kicad/pcbnew/tools/pcb_grid_helper.cpp

754 lines
26 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014 CERN
* Copyright (C) 2018-2021 KiCad Developers, see AUTHORS.txt for contributors.
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <functional>
#include <board.h>
#include <pcb_dimension.h>
#include <fp_shape.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_group.h>
#include <pcb_track.h>
#include <zone.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_rect.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_simple.h>
#include <macros.h>
#include <math/util.h> // for KiROUND
#include <painter.h>
#include <pcbnew_settings.h>
#include <tool/tool_manager.h>
#include <tools/pcb_tool_base.h>
#include <view/view.h>
#include "pcb_grid_helper.h"
PCB_GRID_HELPER::PCB_GRID_HELPER( TOOL_MANAGER* aToolMgr, MAGNETIC_SETTINGS* aMagneticSettings ) :
GRID_HELPER( aToolMgr ),
m_magneticSettings( aMagneticSettings )
{
KIGFX::VIEW* view = m_toolMgr->GetView();
KIGFX::RENDER_SETTINGS* settings = view->GetPainter()->GetSettings();
KIGFX::COLOR4D auxItemsColor = settings->GetLayerColor( LAYER_AUX_ITEMS );
KIGFX::COLOR4D umbilicalColor = settings->GetLayerColor( LAYER_ANCHOR );
m_viewAxis.SetSize( 20000 );
m_viewAxis.SetStyle( KIGFX::ORIGIN_VIEWITEM::CROSS );
m_viewAxis.SetColor( auxItemsColor.WithAlpha( 0.4 ) );
m_viewAxis.SetDrawAtZero( true );
view->Add( &m_viewAxis );
view->SetVisible( &m_viewAxis, false );
m_viewSnapPoint.SetStyle( KIGFX::ORIGIN_VIEWITEM::CIRCLE_CROSS );
m_viewSnapPoint.SetColor( auxItemsColor );
m_viewSnapPoint.SetDrawAtZero( true );
view->Add( &m_viewSnapPoint );
view->SetVisible( &m_viewSnapPoint, false );
m_viewSnapLine.SetStyle( KIGFX::ORIGIN_VIEWITEM::DASH_LINE );
m_viewSnapLine.SetColor( umbilicalColor );
m_viewSnapLine.SetDrawAtZero( true );
view->Add( &m_viewSnapLine );
view->SetVisible( &m_viewSnapLine, false );
}
VECTOR2I PCB_GRID_HELPER::AlignToSegment( const VECTOR2I& aPoint, const SEG& aSeg )
{
OPT_VECTOR2I pts[6];
const int c_gridSnapEpsilon = 2;
if( !m_enableSnap )
return aPoint;
VECTOR2I nearest = Align( aPoint );
SEG pos_slope( nearest + VECTOR2I( -1, 1 ), nearest + VECTOR2I( 1, -1 ) );
SEG neg_slope( nearest + VECTOR2I( -1, -1 ), nearest + VECTOR2I( 1, 1 ) );
int max_i = 2;
pts[0] = aSeg.A;
pts[1] = aSeg.B;
if( !aSeg.ApproxParallel( pos_slope ) )
pts[max_i++] = aSeg.IntersectLines( pos_slope );
if( !aSeg.ApproxParallel( neg_slope ) )
pts[max_i++] = aSeg.IntersectLines( neg_slope );
int min_d = std::numeric_limits<int>::max();
for( int i = 0; i < max_i; i++ )
{
if( pts[i] && aSeg.Distance( *pts[i] ) <= c_gridSnapEpsilon )
{
int d = (*pts[i] - aPoint).EuclideanNorm();
if( d < min_d )
{
min_d = d;
nearest = *pts[i];
}
}
}
return nearest;
}
VECTOR2I PCB_GRID_HELPER::AlignToArc( const VECTOR2I& aPoint, const SHAPE_ARC& aArc )
{
if( !m_enableSnap )
return aPoint;
const VECTOR2D gridOffset( GetOrigin() );
const VECTOR2D gridSize( GetGrid() );
VECTOR2I nearest( KiROUND( ( aPoint.x - gridOffset.x ) / gridSize.x ) * gridSize.x + gridOffset.x,
KiROUND( ( aPoint.y - gridOffset.y ) / gridSize.y ) * gridSize.y + gridOffset.y );
int min_d = std::numeric_limits<int>::max();
for( auto pt : { aArc.GetP0(), aArc.GetP1() } )
{
int d = ( pt - aPoint ).EuclideanNorm();
if( d < min_d )
{
min_d = d;
nearest = pt;
}
else
break;
}
return nearest;
}
VECTOR2I PCB_GRID_HELPER::BestDragOrigin( const VECTOR2I &aMousePos,
