kicad/pcbnew/zone.cpp

1427 lines
41 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <bitmaps.h>
#include <geometry/geometry_utils.h>
#include <geometry/shape_null.h>
#include <core/mirror.h>
#include <advanced_config.h>
#include <pcb_edit_frame.h>
#include <pcb_screen.h>
#include <board.h>
#include <zone.h>
#include <kicad_string.h>
#include <math_for_graphics.h>
#include <settings/color_settings.h>
#include <settings/settings_manager.h>
#include <trigo.h>
#include <i18n_utility.h>
ZONE::ZONE( BOARD_ITEM_CONTAINER* aParent, bool aInFP ) :
BOARD_CONNECTED_ITEM( aParent, aInFP ? PCB_FP_ZONE_T : PCB_ZONE_T ),
m_area( 0.0 )
{
m_CornerSelection = nullptr; // no corner is selected
m_isFilled = false; // fill status : true when the zone is filled
m_fillMode = ZONE_FILL_MODE::POLYGONS;
m_borderStyle = ZONE_BORDER_DISPLAY_STYLE::DIAGONAL_EDGE;
m_borderHatchPitch = GetDefaultHatchPitch();
m_hv45 = false;
m_hatchThickness = 0;
m_hatchGap = 0;
m_hatchOrientation = 0.0;
m_hatchSmoothingLevel = 0; // Grid pattern smoothing type. 0 = no smoothing
m_hatchSmoothingValue = 0.1; // Grid pattern chamfer value relative to the gap value
// used only if m_hatchSmoothingLevel > 0
m_hatchHoleMinArea = 0.3; // Min size before holes are dropped (ratio of hole size)
m_hatchBorderAlgorithm = 1; // 0 = use zone min thickness; 1 = use hatch width
m_priority = 0;
m_cornerSmoothingType = ZONE_SETTINGS::SMOOTHING_NONE;
SetIsRuleArea( aInFP ); // Zones living in footprints have the rule area option
SetDoNotAllowCopperPour( false ); // has meaning only if m_isRuleArea == true
SetDoNotAllowVias( true ); // has meaning only if m_isRuleArea == true
SetDoNotAllowTracks( true ); // has meaning only if m_isRuleArea == true
SetDoNotAllowPads( true ); // has meaning only if m_isRuleArea == true
SetDoNotAllowFootprints( false ); // has meaning only if m_isRuleArea == true
m_cornerRadius = 0;
SetLocalFlags( 0 ); // flags tempoarry used in zone calculations
m_Poly = new SHAPE_POLY_SET(); // Outlines
m_fillVersion = 5; // set the "old" way to build filled polygon areas (< 6.0.x)
m_islandRemovalMode = ISLAND_REMOVAL_MODE::ALWAYS;
aParent->GetZoneSettings().ExportSetting( *this );
m_needRefill = false; // True only after some edition.
}
ZONE::ZONE( const ZONE& aZone )
: BOARD_CONNECTED_ITEM( aZone ),
m_Poly( nullptr ),
m_CornerSelection( nullptr )
{
InitDataFromSrcInCopyCtor( aZone );
}
ZONE& ZONE::operator=( const ZONE& aOther )
{
BOARD_CONNECTED_ITEM::operator=( aOther );
InitDataFromSrcInCopyCtor( aOther );
return *this;
}
ZONE::~ZONE()
{
delete m_Poly;
delete m_CornerSelection;
}
void ZONE::InitDataFromSrcInCopyCtor( const ZONE& aZone )
{
// members are expected non initialize in this.
// InitDataFromSrcInCopyCtor() is expected to be called
// only from a copy constructor.
// Copy only useful EDA_ITEM flags:
m_flags = aZone.m_flags;
m_forceVisible = aZone.m_forceVisible;
// Replace the outlines for aZone outlines.
