510 lines
16 KiB
C++
510 lines
16 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2019 KiCad Developers, see AUTHORS.txt for contributors.
|
|
* Copyright (C) 2020 CERN
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 3
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-3.0.html
|
|
* or you may search the http://www.gnu.org website for the version 3 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#ifndef DRC_RTREE_H_
|
|
#define DRC_RTREE_H_
|
|
|
|
#include <eda_rect.h>
|
|
#include <class_board_item.h>
|
|
#include <class_track.h>
|
|
#include <class_zone.h>
|
|
#include <unordered_set>
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
#include <geometry/rtree.h>
|
|
#include <math/vector2d.h>
|
|
|
|
/**
|
|
* DRC_RTREE -
|
|
* Implements an R-tree for fast spatial and layer indexing of connectable items.
|
|
* Non-owning.
|
|
*/
|
|
class DRC_RTREE
|
|
{
|
|
|
|
public:
|
|
|
|
struct ITEM_WITH_SHAPE
|
|
{
|
|
ITEM_WITH_SHAPE( BOARD_ITEM *aParent, SHAPE* aShape, std::shared_ptr<SHAPE> aParentShape = nullptr ) :
|
|
parent ( aParent ),
|
|
shape ( aShape ),
|
|
parentShape( aParentShape ) {};
|
|
BOARD_ITEM* parent;
|
|
SHAPE* shape;
|
|
std::shared_ptr<SHAPE> parentShape;
|
|
};
|
|
|
|
private:
|
|
|
|
using drc_rtree = RTree<ITEM_WITH_SHAPE*, int, 2, double>;
|
|
|
|
public:
|
|
|
|
DRC_RTREE()
|
|
{
|
|
for( int layer : LSET::AllLayersMask().Seq() )
|
|
m_tree[layer] = new drc_rtree();
|
|
|
|
m_count = 0;
|
|
}
|
|
|
|
~DRC_RTREE()
|
|
{
|
|
for( auto tree : m_tree )
|
|
delete tree;
|
|
}
|
|
|
|
/**
|
|
* Function Insert()
|
|
* Inserts an item into the tree. Item's bounding box is taken via its GetBoundingBox() method.
|
|
*/
|
|
void insert( BOARD_ITEM* aItem )
|
|
{
|
|
std::vector<SHAPE*> subshapes;
|
|
|
|
for( int layer : aItem->GetLayerSet().Seq() )
|
|
{
|
|
std::shared_ptr<SHAPE> itemShape = aItem->GetEffectiveShape( (PCB_LAYER_ID) layer );
|
|
|
|
if( itemShape->HasIndexableSubshapes() )
|
|
{
|
|
itemShape->GetIndexableSubshapes( subshapes );
|
|
}
|
|
else
|
|
{
|
|
subshapes.push_back( itemShape.get() );
|
|
}
|
|
|
|
for( auto subshape : subshapes )
|
|
{
|
|
BOX2I bbox = subshape->BBox();
|
|
const int mmin[2] = { bbox.GetX(), bbox.GetY() };
|
|
const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() };
|
|
|
|
m_tree[layer]->Insert( mmin, mmax, new ITEM_WITH_SHAPE( aItem, subshape, itemShape ) );
|
|
m_count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
/**
|
|
* Function Remove()
|
|
* Removes an item from the tree. Removal is done by comparing pointers, attempting
|
|
* to remove a copy of the item will fail.
