kicad/gerbview/dcode.cpp

448 lines
12 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2016 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@gmail.com>
* Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file dcode.cpp
* @brief D_CODE class implementation
*/
#include <trigo.h>
#include <gerbview_frame.h>
#include <gerber_file_image.h>
#include <eda_units.h>
#include <convert_basic_shapes_to_polygon.h>
#define DCODE_DEFAULT_SIZE gerbIUScale.mmToIU( 0.1 )
/* Format Gerber: NOTES:
* Tools and D_CODES
* tool number (identification of shapes)
* 1 to 999
*
* D_CODES:
* D01 ... D9 = command codes:
* D01 = activating light (pen down) while moving
* D02 = light extinction (pen up) while moving
* D03 = Flash
* D04 to D09 = non used
* D10 ... D999 = Identification Tool (Shape id)
*
* For tools defining a shape):
* DCode min = D10
* DCode max = 999
*/
D_CODE::D_CODE( int num_dcode )
{
m_Num_Dcode = num_dcode;
Clear_D_CODE_Data();
}
D_CODE::~D_CODE()
{
}
void D_CODE::Clear_D_CODE_Data()
{
m_Size.x = DCODE_DEFAULT_SIZE;
m_Size.y = DCODE_DEFAULT_SIZE;
m_Shape = APT_CIRCLE;
m_Drill.x = m_Drill.y = 0;
m_DrillShape = APT_DEF_NO_HOLE;
m_InUse = false;
m_Defined = false;
m_Macro = nullptr;
m_Rotation = ANGLE_0;
m_EdgesCount = 0;
m_Polygon.RemoveAllContours();
}
const wxChar* D_CODE::ShowApertureType( APERTURE_T aType )
{
const wxChar* ret;
switch( aType )
{
case APT_CIRCLE:
ret = wxT( "Round" ); break;
case APT_RECT:
ret = wxT( "Rect" ); break;
case APT_OVAL:
ret = wxT( "Oval" ); break;
case APT_POLYGON:
ret = wxT( "Poly" ); break;
case APT_MACRO:
ret = wxT( "Macro" ); break;
default:
ret = wxT( "???" ); break;
}
return ret;
}
int D_CODE::GetShapeDim( GERBER_DRAW_ITEM* aParent )
{
int dim = 0;
switch( m_Shape )
{
case APT_CIRCLE:
dim = m_Size.x;
break;
case APT_RECT:
case APT_OVAL:
dim = std::min( m_Size.x, m_Size.y );
break;
case APT_POLYGON:
dim = std::min( m_Size.x, m_Size.y );
break;
case APT_MACRO:
if( m_Macro )
{
if( m_Polygon.OutlineCount() == 0 )
ConvertShapeToPolygon( aParent );
BOX2I bbox = m_Polygon.BBox();
dim = std::min( bbox.GetWidth(), bbox.GetHeight() );
}
break;
default:
break;
}
return dim;
}
void D_CODE::DrawFlashedShape( const GERBER_DRAW_ITEM* aParent, wxDC* aDC, const COLOR4D& aColor,
const VECTOR2I& aShapePos, bool aFilledShape )
{
int radius;
switch( m_Shape )
{
case APT_CIRCLE:
radius = m_Size.x >> 1;
if( !aFilledShape )
{
GRCircle( aDC, aParent->GetABPosition(aShapePos), radius, 0, aColor );
}
else if( m_DrillShape == APT_DEF_NO_HOLE )
{
GRFilledCircle( aDC, aParent->GetABPosition(aShapePos), radius, 0, aColor, aColor );
}
else if( m_DrillShape == APT_DEF_ROUND_HOLE ) // round hole in shape
{
int width = (m_Size.x - m_Drill.x ) / 2;
GRCircle( aDC, aParent->GetABPosition(aShapePos), radius - (width / 2), width, aColor );
}
else // rectangular hole
{
if( m_Polygon.OutlineCount() == 0 )
ConvertShapeToPolygon( aParent );
DrawFlashedPolygon( aParent, aDC, aColor, aFilledShape, aShapePos );
}
break;
case APT_RECT:
{
VECTOR2I start;
