kicad/plugins/3d/demo/s3d_plugin_demo2.cpp

319 lines
8.5 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015 Cirilo Bernardo <cirilo.bernardo@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <cmath>
#include "plugins/3d/3d_plugin.h"
#include "plugins/3dapi/ifsg_all.h"
#define PLUGIN_3D_DEMO2_MAJOR 1
#define PLUGIN_3D_DEMO2_MINOR 0
#define PLUGIN_3D_DEMO2_PATCH 0
#define PLUGIN_3D_DEMO2_REVNO 0
const char* GetKicadPluginName( void )
{
return "PLUGIN_3D_DEMO2";
}
void GetPluginVersion( unsigned char* Major, unsigned char* Minor,
unsigned char* Patch, unsigned char* Revision )
{
if( Major )
*Major = PLUGIN_3D_DEMO2_MAJOR;
if( Minor )
*Minor = PLUGIN_3D_DEMO2_MINOR;
if( Patch )
*Patch = PLUGIN_3D_DEMO2_PATCH;
if( Revision )
*Revision = PLUGIN_3D_DEMO2_REVNO;
return;
}
// number of extensions supported
#ifdef _WIN32
#define NEXTS 1
#else
#define NEXTS 2
#endif
// number of filter sets supported
#define NFILS 1
static char ext0[] = "wrl";
#ifdef _WIN32
static char fil0[] = "VRML 1.0/2.0 (*.wrl)|*.wrl";
#else
static char ext1[] = "WRL";
static char fil0[] = "VRML 1.0/2.0 (*.wrl;*.WRL)|*.wrl;*.WRL";
#endif
static struct FILE_DATA
{
char const* extensions[NEXTS];
char const* filters[NFILS];
FILE_DATA()
{
extensions[0] = ext0;
filters[0] = fil0;
#ifndef _WIN32
extensions[1] = ext1;
#endif
return;
}
} file_data;
int GetNExtensions( void )
{
return NEXTS;
}
char const* GetModelExtension( int aIndex )
{
if( aIndex < 0 || aIndex >= NEXTS )
return NULL;
return file_data.extensions[aIndex];
}
int GetNFilters( void )
{
return NFILS;
}
char const* GetFileFilter( int aIndex )
{
if( aIndex < 0 || aIndex >= NFILS )
return NULL;
return file_data.filters[aIndex];
}
bool CanRender( void )
{
// this dummy pretends to render a VRML model
return true;
}
SCENEGRAPH* Load( char const* aFileName )
{
// For this demonstration we create a tetrahedron (tx1) consisting of a SCENEGRAPH
// (VRML Transform) which in turn contains 4 SGSHAPE (VRML Shape) objects
// representing each of the sides of the tetrahedron. Each Shape is associated
// with a color (SGAPPEARANCE) and a SGFACESET (VRML Geometry->indexedFaceSet).
// Each SGFACESET is associated with a vertex list (SGCOORDS), a per-vertex normals
// list (SGNORMALS), and a coordinate index (SGCOORDINDEX). One shape is used to
// represent each face so that we may use per-vertex-per-face normals.
//
// The tetrahedron in turn is a child of a top level SCENEGRAPH (tx0) which has
// a second SCENEGRAPH child (tx2) which is a transformation of the tetrahedron tx1
// (rotation + translation). This demonstrates the reuse of components within
// the model heirarchy.
// define the vertices of the tetrahedron
// face 1: 0, 3, 1
// face 2: 0, 2, 3
// face 3: 1, 3, 2
// face 4: 0, 1, 2
double SQ2 = sqrt( 0.5 );
SGPOINT vert[4];
vert[0] = SGPOINT( 1.0, 0.0, -SQ2 );
vert[1] = SGPOINT( -1.0, 0.0, -SQ2 );
vert[2] = SGPOINT( 0.0, 1.0, SQ2 );
vert[3] = SGPOINT( 0.0, -1.0, SQ2 );
// create the top level transform; this will hold all other
// scenegraph objects; a transform may hold other transforms and
// shapes
IFSG_TRANSFORM* tx0 = new IFSG_TRANSFORM( true );
// create the transform which will house the shapes
IFSG_TRANSFORM* tx1 = new IFSG_TRANSFORM( tx0->GetRawPtr() );
// add a shape which we will use to define one face of the tetrahedron; shapes
// hold facesets and appearances
IFSG_SHAPE* shape = new IFSG_SHAPE( *tx1 );
// add a faceset; these contain coordinate lists, coordinate indices,
// vertex lists, vertex indices, and may also contain color lists and
// their indices.