std::vector<BOARD_ITEM*>& aItems )
{
clearAnchors();
for( BOARD_ITEM* item : aItems )
computeAnchors( item, aMousePos, true );
double worldScale = m_toolMgr->GetView()->GetGAL()->GetWorldScale();
double lineSnapMinCornerDistance = 50.0 / worldScale;
ANCHOR* nearestOutline = nearestAnchor( aMousePos, OUTLINE, LSET::AllLayersMask() );
ANCHOR* nearestCorner = nearestAnchor( aMousePos, CORNER, LSET::AllLayersMask() );
ANCHOR* nearestOrigin = nearestAnchor( aMousePos, ORIGIN, LSET::AllLayersMask() );
ANCHOR* best = nullptr;
double minDist = std::numeric_limits<double>::max();
if( nearestOrigin )
{
minDist = nearestOrigin->Distance( aMousePos );
best = nearestOrigin;
}
if( nearestCorner )
{
double dist = nearestCorner->Distance( aMousePos );
if( dist < minDist )
{
minDist = dist;
best = nearestCorner;
}
}
if( nearestOutline )
{
double dist = nearestOutline->Distance( aMousePos );
if( minDist > lineSnapMinCornerDistance && dist < minDist )
best = nearestOutline;
}
return best ? best->pos : aMousePos;
}
VECTOR2I PCB_GRID_HELPER::BestSnapAnchor( const VECTOR2I& aOrigin, BOARD_ITEM* aReferenceItem )
{
LSET layers;
std::vector<BOARD_ITEM*> item;
if( aReferenceItem )
{
layers = aReferenceItem->GetLayerSet();
item.push_back( aReferenceItem );
}
else
{
layers = LSET::AllLayersMask();
}
return BestSnapAnchor( aOrigin, layers, item );
}
VECTOR2I PCB_GRID_HELPER::BestSnapAnchor( const VECTOR2I& aOrigin, const LSET& aLayers,
const std::vector<BOARD_ITEM*>& aSkip )
{
// Tuning constant: snap radius in screen space
const int snapSize = 25;
// Snapping distance is in screen space, clamped to the current grid to ensure that the grid
// points that are visible can always be snapped to.
// see https://gitlab.com/kicad/code/kicad/-/issues/5638
// see https://gitlab.com/kicad/code/kicad/-/issues/7125
double snapScale = snapSize / m_toolMgr->GetView()->GetGAL()->GetWorldScale();
int snapRange = std::min( KiROUND( snapScale ), GetGrid().x );
int snapDist = snapRange;
BOX2I bb( VECTOR2I( aOrigin.x - snapRange / 2, aOrigin.y - snapRange / 2 ),
VECTOR2I( snapRange, snapRange ) );
clearAnchors();
for( BOARD_ITEM* item : queryVisible( bb, aSkip ) )
computeAnchors( item, aOrigin );
ANCHOR* nearest = nearestAnchor( aOrigin, SNAPPABLE, aLayers );
VECTOR2I nearestGrid = Align( aOrigin );
if( nearest )
snapDist = nearest->Distance( aOrigin );
// Existing snap lines need priority over new snaps
if( m_snapItem && m_enableSnapLine && m_enableSnap )
{
bool snapLine = false;
int x_dist = std::abs( m_viewSnapLine.GetPosition().x - aOrigin.x );
int y_dist = std::abs( m_viewSnapLine.GetPosition().y - aOrigin.y );
/// Allows de-snapping from the line if you are closer to another snap point
if( x_dist < snapRange && ( !nearest || snapDist > snapRange ) )
{
nearestGrid.x = m_viewSnapLine.GetPosition().x;
snapLine = true;
}
if( y_dist < snapRange && ( !nearest || snapDist > snapRange ) )
{
nearestGrid.y = m_viewSnapLine.GetPosition().y;
snapLine = true;
}
if( snapLine && m_skipPoint != VECTOR2I( m_viewSnapLine.GetPosition() ) )
{
m_viewSnapLine.SetEndPosition( nearestGrid );
if( m_toolMgr->GetView()->IsVisible( &m_viewSnapLine ) )
m_toolMgr->GetView()->Update( &m_viewSnapLine, KIGFX::GEOMETRY );
else
m_toolMgr->GetView()->SetVisible( &m_viewSnapLine, true );
return nearestGrid;
}
}
if( nearest && m_enableSnap )
{
if( nearest->Distance( aOrigin ) <= snapRange )
{