delete m_Poly;
m_Poly = new SHAPE_POLY_SET( *aZone.m_Poly );
m_cornerSmoothingType = aZone.m_cornerSmoothingType;
m_cornerRadius = aZone.m_cornerRadius;
m_zoneName = aZone.m_zoneName;
m_priority = aZone.m_priority;
m_isRuleArea = aZone.m_isRuleArea;
SetLayerSet( aZone.GetLayerSet() );
m_doNotAllowCopperPour = aZone.m_doNotAllowCopperPour;
m_doNotAllowVias = aZone.m_doNotAllowVias;
m_doNotAllowTracks = aZone.m_doNotAllowTracks;
m_doNotAllowPads = aZone.m_doNotAllowPads;
m_doNotAllowFootprints = aZone.m_doNotAllowFootprints;
m_PadConnection = aZone.m_PadConnection;
m_ZoneClearance = aZone.m_ZoneClearance; // clearance value
m_ZoneMinThickness = aZone.m_ZoneMinThickness;
m_fillVersion = aZone.m_fillVersion;
m_islandRemovalMode = aZone.m_islandRemovalMode;
m_minIslandArea = aZone.m_minIslandArea;
m_isFilled = aZone.m_isFilled;
m_needRefill = aZone.m_needRefill;
m_thermalReliefGap = aZone.m_thermalReliefGap;
m_thermalReliefSpokeWidth = aZone.m_thermalReliefSpokeWidth;
m_fillMode = aZone.m_fillMode; // solid vs. hatched
m_hatchThickness = aZone.m_hatchThickness;
m_hatchGap = aZone.m_hatchGap;
m_hatchOrientation = aZone.m_hatchOrientation;
m_hatchSmoothingLevel = aZone.m_hatchSmoothingLevel;
m_hatchSmoothingValue = aZone.m_hatchSmoothingValue;
m_hatchBorderAlgorithm = aZone.m_hatchBorderAlgorithm;
m_hatchHoleMinArea = aZone.m_hatchHoleMinArea;
// For corner moving, corner index to drag, or nullptr if no selection
delete m_CornerSelection;
m_CornerSelection = nullptr;
for( PCB_LAYER_ID layer : aZone.GetLayerSet().Seq() )
{
m_FilledPolysList[layer] = aZone.m_FilledPolysList.at( layer );
m_RawPolysList[layer] = aZone.m_RawPolysList.at( layer );
m_filledPolysHash[layer] = aZone.m_filledPolysHash.at( layer );
m_FillSegmList[layer] = aZone.m_FillSegmList.at( layer ); // vector <> copy
m_insulatedIslands[layer] = aZone.m_insulatedIslands.at( layer );
}
m_borderStyle = aZone.m_borderStyle;
m_borderHatchPitch = aZone.m_borderHatchPitch;
m_borderHatchLines = aZone.m_borderHatchLines;
SetLocalFlags( aZone.GetLocalFlags() );
m_netinfo = aZone.m_netinfo;
m_hv45 = aZone.m_hv45;
m_area = aZone.m_area;
}
EDA_ITEM* ZONE::Clone() const
{
return new ZONE( *this );
}
bool ZONE::UnFill()
{
bool change = false;
for( std::pair<const PCB_LAYER_ID, SHAPE_POLY_SET>& pair : m_FilledPolysList )
{
change |= !pair.second.IsEmpty();
pair.second.RemoveAllContours();
}
for( std::pair<const PCB_LAYER_ID, ZONE_SEGMENT_FILL>& pair : m_FillSegmList )
{
change |= !pair.second.empty();
pair.second.clear();
}
m_isFilled = false;
m_fillFlags.clear();
return change;
}
wxPoint ZONE::GetPosition() const
{
return (wxPoint) GetCornerPosition( 0 );
}
PCB_LAYER_ID ZONE::GetLayer() const
{
return BOARD_ITEM::GetLayer();
}
bool ZONE::IsOnCopperLayer() const
{
return ( m_layerSet & LSET::AllCuMask() ).count() > 0;
}
bool ZONE::CommonLayerExists( const LSET aLayerSet ) const
{
LSET common = GetLayerSet() & aLayerSet;
return common.count() > 0;
}
void ZONE::SetLayer( PCB_LAYER_ID aLayer )
{
SetLayerSet( LSET( aLayer ) );
m_layer = aLayer;
}
void ZONE::SetLayerSet( LSET aLayerSet )
{
if( GetIsRuleArea() )
{
// Rule areas can only exist on copper layers
aLayerSet &= LSET::AllCuMask();
}
if( aLayerSet.count() == 0 )
return;
if( m_layerSet != aLayerSet )
{
SetNeedRefill( true );
UnFill();
m_FillSegmList.clear();
m_FilledPolysList.clear();
m_RawPolysList.clear();
m_filledPolysHash.clear();
m_insulatedIslands.clear();
for( PCB_LAYER_ID layer : aLayerSet.Seq() )
{
m_FillSegmList[layer] = {};
m_FilledPolysList[layer] = {};
m_RawPolysList[layer] = {};
m_filledPolysHash[layer] = {};
m_insulatedIslands[layer] = {};
}
}
m_layerSet = aLayerSet;
// Set the single layer parameter. For zones that can be on many layers, this parameter
// is arbitrary at best, but some code still uses it.