start.x = aShapePos.x - m_Size.x / 2;
start.y = aShapePos.y - m_Size.y / 2;
VECTOR2I end = start + m_Size;
start = aParent->GetABPosition( start );
end = aParent->GetABPosition( end );
if( !aFilledShape )
{
GRRect( aDC, start, end, 0, aColor );
}
else if( m_DrillShape == APT_DEF_NO_HOLE )
{
GRFilledRect( aDC, start, end, 0, aColor, aColor );
}
else
{
if( m_Polygon.OutlineCount() == 0 )
ConvertShapeToPolygon( aParent );
DrawFlashedPolygon( aParent, aDC, aColor, aFilledShape, aShapePos );
}
}
break;
case APT_OVAL:
{
VECTOR2I start = aShapePos;
VECTOR2I end = aShapePos;
if( m_Size.x > m_Size.y ) // horizontal oval
{
int delta = ( m_Size.x - m_Size.y ) / 2;
start.x -= delta;
end.x += delta;
radius = m_Size.y; // Width in fact
}
else // vertical oval
{
int delta = ( m_Size.y - m_Size.x ) / 2;
start.y -= delta;
end.y += delta;
radius = m_Size.x; // Width in fact
}
start = aParent->GetABPosition( start );
end = aParent->GetABPosition( end );
if( !aFilledShape )
{
GRCSegm( aDC, start, end, radius, aColor );
}
else if( m_DrillShape == APT_DEF_NO_HOLE )
{
GRFilledSegment( aDC, start, end, radius, aColor );
}
else
{
if( m_Polygon.OutlineCount() == 0 )
ConvertShapeToPolygon( aParent );
DrawFlashedPolygon( aParent, aDC, aColor, aFilledShape, aShapePos );
}
}
break;
case APT_MACRO:
case APT_POLYGON:
if( m_Polygon.OutlineCount() == 0 )
ConvertShapeToPolygon( aParent );
DrawFlashedPolygon( aParent, aDC, aColor, aFilledShape, aShapePos );
break;
}
}
void D_CODE::DrawFlashedPolygon( const GERBER_DRAW_ITEM* aParent, wxDC* aDC,
const COLOR4D& aColor,
bool aFilled, const VECTOR2I& aPosition )
{
if( m_Polygon.OutlineCount() == 0 )
return;
int pointCount = m_Polygon.VertexCount();
std::vector<VECTOR2I> points;
points.reserve( pointCount );
for( int ii = 0; ii < pointCount; ii++ )
{
VECTOR2I p( m_Polygon.CVertex( ii ).x, m_Polygon.CVertex( ii ).y );
points[ii] = p + aPosition;
points[ii] = aParent->GetABPosition( points[ii] );
}
GRClosedPoly( aDC, pointCount, &points[0], aFilled, aColor );
}
// TODO(snh): Remove the hard-coded count
#define SEGS_CNT 64 // number of segments to approximate a circle
// A helper function for D_CODE::ConvertShapeToPolygon(). Add a hole to a polygon
static void addHoleToPolygon( SHAPE_POLY_SET* aPolygon, APERTURE_DEF_HOLETYPE aHoleShape,
const VECTOR2I& aSize, const VECTOR2I& aAnchorPos );
void D_CODE::ConvertShapeToPolygon( const GERBER_DRAW_ITEM* aParent )
{
VECTOR2I initialpos;
VECTOR2I currpos;
m_Polygon.RemoveAllContours();
switch( m_Shape )
{
case APT_CIRCLE: // creates only a circle with rectangular hole
TransformCircleToPolygon( m_Polygon, initialpos, m_Size.x >> 1, ARC_HIGH_DEF,
ERROR_INSIDE );
addHoleToPolygon( &m_Polygon, m_DrillShape, m_Drill, initialpos );
break;
case APT_RECT:
m_Polygon.NewOutline();
currpos.x = m_Size.x / 2;
currpos.y = m_Size.y / 2;
initialpos = currpos;
m_Polygon.Append( VECTOR2I( currpos ) );
currpos.x -= m_Size.x;
m_Polygon.Append( VECTOR2I( currpos ) );
currpos.y -= m_Size.y;
m_Polygon.Append( VECTOR2I( currpos ) );
currpos.x += m_Size.x;