m_viewSnapPoint.SetPosition( wxPoint( nearest->pos ) );
m_viewSnapLine.SetPosition( wxPoint( nearest->pos ) );
m_toolMgr->GetView()->SetVisible( &m_viewSnapLine, false );
if( m_toolMgr->GetView()->IsVisible( &m_viewSnapPoint ) )
m_toolMgr->GetView()->Update( &m_viewSnapPoint, KIGFX::GEOMETRY);
else
m_toolMgr->GetView()->SetVisible( &m_viewSnapPoint, true );
m_snapItem = nearest;
return nearest->pos;
}
}
m_snapItem = nullptr;
m_toolMgr->GetView()->SetVisible( &m_viewSnapPoint, false );
m_toolMgr->GetView()->SetVisible( &m_viewSnapLine, false );
return nearestGrid;
}
BOARD_ITEM* PCB_GRID_HELPER::GetSnapped() const
{
if( !m_snapItem )
return nullptr;
return static_cast<BOARD_ITEM*>( m_snapItem->item );
}
std::set<BOARD_ITEM*> PCB_GRID_HELPER::queryVisible( const BOX2I& aArea,
const std::vector<BOARD_ITEM*>& aSkip ) const
{
std::set<BOARD_ITEM*> items;
std::vector<KIGFX::VIEW::LAYER_ITEM_PAIR> selectedItems;
KIGFX::VIEW* view = m_toolMgr->GetView();
RENDER_SETTINGS* settings = view->GetPainter()->GetSettings();
const std::set<unsigned int>& activeLayers = settings->GetHighContrastLayers();
bool isHighContrast = settings->GetHighContrast();
view->Query( aArea, selectedItems );
for( const KIGFX::VIEW::LAYER_ITEM_PAIR& it : selectedItems )
{
BOARD_ITEM* item = static_cast<BOARD_ITEM*>( it.first );
// If we are in the footprint editor, don't use the footprint itself
if( static_cast<PCB_TOOL_BASE*>( m_toolMgr->GetCurrentTool() )->IsFootprintEditor()
&& item->Type() == PCB_FOOTPRINT_T )
{
continue;
}
// The item must be visible and on an active layer
if( view->IsVisible( item )
&& ( !isHighContrast || activeLayers.count( it.second ) )
&& item->ViewGetLOD( it.second, view ) < view->GetScale() )
{
items.insert ( item );
}
}
for( BOARD_ITEM* skipItem : aSkip )
items.erase( skipItem );
return items;
}
void PCB_GRID_HELPER::computeAnchors( BOARD_ITEM* aItem, const VECTOR2I& aRefPos, bool aFrom )
{
KIGFX::VIEW* view = m_toolMgr->GetView();
RENDER_SETTINGS* settings = view->GetPainter()->GetSettings();
const std::set<unsigned int>& activeLayers = settings->GetHighContrastLayers();
bool isHighContrast = settings->GetHighContrast();
auto handlePadShape =
[&]( PAD* aPad )
{
addAnchor( aPad->GetPosition(), ORIGIN | SNAPPABLE, aPad );
/// If we are getting a drag point, we don't want to center the edge of pads
if( aFrom )
return;
const std::shared_ptr<SHAPE> eshape = aPad->GetEffectiveShape( aPad->GetLayer() );
wxASSERT( eshape->Type() == SH_COMPOUND );
const std::vector<SHAPE*> shapes =
static_cast<const SHAPE_COMPOUND*>( eshape.get() )->Shapes();
for( const SHAPE* shape : shapes )
{
switch( shape->Type() )
{
case SH_RECT:
{
const SHAPE_RECT* rect = static_cast<const SHAPE_RECT*>( shape );
SHAPE_LINE_CHAIN outline = rect->Outline();
for( int i = 0; i < outline.SegmentCount(); i++ )
{
const SEG& seg = outline.CSegment( i );
addAnchor( seg.A, OUTLINE | SNAPPABLE, aPad );
addAnchor( seg.Center(), OUTLINE | SNAPPABLE, aPad );
}
break;
}
case SH_SEGMENT:
{
const SHAPE_SEGMENT* segment = static_cast<const SHAPE_SEGMENT*>( shape );
int offset = segment->GetWidth() / 2;
SEG seg = segment->GetSeg();
VECTOR2I normal = ( seg.B - seg.A ).Resize( offset ).Rotate( -M_PI_2 );
/*
* TODO: This creates more snap points than necessary for rounded rect pads
* because they are built up of overlapping segments. We could fix this if
* desired by testing these to see if they are "inside" the pad.