// Priority is F_Cu then B_Cu then to the first selected layer
m_layer = aLayerSet.Seq()[0];
if( m_layer != F_Cu && aLayerSet[B_Cu] )
m_layer = B_Cu;
}
LSET ZONE::GetLayerSet() const
{
return m_layerSet;
}
void ZONE::ViewGetLayers( int aLayers[], int& aCount ) const
{
LSEQ layers = m_layerSet.Seq();
for( unsigned int idx = 0; idx < layers.size(); idx++ )
aLayers[idx] = LAYER_ZONE_START + layers[idx];
aCount = layers.size();
}
double ZONE::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const
{
constexpr double HIDE = std::numeric_limits<double>::max();
return aView->IsLayerVisible( LAYER_ZONES ) ? 0.0 : HIDE;
}
bool ZONE::IsOnLayer( PCB_LAYER_ID aLayer ) const
{
return m_layerSet.test( aLayer );
}
const EDA_RECT ZONE::GetBoundingBox() const
{
auto bb = m_Poly->BBox();
EDA_RECT ret( (wxPoint) bb.GetOrigin(), wxSize( bb.GetWidth(), bb.GetHeight() ) );
return ret;
}
int ZONE::GetThermalReliefGap( PAD* aPad, wxString* aSource ) const
{
if( aPad->GetEffectiveThermalGap() == 0 )
{
if( aSource )
*aSource = _( "zone" );
return m_thermalReliefGap;
}
return aPad->GetEffectiveThermalGap( aSource );
}
int ZONE::GetThermalReliefSpokeWidth( PAD* aPad, wxString* aSource ) const
{
if( aPad->GetEffectiveThermalSpokeWidth() == 0 )
{
if( aSource )
*aSource = _( "zone" );
return m_thermalReliefSpokeWidth;
}
return aPad->GetEffectiveThermalSpokeWidth( aSource );
}
void ZONE::SetCornerRadius( unsigned int aRadius )
{
if( m_cornerRadius != aRadius )
SetNeedRefill( true );
m_cornerRadius = aRadius;
}
bool ZONE::GetFilledPolysUseThickness( PCB_LAYER_ID aLayer ) const
{
if( ADVANCED_CFG::GetCfg().m_DebugZoneFiller && LSET::InternalCuMask().Contains( aLayer ) )
return false;
return GetFilledPolysUseThickness();
}
static SHAPE_POLY_SET g_nullPoly;
MD5_HASH ZONE::GetHashValue( PCB_LAYER_ID aLayer )
{
if( !m_filledPolysHash.count( aLayer ) )
return g_nullPoly.GetHash();
else
return m_filledPolysHash.at( aLayer );
}
void ZONE::BuildHashValue( PCB_LAYER_ID aLayer )
{
if( !m_FilledPolysList.count( aLayer ) )
m_filledPolysHash[aLayer] = g_nullPoly.GetHash();
else
m_filledPolysHash[aLayer] = m_FilledPolysList.at( aLayer ).GetHash();
}
bool ZONE::HitTest( const wxPoint& aPosition, int aAccuracy ) const
{
// Normally accuracy is zoom-relative, but for the generic HitTest we just use
// a fixed (small) value.
int accuracy = std::max( aAccuracy, Millimeter2iu( 0.1 ) );
return HitTestForCorner( aPosition, accuracy * 2 ) || HitTestForEdge( aPosition, accuracy );
}
void ZONE::SetSelectedCorner( const wxPoint& aPosition, int aAccuracy )
{
SHAPE_POLY_SET::VERTEX_INDEX corner;
// If there is some corner to be selected, assign it to m_CornerSelection
if( HitTestForCorner( aPosition, aAccuracy * 2, corner )
|| HitTestForEdge( aPosition, aAccuracy, corner ) )
{
if( m_CornerSelection == nullptr )
m_CornerSelection = new SHAPE_POLY_SET::VERTEX_INDEX;
*m_CornerSelection = corner;
}
}
bool ZONE::HitTestForCorner( const wxPoint& refPos, int aAccuracy,
SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const
{
return m_Poly->CollideVertex( VECTOR2I( refPos ), aCornerHit, aAccuracy );
}
bool ZONE::HitTestForCorner( const wxPoint& refPos, int aAccuracy ) const
{
SHAPE_POLY_SET::VERTEX_INDEX dummy;
return HitTestForCorner( refPos, aAccuracy, dummy );
}
bool ZONE::HitTestForEdge( const wxPoint& refPos, int aAccuracy,
SHAPE_POLY_SET::VERTEX_INDEX& aCornerHit ) const
{
return m_Poly->CollideEdge( VECTOR2I( refPos ), aCornerHit, aAccuracy );
}
bool ZONE::HitTestForEdge( const wxPoint& refPos, int aAccuracy ) const
{
SHAPE_POLY_SET::VERTEX_INDEX dummy;
return HitTestForEdge( refPos, aAccuracy, dummy );
}
bool ZONE::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const
{
// Calculate bounding box for zone
EDA_RECT bbox = GetBoundingBox();
bbox.Normalize();
EDA_RECT arect = aRect;
arect.Normalize();
arect.Inflate( aAccuracy );
if( aContained )
{