|
|
*/
|
|
bool remove( BOARD_ITEM* aItem )
|
|
{
|
|
// First, attempt to remove the item using its given BBox
|
|
const EDA_RECT& bbox = aItem->GetBoundingBox();
|
|
const int mmin[2] = { bbox.GetX(), bbox.GetY() };
|
|
const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() };
|
|
bool removed = false;
|
|
|
|
for( auto layer : aItem->GetLayerSet().Seq() )
|
|
{
|
|
if( ZONE_CONTAINER* zone = dyn_cast<ZONE_CONTAINER*>( aItem ) )
|
|
{
|
|
// Continue removing the zone elements from the tree until they cannot be found
|
|
while( !m_tree[int( layer )]->Remove( mmin, mmax, aItem ) )
|
|
;
|
|
|
|
const int mmin2[2] = { INT_MIN, INT_MIN };
|
|
const int mmax2[2] = { INT_MAX, INT_MAX };
|
|
|
|
// If we are not successful ( true == not found ), then we expand
|
|
// the search to the full tree
|
|
while( !m_tree[int( layer )]->Remove( mmin2, mmax2, aItem ) )
|
|
;
|
|
|
|
// Loop to the next layer
|
|
continue;
|
|
}
|
|
|
|
// The non-zone search expects only a single element in the tree with the same
|
|
// pointer aItem
|
|
if( m_tree[int( layer )]->Remove( mmin, mmax, aItem ) )
|
|
{
|
|
// N.B. We must search the whole tree for the pointer to remove
|
|
// because the item may have been moved before we have the chance to
|
|
// delete it from the tree
|
|
const int mmin2[2] = { INT_MIN, INT_MIN };
|
|
const int mmax2[2] = { INT_MAX, INT_MAX };
|
|
|
|
if( m_tree[int( layer )]->Remove( mmin2, mmax2, aItem ) )
|
|
continue;
|
|
}
|
|
|
|
removed = true;
|
|
}
|
|
|
|
m_count -= int( removed );
|
|
|
|
return removed;
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* Function RemoveAll()
|
|
* Removes all items from the RTree
|
|
*/
|
|
void clear()
|
|
{
|
|
for( auto tree : m_tree )
|
|
tree->RemoveAll();
|
|
|
|
m_count = 0;
|
|
}
|
|
|
|
#if 0
|
|
/**
|
|
* Determine if a given item exists in the tree. Note that this does not search the full tree
|
|
* so if the item has been moved, this will return false when it should be true.
|
|
*
|
|
* @param aItem Item that may potentially exist in the tree
|
|
* @param aRobust If true, search the whole tree, not just the bounding box
|
|
* @return true if the item definitely exists, false if it does not exist within bbox
|
|
*/
|
|
bool contains( BOARD_ITEM* aItem, bool aRobust = false )
|
|
{
|
|
const EDA_RECT& bbox = aItem->GetBoundingBox();
|
|
const int mmin[2] = { bbox.GetX(), bbox.GetY() };
|
|
const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() };
|
|
bool found = false;
|
|
|
|
auto search = [&found, &aItem]( const ITEM_WITH_SHAPE* aSearchItem ) {
|
|
if( aSearchItem->parent == aItem )
|
|
{
|
|
found = true;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
for( int layer : aItem->GetLayerSet().Seq() )
|
|
{
|
|
m_tree[layer]->Search( mmin, mmax, search );
|
|
|
|
if( found )
|
|
break;
|
|
}
|
|
|
|
if( !found && aRobust )
|
|
{
|
|
for( int layer : LSET::AllCuMask().Seq() )
|
|
{
|
|
// N.B. We must search the whole tree for the pointer to remove
|
|
// because the item may have been moved. We do not expand the item
|
|
// layer search as this should not change.
|
|
|
|
const int mmin2[2] = { INT_MIN, INT_MIN };
|
|
const int mmax2[2] = { INT_MAX, INT_MAX };
|
|
|
|
m_tree[layer]->Search( mmin2, mmax2, search );
|
|
|
|
if( found )
|
|
break;
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
#endif
|
|
|
|
bool CheckColliding( SHAPE* aRefShape,
|
|
PCB_LAYER_ID aTargetLayer,
|
|
int aClearance = 0,
|
|
std::function<bool( BOARD_ITEM*)> aFilter = nullptr )
|
|
{
|
|