*/
addAnchor( seg.A + normal, OUTLINE | SNAPPABLE, aPad );
addAnchor( seg.A - normal, OUTLINE | SNAPPABLE, aPad );
addAnchor( seg.B + normal, OUTLINE | SNAPPABLE, aPad );
addAnchor( seg.B - normal, OUTLINE | SNAPPABLE, aPad );
addAnchor( seg.Center() + normal, OUTLINE | SNAPPABLE, aPad );
addAnchor( seg.Center() - normal, OUTLINE | SNAPPABLE, aPad );
normal = normal.Rotate( M_PI_2 );
addAnchor( seg.A - normal, OUTLINE | SNAPPABLE, aPad );
addAnchor( seg.B + normal, OUTLINE | SNAPPABLE, aPad );
break;
}
case SH_CIRCLE:
{
const SHAPE_CIRCLE* circle = static_cast<const SHAPE_CIRCLE*>( shape );
int r = circle->GetRadius();
VECTOR2I start = circle->GetCenter();
addAnchor( start + VECTOR2I( -r, 0 ), OUTLINE | SNAPPABLE, aPad );
addAnchor( start + VECTOR2I( r, 0 ), OUTLINE | SNAPPABLE, aPad );
addAnchor( start + VECTOR2I( 0, -r ), OUTLINE | SNAPPABLE, aPad );
addAnchor( start + VECTOR2I( 0, r ), OUTLINE | SNAPPABLE, aPad );
break;
}
case SH_ARC:
{
const SHAPE_ARC* arc = static_cast<const SHAPE_ARC*>( shape );
addAnchor( arc->GetP0(), OUTLINE | SNAPPABLE, aPad );
addAnchor( arc->GetP1(), OUTLINE | SNAPPABLE, aPad );
addAnchor( arc->GetArcMid(), OUTLINE | SNAPPABLE, aPad );
break;
}
case SH_SIMPLE:
{
const SHAPE_SIMPLE* poly = static_cast<const SHAPE_SIMPLE*>( shape );
for( size_t i = 0; i < poly->GetSegmentCount(); i++ )
{
const SEG& seg = poly->GetSegment( i );
addAnchor( seg.A, OUTLINE | SNAPPABLE, aPad );
addAnchor( seg.Center(), OUTLINE | SNAPPABLE, aPad );
if( i == poly->GetSegmentCount() - 1 )
addAnchor( seg.B, OUTLINE | SNAPPABLE, aPad );
}
break;
}
case SH_POLY_SET:
case SH_LINE_CHAIN:
case SH_COMPOUND:
case SH_POLY_SET_TRIANGLE:
case SH_NULL:
default:
break;
}
}
};
switch( aItem->Type() )
{
case PCB_FOOTPRINT_T:
{
FOOTPRINT* footprint = static_cast<FOOTPRINT*>( aItem );
for( PAD* pad : footprint->Pads() )
{
// Getting pads from the footprint requires re-checking that the pad is shown
if( ( aFrom || m_magneticSettings->pads == MAGNETIC_OPTIONS::CAPTURE_ALWAYS )
&& pad->GetBoundingBox().Contains( wxPoint( aRefPos.x, aRefPos.y ) )
&& view->IsVisible( pad )
&& ( !isHighContrast || activeLayers.count( pad->GetLayer() ) )
&& pad->ViewGetLOD( pad->GetLayer(), view ) < view->GetScale() )
{
handlePadShape( pad );
break;
}
}
// if the cursor is not over a pad, then drag the footprint by its origin
VECTOR2I position = footprint->GetPosition();
addAnchor( position, ORIGIN | SNAPPABLE, footprint );
// Add the footprint center point if it is markedly different from the origin
VECTOR2I center = footprint->GetBoundingBox( false, false ).Centre();
VECTOR2I grid( GetGrid() );
if( ( center - position ).SquaredEuclideanNorm() > grid.SquaredEuclideanNorm() )
addAnchor( center, ORIGIN | SNAPPABLE, footprint );
break;
}
case PCB_PAD_T:
{
if( aFrom || m_magneticSettings->pads == MAGNETIC_OPTIONS::CAPTURE_ALWAYS )