m_Polygon.Append( VECTOR2I( currpos ) );
currpos.y += m_Size.y;
m_Polygon.Append( VECTOR2I( currpos ) ); // close polygon
m_Polygon.Append( VECTOR2I( initialpos ) );
addHoleToPolygon( &m_Polygon, m_DrillShape, m_Drill, initialpos );
break;
case APT_OVAL:
{
m_Polygon.NewOutline();
int delta, radius;
// we create an horizontal oval shape. then rotate if needed
if( m_Size.x > m_Size.y ) // horizontal oval
{
delta = ( m_Size.x - m_Size.y ) / 2;
radius = m_Size.y / 2;
}
else // vertical oval
{
delta = (m_Size.y - m_Size.x) / 2;
radius = m_Size.x / 2;
}
currpos.y = radius;
initialpos = currpos;
m_Polygon.Append( VECTOR2I( currpos ) );
// build the right arc of the shape
unsigned ii = 0;
for( ; ii <= SEGS_CNT / 2; ii++ )
{
currpos = initialpos;
RotatePoint( currpos, ANGLE_360 * ii / SEGS_CNT );
currpos.x += delta;
m_Polygon.Append( VECTOR2I( currpos ) );
}
// build the left arc of the shape
for( ii = SEGS_CNT / 2; ii <= SEGS_CNT; ii++ )
{
currpos = initialpos;
RotatePoint( currpos, ANGLE_360 * ii / SEGS_CNT );
currpos.x -= delta;
m_Polygon.Append( currpos );
}
m_Polygon.Append( initialpos ); // close outline
if( m_Size.y > m_Size.x ) // vertical oval, rotate polygon.
m_Polygon.Rotate( ANGLE_90 );
addHoleToPolygon( &m_Polygon, m_DrillShape, m_Drill, initialpos );
}
break;
case APT_POLYGON:
m_Polygon.NewOutline();
currpos.x = m_Size.x >> 1; // first point is on X axis
initialpos = currpos;
// rs274x said: m_EdgesCount = 3 ... 12
if( m_EdgesCount < 3 )
m_EdgesCount = 3;
if( m_EdgesCount > 12 )
m_EdgesCount = 12;
for( int ii = 0; ii < m_EdgesCount; ii++ )
{
currpos = initialpos;
RotatePoint( currpos, ANGLE_360 * ii / m_EdgesCount );
m_Polygon.Append( currpos );
}
addHoleToPolygon( &m_Polygon, m_DrillShape, m_Drill, initialpos );
if( !m_Rotation.IsZero() ) // rotate polygonal shape:
m_Polygon.Rotate( m_Rotation );
break;
case APT_MACRO:
APERTURE_MACRO* macro = GetMacro();
SHAPE_POLY_SET* macroShape = macro->GetApertureMacroShape( aParent, initialpos );
m_Polygon.Append( *macroShape );
break;
}
}
// The helper function for D_CODE::ConvertShapeToPolygon().
// Add a hole to a polygon
static void addHoleToPolygon( SHAPE_POLY_SET* aPolygon, APERTURE_DEF_HOLETYPE aHoleShape,
const VECTOR2I& aSize, const VECTOR2I& aAnchorPos )
{
VECTOR2I currpos;
SHAPE_POLY_SET holeBuffer;
if( aHoleShape == APT_DEF_ROUND_HOLE )
{
TransformCircleToPolygon( holeBuffer, VECTOR2I( 0, 0 ), aSize.x / 2, ARC_HIGH_DEF,
ERROR_INSIDE );
}
else if( aHoleShape == APT_DEF_RECT_HOLE )
{
holeBuffer.NewOutline();
currpos.x = aSize.x / 2;
currpos.y = aSize.y / 2;
holeBuffer.Append( VECTOR2I( currpos ) ); // link to hole and begin hole
currpos.x -= aSize.x;
holeBuffer.Append( VECTOR2I( currpos ) );
currpos.y -= aSize.y;
holeBuffer.Append( VECTOR2I( currpos ) );
currpos.x += aSize.x;
holeBuffer.Append( VECTOR2I( currpos ) );
currpos.y += aSize.y;
holeBuffer.Append( VECTOR2I( currpos ) ); // close hole
}
aPolygon->BooleanSubtract( holeBuffer, SHAPE_POLY_SET::PM_FAST );
aPolygon->Fracture( SHAPE_POLY_SET::PM_FAST );
}