IFSG_FACESET* face = new IFSG_FACESET( *shape );
IFSG_COORDS* cp = new IFSG_COORDS( *face );
cp->AddCoord( vert[0] );
cp->AddCoord( vert[3] );
cp->AddCoord( vert[1] );
// coordinate indices - note: enforce triangles;
// in real plugins where it is not necessarily possible
// to determine which side a triangle is visible from,
// 2 point orders must be specified for each triangle
IFSG_COORDINDEX* coordIdx = new IFSG_COORDINDEX( *face );
coordIdx->AddIndex( 0 );
coordIdx->AddIndex( 1 );
coordIdx->AddIndex( 2 );
// create an appearance; appearances are owned by shapes
// magenta
IFSG_APPEARANCE* material = new IFSG_APPEARANCE( *shape);
material->SetSpecular( 1.0, 0.0, 1.0 );
material->SetDiffuse( 0.9, 0.0, 0.9 );
material->SetAmbient( 0.9 );
material->SetShininess( 0.3 );
// normals
IFSG_NORMALS* np = new IFSG_NORMALS( *face );
SGVECTOR nval = S3D::CalcTriNorm( vert[0], vert[3], vert[1] );
np->AddNormal( nval );
np->AddNormal( nval );
np->AddNormal( nval );
//
// Shape2
// Note: we reuse the IFSG* wrappers to create and manipulate new
// data structures.
//
shape->NewNode( *tx1 );
face->NewNode( *shape );
coordIdx->NewNode( *face );
cp->NewNode( *face );
np->NewNode( *face );
// vertices
cp->AddCoord( vert[0] );
cp->AddCoord( vert[2] );
cp->AddCoord( vert[3] );
// indices
coordIdx->AddIndex( 0 );
coordIdx->AddIndex( 1 );
coordIdx->AddIndex( 2 );
// normals
nval = S3D::CalcTriNorm( vert[0], vert[2], vert[3] );
np->AddNormal( nval );
np->AddNormal( nval );
np->AddNormal( nval );
// color (red)
material->NewNode( *shape );
material->SetSpecular( 1.0, 0.0, 0.0 );
material->SetDiffuse( 0.9, 0.0, 0.0 );
material->SetAmbient( 0.9 );
material->SetShininess( 0.3 );
//
// Shape3
//
shape->NewNode( *tx1 );
face->NewNode( *shape );
coordIdx->NewNode( *face );
cp->NewNode( *face );
np->NewNode( *face );
// vertices
cp->AddCoord( vert[1] );
cp->AddCoord( vert[3] );
cp->AddCoord( vert[2] );
// indices
coordIdx->AddIndex( 0 );
coordIdx->AddIndex( 1 );
coordIdx->AddIndex( 2 );
// normals
nval = S3D::CalcTriNorm( vert[1], vert[3], vert[2] );
np->AddNormal( nval );
np->AddNormal( nval );
np->AddNormal( nval );
// color (green)
material->NewNode( *shape );
material->SetSpecular( 0.0, 1.0, 0.0 );
material->SetDiffuse( 0.0, 0.9, 0.0 );
material->SetAmbient( 0.9 );
material->SetShininess( 0.3 );
//
// Shape4
//
shape->NewNode( *tx1 );
face->NewNode( *shape );
coordIdx->NewNode( *face );
cp->NewNode( *face );
np->NewNode( *face );
// vertices
cp->AddCoord( vert[0] );
cp->AddCoord( vert[1] );
cp->AddCoord( vert[2] );
// indices
coordIdx->AddIndex( 0 );
coordIdx->AddIndex( 1 );
coordIdx->AddIndex( 2 );
// normals
nval = S3D::CalcTriNorm( vert[0], vert[1], vert[2] );
np->AddNormal( nval );
np->AddNormal( nval );
np->AddNormal( nval );
// color (blue)
material->NewNode( *shape );
material->SetSpecular( 0.0, 0.0, 1.0 );
material->SetDiffuse( 0.0, 0.0, 0.9 );
material->SetAmbient( 0.9 );
material->SetShininess( 0.3 );
// create a copy of the entire tetrahedron shifted Z+2 and rotated 2/3PI
IFSG_TRANSFORM* tx2 = new IFSG_TRANSFORM( tx0->GetRawPtr() );
tx2->AddRefNode( *tx1 );
tx2->SetTranslation( SGPOINT( 0, 0, 2 ) );
tx2->SetRotation( SGVECTOR( 0, 0, 1 ), M_PI*2.0/3.0 );
SGNODE* data = tx0->GetRawPtr();
// delete the wrappers
delete shape;
delete face;
delete coordIdx;
delete material;
delete cp;
delete np;
delete tx0;
delete tx1;
delete tx2;
return (SCENEGRAPH*)data;
}