{
PAD* pad = static_cast<PAD*>( aItem );
handlePadShape( pad );
}
break;
}
case PCB_FP_SHAPE_T:
case PCB_SHAPE_T:
{
if( !m_magneticSettings->graphics )
break;
PCB_SHAPE* shape = static_cast<PCB_SHAPE*>( aItem );
VECTOR2I start = shape->GetStart();
VECTOR2I end = shape->GetEnd();
switch( shape->GetShape() )
{
case SHAPE_T::CIRCLE:
{
int r = ( start - end ).EuclideanNorm();
addAnchor( start, ORIGIN | SNAPPABLE, shape );
addAnchor( start + VECTOR2I( -r, 0 ), OUTLINE | SNAPPABLE, shape );
addAnchor( start + VECTOR2I( r, 0 ), OUTLINE | SNAPPABLE, shape );
addAnchor( start + VECTOR2I( 0, -r ), OUTLINE | SNAPPABLE, shape );
addAnchor( start + VECTOR2I( 0, r ), OUTLINE | SNAPPABLE, shape );
break;
}
case SHAPE_T::ARC:
addAnchor( shape->GetStart(), CORNER | SNAPPABLE, shape );
addAnchor( shape->GetEnd(), CORNER | SNAPPABLE, shape );
addAnchor( shape->GetArcMid(), CORNER | SNAPPABLE, shape );
addAnchor( shape->GetCenter(), ORIGIN | SNAPPABLE, shape );
break;
case SHAPE_T::RECT:
{
VECTOR2I point2( end.x, start.y );
VECTOR2I point3( start.x, end.y );
SEG first( start, point2 );
SEG second( point2, end );
SEG third( end, point3 );
SEG fourth( point3, start );
addAnchor( first.A, CORNER | SNAPPABLE, shape );
addAnchor( first.Center(), CORNER | SNAPPABLE, shape );
addAnchor( second.A, CORNER | SNAPPABLE, shape );
addAnchor( second.Center(), CORNER | SNAPPABLE, shape );
addAnchor( third.A, CORNER | SNAPPABLE, shape );
addAnchor( third.Center(), CORNER | SNAPPABLE, shape );
addAnchor( fourth.A, CORNER | SNAPPABLE, shape );
addAnchor( fourth.Center(), CORNER | SNAPPABLE, shape );
break;
}
case SHAPE_T::SEGMENT:
addAnchor( start, CORNER | SNAPPABLE, shape );
addAnchor( end, CORNER | SNAPPABLE, shape );
addAnchor( shape->GetCenter(), CORNER | SNAPPABLE, shape );
break;
case SHAPE_T::POLY:
{
SHAPE_LINE_CHAIN lc;
lc.SetClosed( true );
std::vector<wxPoint> poly;
shape->DupPolyPointsList( poly );
for( const wxPoint& p : poly )
{
addAnchor( p, CORNER | SNAPPABLE, shape );
lc.Append( p );
}
addAnchor( lc.NearestPoint( aRefPos ), OUTLINE, aItem );
break;
}
case SHAPE_T::BEZIER:
addAnchor( start, CORNER | SNAPPABLE, shape );
addAnchor( end, CORNER | SNAPPABLE, shape );
KI_FALLTHROUGH;
default:
addAnchor( shape->GetPosition(), ORIGIN | SNAPPABLE, shape );
break;
}
break;
}
case PCB_TRACE_T:
case PCB_ARC_T:
{
if( aFrom || m_magneticSettings->tracks == MAGNETIC_OPTIONS::CAPTURE_ALWAYS )
{
PCB_TRACK* track = static_cast<PCB_TRACK*>( aItem );
addAnchor( track->GetStart(), CORNER | SNAPPABLE, track );
addAnchor( track->GetEnd(), CORNER | SNAPPABLE, track );
addAnchor( track->GetCenter(), ORIGIN, track);
}
break;
}
case PCB_MARKER_T:
case PCB_TARGET_T:
addAnchor( aItem->GetPosition(), ORIGIN | CORNER | SNAPPABLE, aItem );
break;
case PCB_VIA_T:
{
if( aFrom || m_magneticSettings->tracks == MAGNETIC_OPTIONS::CAPTURE_ALWAYS )
