when transformed.
template <typename scale_factor_type>
class anisotropic_scale_factor {
public:
anisotropic_scale_factor() {
scale_[0] = 1;
scale_[1] = 1;
}
anisotropic_scale_factor(scale_factor_type xscale,
scale_factor_type yscale) {
scale_[0] = xscale;
scale_[1] = yscale;
}
// get a component of the anisotropic_scale_factor by orientation
scale_factor_type get(orientation_2d orient) const {
return scale_[orient.to_int()];
}
// set a component of the anisotropic_scale_factor by orientation
void set(orientation_2d orient, scale_factor_type value) {
scale_[orient.to_int()] = value;
}
scale_factor_type x() const {
return scale_[HORIZONTAL];
}
scale_factor_type y() const {
return scale_[VERTICAL];
}
void x(scale_factor_type value) {
scale_[HORIZONTAL] = value;
}
void y(scale_factor_type value) {
scale_[VERTICAL] = value;
}
// concatination operator (convolve scale factors)
anisotropic_scale_factor operator+(const anisotropic_scale_factor& s) const {
anisotropic_scale_factor<scale_factor_type> retval(*this);
return retval += s;
}
// concatinate this with that
const anisotropic_scale_factor& operator+=(
const anisotropic_scale_factor& s) {
scale_[0] *= s.scale_[0];
scale_[1] *= s.scale_[1];
return *this;
}
// transform this scale with an axis_transform
anisotropic_scale_factor& transform(axis_transformation atr) {
direction_2d dirs[2];
atr.get_directions(dirs[0], dirs[1]);
scale_factor_type tmp[2] = {scale_[0], scale_[1]};
for (int i = 0; i < 2; ++i) {
scale_[orientation_2d(dirs[i]).to_int()] = tmp[i];
}
return *this;
}
// scale the two coordinates
template <typename coordinate_type>
void scale(coordinate_type& x, coordinate_type& y) const {
x = scaling_policy<coordinate_type>::round(
(scale_factor_type)x * get(HORIZONTAL));
y = scaling_policy<coordinate_type>::round(
(scale_factor_type)y * get(HORIZONTAL));
}
// invert this scale factor to give the reverse scale factor
anisotropic_scale_factor& invert() {
x(1/x());
y(1/y());
return *this;
}
private:
scale_factor_type scale_[2];
};
// Transformation object, stores and provides services for transformations.
// Consits of axis transformation, scale factor and translation.
// The tranlation is the position of the origin of the new coordinate system of
// in the old system. Coordinates are scaled before they are transformed.
template <typename coordinate_type>
class transformation {
public:
transformation() : atr_(), p_(0, 0) {}
explicit transformation(axis_transformation atr) : atr_(atr), p_(0, 0) {}
explicit transformation(axis_transformation::ATR atr) : atr_(atr), p_(0, 0) {}
transformation(const transformation& tr) : atr_(tr.atr_), p_(tr.p_) {}
template <typename point_type>
explicit transformation(const point_type& p) : atr_(), p_(0, 0) {
set_translation(p);
}
template <typename point_type>
transformation(axis_transformation atr,
const point_type& p) : atr_(atr), p_(0, 0) {
set_translation(p);
}
template <typename point_type>
transformation(axis_transformation atr,
const point_type& referencePt,
const point_type& destinationPt) : atr_(), p_(0, 0) {
transformation<coordinate_type> tmp(referencePt);
transformation<coordinate_type> rotRef(atr);
transformation<coordinate_type> tmpInverse = tmp.inverse();
point_type decon(referencePt);
deconvolve(decon, destinationPt);
transformation<coordinate_type> displacement(decon);
tmp += rotRef;
tmp += tmpInverse;
tmp += displacement;
(*this) = tmp;
}
// equivalence operator
bool operator==(const transformation& tr) const {
return (atr_ == tr.atr_) && (p_ == tr.p_);
}
// inequivalence operator
bool operator!=(const transformation& tr) const {
return !(*this == tr);
}
// ordering
bool operator<(const transformation& tr) const {
return (atr_ < tr.atr_) || ((atr_ == tr.atr_) && (p_ < tr.p_));
}
// concatenation operator
transformation operator+(const transformation& tr) const {
transformation<coordinate_type> retval(*this);
return retval+=tr;
}
// concatenate this with that
const transformation& operator+=(const transformation& tr) {
coordinate_type x, y;
transformation<coordinate_type> inv = inverse();
inv.transform(x, y);
p_.set(HORIZONTAL, p_.get(HORIZONTAL) + x);
p_.set(VERTICAL, p_.get(VERTICAL) + y);
// concatenate axis transforms
atr_ += tr.atr_;
return *this;
}
// get the axis_transformation portion of this
axis_transformation get_axis_transformation() const {
return atr_;
}
// set the axis_transformation portion of this
void set_axis_transformation(const axis_transformation& atr) {
atr_ = atr;
}
// get the translation
template <typename point_type>
void get_translation(point_type& p) const {
assign(p, p_);
}
// set the translation
template <typename point_type>
void set_translation(const point_type& p) {
assign(p_, p);
}
// apply the 2D portion of this transformation to the two coordinates given
void transform(coordinate_type& x, coordinate_type& y) const {
y -= p_.get(VERTICAL);
x -= p_.get(HORIZONTAL);
atr_.transform(x, y);
}
// invert this transformation
transformation& invert() {
coordinate_type x = p_.get(HORIZONTAL), y = p_.get(VERTICAL);
atr_.transform(x, y);
x *= -1;
y *= -1;
p_ = point_data<coordinate_type>(x, y);
atr_.invert();
return *this;
}
// get the inverse of this transformation
transformation inverse() const {
transformation<coordinate_type> ret_val(*this);
return ret_val.invert();
}
void get_directions(direction_2d& horizontal_dir,
direction_2d& vertical_dir) const {
return atr_.get_directions(horizontal_dir, vertical_dir);
}
private:
axis_transformation atr_;
point_data<coordinate_type> p_;
};
} // polygon
} // boost
#endif // BOOST_POLYGON_TRANSFORM_HPP