BOX2I box = aRefShape->BBox();
|
|
box.Inflate( aClearance );
|
|
|
|
int min[2] = { box.GetX(), box.GetY() };
|
|
int max[2] = { box.GetRight(), box.GetBottom() };
|
|
|
|
int count = 0;
|
|
|
|
auto visit =
|
|
[&] ( ITEM_WITH_SHAPE* aItem ) -> bool
|
|
{
|
|
if( !aFilter || aFilter( aItem->parent ) )
|
|
{
|
|
int actual;
|
|
|
|
if( aRefShape->Collide( aItem->shape, aClearance, &actual ) )
|
|
{
|
|
count++;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
this->m_tree[aTargetLayer]->Search( min, max, visit );
|
|
return count > 0;
|
|
}
|
|
|
|
int QueryColliding( BOARD_ITEM* aRefItem,
|
|
PCB_LAYER_ID aRefLayer,
|
|
PCB_LAYER_ID aTargetLayer,
|
|
std::function<bool( BOARD_ITEM*)> aFilter = nullptr,
|
|
std::function<bool( BOARD_ITEM*, int)> aVisitor = nullptr,
|
|
int aClearance = 0 )
|
|
{
|
|
// keep track of BOARD_ITEMs that have been already found to collide (some items
|
|
// might be build of COMPOUND/triangulated shapes and a single subshape collision
|
|
// means we have a hit)
|
|
std::unordered_set<BOARD_ITEM*> collidingCompounds;
|
|
|
|
EDA_RECT box = aRefItem->GetBoundingBox();
|
|
box.Inflate( aClearance );
|
|
|
|
int min[2] = { box.GetX(), box.GetY() };
|
|
int max[2] = { box.GetRight(), box.GetBottom() };
|
|
|
|
std::shared_ptr<SHAPE> refShape = aRefItem->GetEffectiveShape( aRefLayer );
|
|
|
|
int count = 0;
|
|
|
|
auto visit =
|
|
[&]( ITEM_WITH_SHAPE* aItem ) -> bool
|
|
{
|
|
if( collidingCompounds.find( aItem->parent ) != collidingCompounds.end() )
|
|
return true;
|
|
|
|
if( !aFilter || aFilter( aItem->parent ) )
|
|
{
|
|
int actual;
|
|
|
|
if( refShape->Collide( aItem->shape, aClearance, &actual ) )
|
|
{
|
|
collidingCompounds.insert( aItem->parent );
|
|
count++;
|
|
|
|
if( aVisitor )
|
|
return aVisitor( aItem->parent, actual );
|
|
}
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
this->m_tree[aTargetLayer]->Search( min, max, visit );
|
|
return count;
|
|
}
|
|
|
|
typedef std::pair<PCB_LAYER_ID, PCB_LAYER_ID> LAYER_PAIR;
|
|
|
|
int QueryCollidingPairs( DRC_RTREE* aRefTree,
|
|
std::vector<LAYER_PAIR> aLayers,
|
|
std::function<bool( const LAYER_PAIR&,
|
|
ITEM_WITH_SHAPE*, ITEM_WITH_SHAPE*,
|
|
bool* aCollision )> aVisitor,
|
|
int aMaxClearance )
|
|
{
|
|
// keep track of BOARD_ITEMs pairs that have been already found to collide (some items
|
|
// might be build of COMPOUND/triangulated shapes and a single subshape collision
|
|
// means we have a hit)
|
|
std::set< std::pair<BOARD_ITEM*, BOARD_ITEM*>> collidingCompounds;
|
|
|
|
for( auto refLayerIter : aLayers )
|
|
{
|
|
const PCB_LAYER_ID refLayer = refLayerIter.first;
|
|
const PCB_LAYER_ID targetLayer = refLayerIter.second;
|
|
|
|
for( auto refItem : aRefTree->OnLayer( refLayer ) )
|
|
{
|
|
BOX2I box = refItem->shape->BBox();
|
|
box.Inflate( aMaxClearance );
|
|
|
|
int min[2] = { box.GetX(), box.GetY() };
|
|
int max[2] = { box.GetRight(), box.GetBottom() };
|
|
|
|
auto visit =
|
|
[&]( ITEM_WITH_SHAPE* aItemToTest ) -> bool
|
|
{
|
|
const std::pair<BOARD_ITEM*, BOARD_ITEM*>
|
|
chkCompoundPair( refItem->parent, aItemToTest->parent );
|
|
|
|
// don't report multiple collisions for compound or triangulated shapes
|
|
if( alg::contains( collidingCompounds, chkCompoundPair ) )
|
|
return true;
|
|
|
|
// don't collide items against themselves
|
|
if( refLayer == targetLayer && aItemToTest->parent == refItem->parent )
|
|
return true;
|
|
|
|
bool collisionDetected = false;
|
|
bool continueSearch = aVisitor( refLayerIter, refItem, aItemToTest,