addAnchor( aItem->GetPosition(), ORIGIN | CORNER | SNAPPABLE, aItem );
break;
}
case PCB_ZONE_T:
{
const SHAPE_POLY_SET* outline = static_cast<const ZONE*>( aItem )->Outline();
SHAPE_LINE_CHAIN lc;
lc.SetClosed( true );
for( auto iter = outline->CIterateWithHoles(); iter; iter++ )
{
addAnchor( *iter, CORNER, aItem );
lc.Append( *iter );
}
addAnchor( lc.NearestPoint( aRefPos ), OUTLINE, aItem );
break;
}
case PCB_DIM_ALIGNED_T:
case PCB_DIM_ORTHOGONAL_T:
case PCB_FP_DIM_ALIGNED_T:
case PCB_FP_DIM_ORTHOGONAL_T:
{
const PCB_DIM_ALIGNED* dim = static_cast<const PCB_DIM_ALIGNED*>( aItem );
addAnchor( dim->GetCrossbarStart(), CORNER | SNAPPABLE, aItem );
addAnchor( dim->GetCrossbarEnd(), CORNER | SNAPPABLE, aItem );
addAnchor( dim->GetStart(), CORNER | SNAPPABLE, aItem );
addAnchor( dim->GetEnd(), CORNER | SNAPPABLE, aItem );
break;
}
case PCB_DIM_CENTER_T:
case PCB_FP_DIM_CENTER_T:
{
const PCB_DIM_CENTER* dim = static_cast<const PCB_DIM_CENTER*>( aItem );
addAnchor( dim->GetStart(), CORNER | SNAPPABLE, aItem );
addAnchor( dim->GetEnd(), CORNER | SNAPPABLE, aItem );
VECTOR2I start( dim->GetStart() );
VECTOR2I radial( dim->GetEnd() - dim->GetStart() );
for( int i = 0; i < 2; i++ )
{
radial = radial.Rotate( DEG2RAD( 90 ) );
addAnchor( start + radial, CORNER | SNAPPABLE, aItem );
}
break;
}
case PCB_DIM_RADIAL_T:
case PCB_FP_DIM_RADIAL_T:
{
const PCB_DIM_RADIAL* radialDim = static_cast<const PCB_DIM_RADIAL*>( aItem );
addAnchor( radialDim->GetStart(), CORNER | SNAPPABLE, aItem );
addAnchor( radialDim->GetEnd(), CORNER | SNAPPABLE, aItem );
addAnchor( radialDim->GetKnee(), CORNER | SNAPPABLE, aItem );
addAnchor( radialDim->Text().GetPosition(), CORNER | SNAPPABLE, aItem );
break;
}
case PCB_DIM_LEADER_T:
case PCB_FP_DIM_LEADER_T:
{
const PCB_DIM_LEADER* leader = static_cast<const PCB_DIM_LEADER*>( aItem );
addAnchor( leader->GetStart(), CORNER | SNAPPABLE, aItem );
addAnchor( leader->GetEnd(), CORNER | SNAPPABLE, aItem );
addAnchor( leader->Text().GetPosition(), CORNER | SNAPPABLE, aItem );
break;
}
case PCB_FP_TEXT_T:
case PCB_TEXT_T:
addAnchor( aItem->GetPosition(), ORIGIN, aItem );
break;
case PCB_GROUP_T:
{
const PCB_GROUP* group = static_cast<const PCB_GROUP*>( aItem );
for( BOARD_ITEM* item : group->GetItems() )
computeAnchors( item, aRefPos, aFrom );
break;
}
default:
break;
}
}
PCB_GRID_HELPER::ANCHOR* PCB_GRID_HELPER::nearestAnchor( const VECTOR2I& aPos, int aFlags,
LSET aMatchLayers )
{
double minDist = std::numeric_limits<double>::max();
ANCHOR* best = nullptr;
for( ANCHOR& a : m_anchors )
{
BOARD_ITEM* item = static_cast<BOARD_ITEM*>( a.item );
if( ( aMatchLayers & item->GetLayerSet() ) == 0 )
continue;
if( ( aFlags & a.flags ) != aFlags )
continue;
double dist = a.Distance( aPos );
if( dist < minDist )
{
minDist = dist;
best = &a;
}
}
return best;
}