|
|
&collisionDetected );
|
|
|
|
if( collisionDetected )
|
|
collidingCompounds.insert( chkCompoundPair );
|
|
|
|
return continueSearch;
|
|
};
|
|
|
|
this->m_tree[targetLayer]->Search( min, max, visit );
|
|
};
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
std::vector<std::pair<int, BOARD_ITEM*>> GetNearest( const wxPoint &aPoint,
|
|
PCB_LAYER_ID aLayer, int aLimit )
|
|
{
|
|
|
|
const int point[2] = { aPoint.x, aPoint.y };
|
|
auto result = m_tree[int( aLayer )]->NearestNeighbors( point,
|
|
[aLimit]( std::size_t a_count, int a_maxDist ) -> bool
|
|
{
|
|
return a_count >= aLimit;
|
|
},
|
|
[]( BOARD_ITEM* aElement) -> bool
|
|
{
|
|
// Don't remove any elements from the list
|
|
return false;
|
|
},
|
|
[aLayer]( const int* a_point, BOARD_ITEM* a_data ) -> int
|
|
{
|
|
switch( a_data->Type() )
|
|
{
|
|
case PCB_TRACE_T:
|
|
{
|
|
TRACK* track = static_cast<TRACK*>( a_data );
|
|
SEG seg( track->GetStart(), track->GetEnd() );
|
|
return seg.Distance( VECTOR2I( a_point[0], a_point[1] ) ) -
|
|
( track->GetWidth() + 1 ) / 2;
|
|
}
|
|
case PCB_VIA_T:
|
|
{
|
|
VIA* via = static_cast<VIA*>( a_data );
|
|
return ( VECTOR2I( via->GetPosition() ) -
|
|
VECTOR2I( a_point[0], a_point[1] ) ).EuclideanNorm() -
|
|
( via->GetWidth() + 1 ) / 2;
|
|
|
|
}
|
|
default:
|
|
{
|
|
VECTOR2I point( a_point[0], a_point[1] );
|
|
int dist = 0;
|
|
auto shape = a_data->GetEffectiveShape( aLayer );
|
|
|
|
// Here we use a hack to get the distance by colliding with a large area
|
|
// However, we can't use just MAX_INT because we will overflow the collision calculations
|
|
shape->Collide( point, std::numeric_limits<int>::max() / 2, &dist);
|
|
return dist;
|
|
}
|
|
}
|
|
return 0;
|
|
});
|
|
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Returns the number of items in the tree
|
|
* @return number of elements in the tree;
|
|
*/
|
|
size_t size()
|
|
{
|
|
return m_count;
|
|
}
|
|
|
|
bool empty()
|
|
{
|
|
return m_count == 0;
|
|
}
|
|
|
|
using iterator = typename drc_rtree::Iterator;
|
|
|
|
/**
|
|
* The DRC_LAYER struct provides a layer-specific auto-range iterator to the RTree. Using
|
|
* this struct, one can write lines like:
|
|
*
|
|
* for( auto item : rtree.OnLayer( In1_Cu ) )
|
|
*
|
|
* and iterate over only the RTree items that are on In1
|
|
*/
|
|
struct DRC_LAYER
|
|
{
|
|
DRC_LAYER( drc_rtree* aTree ) : layer_tree( aTree )
|
|
{
|
|
m_rect = { { INT_MIN, INT_MIN }, { INT_MAX, INT_MAX } };
|
|
};
|
|
|
|
DRC_LAYER( drc_rtree* aTree, const EDA_RECT aRect ) : layer_tree( aTree )
|
|
{
|
|
m_rect = { { aRect.GetX(), aRect.GetY() },
|
|
{ aRect.GetRight(), aRect.GetBottom() } };
|
|
};
|
|
|
|
drc_rtree::Rect m_rect;
|
|
drc_rtree* layer_tree;
|
|
|
|
iterator begin()
|
|
{
|
|
return layer_tree->begin( m_rect );
|
|
}
|
|
|
|
iterator end()
|
|
{
|
|
return layer_tree->end( m_rect );
|
|
}
|
|
};
|
|
|
|
DRC_LAYER OnLayer( PCB_LAYER_ID aLayer )
|
|
{
|
|
return DRC_LAYER( m_tree[int( aLayer )] );
|
|
}
|
|
|
|
DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const wxPoint& aPoint, int aAccuracy = 0 )
|
|
{
|
|
EDA_RECT rect( aPoint, wxSize( 0, 0 ) );
|
|
rect.Inflate( aAccuracy );
|
|
return DRC_LAYER( m_tree[int( aLayer )], rect );
|
|
}
|
|
|
|
DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const EDA_RECT& aRect )
|
|
{
|
|
return DRC_LAYER( m_tree[int( aLayer )], aRect );
|
|
}
|
|
|
|
|
|
private:
|
|
drc_rtree* m_tree[PCB_LAYER_ID_COUNT];
|
|
size_t m_count;
|
|
};
|
|
|
|
|
|
#endif /* DRC_RTREE_H_ */
|