return arect.Contains( bbox );
}
else
{
// Fast test: if aBox is outside the polygon bounding box, rectangles cannot intersect
if( !arect.Intersects( bbox ) )
return false;
int count = m_Poly->TotalVertices();
for( int ii = 0; ii < count; ii++ )
{
auto vertex = m_Poly->CVertex( ii );
auto vertexNext = m_Poly->CVertex( ( ii + 1 ) % count );
// Test if the point is within the rect
if( arect.Contains( ( wxPoint ) vertex ) )
return true;
// Test if this edge intersects the rect
if( arect.Intersects( ( wxPoint ) vertex, ( wxPoint ) vertexNext ) )
return true;
}
return false;
}
}
int ZONE::GetLocalClearance( wxString* aSource ) const
{
if( m_isRuleArea )
return 0;
if( aSource )
*aSource = _( "zone" );
return m_ZoneClearance;
}
bool ZONE::HitTestFilledArea( PCB_LAYER_ID aLayer, const wxPoint &aRefPos, int aAccuracy ) const
{
// Rule areas have no filled area, but it's generally nice to treat their interior as if it were
// filled so that people don't have to select them by their outline (which is min-width)
if( GetIsRuleArea() )
return m_Poly->Contains( VECTOR2I( aRefPos.x, aRefPos.y ), -1, aAccuracy );
if( !m_FilledPolysList.count( aLayer ) )
return false;
return m_FilledPolysList.at( aLayer ).Contains( VECTOR2I( aRefPos.x, aRefPos.y ), -1,
aAccuracy );
}
bool ZONE::HitTestCutout( const VECTOR2I& aRefPos, int* aOutlineIdx, int* aHoleIdx ) const
{
// Iterate over each outline polygon in the zone and then iterate over
// each hole it has to see if the point is in it.
for( int i = 0; i < m_Poly->OutlineCount(); i++ )
{
for( int j = 0; j < m_Poly->HoleCount( i ); j++ )
{
if( m_Poly->Hole( i, j ).PointInside( aRefPos ) )
{
if( aOutlineIdx )
*aOutlineIdx = i;
if( aHoleIdx )
*aHoleIdx = j;
return true;
}
}
}
return false;
}
void ZONE::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
EDA_UNITS units = aFrame->GetUserUnits();
wxString msg;
if( GetIsRuleArea() )
msg = _( "Rule Area" );
else if( IsOnCopperLayer() )
msg = _( "Copper Zone" );
else
msg = _( "Non-copper Zone" );
// Display Cutout instead of Outline for holes inside a zone (i.e. when num contour !=0).
// Check whether the selected corner is in a hole; i.e., in any contour but the first one.
if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 )
msg << wxT( " " ) << _( "Cutout" );
aList.emplace_back( _( "Type" ), msg );
if( GetIsRuleArea() )
{
msg.Empty();
if( GetDoNotAllowVias() )
AccumulateDescription( msg, _( "No vias" ) );
if( GetDoNotAllowTracks() )
AccumulateDescription( msg, _( "No tracks" ) );
if( GetDoNotAllowPads() )
AccumulateDescription( msg, _( "No pads" ) );
if( GetDoNotAllowCopperPour() )
AccumulateDescription( msg, _( "No copper zones" ) );
if( GetDoNotAllowFootprints() )
AccumulateDescription( msg, _( "No footprints" ) );
if( !msg.IsEmpty() )
aList.emplace_back( MSG_PANEL_ITEM( _( "Restrictions" ), msg ) );
}
else if( IsOnCopperLayer() )
{
aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ) );
aList.emplace_back( _( "NetClass" ), UnescapeString( GetNetClass()->GetName() ) );
// Display priority level
aList.emplace_back( _( "Priority" ), wxString::Format( "%d", GetPriority() ) );
}
wxString layerDesc;
int count = 0;
for( PCB_LAYER_ID layer : m_layerSet.Seq() )
{
if( count == 0 )
layerDesc = GetBoard()->GetLayerName( layer );
count++;
}
if( count > 1 )
layerDesc.Printf( _( "%s and %d more" ), layerDesc, count - 1 );
aList.emplace_back( _( "Layer" ), layerDesc );
if( !m_zoneName.empty() )
aList.emplace_back( _( "Name" ), m_zoneName );
switch( m_fillMode )
{
case ZONE_FILL_MODE::POLYGONS: msg = _( "Solid" ); break;
case ZONE_FILL_MODE::HATCH_PATTERN: msg = _( "Hatched" ); break;
default: msg = _( "Unknown" ); break;
}
aList.emplace_back( _( "Fill Mode" ), msg );
msg = MessageTextFromValue( units, m_area, true, EDA_DATA_TYPE::AREA );
aList.emplace_back( _( "Filled Area" ), msg );
wxString source;
int clearance = GetOwnClearance( GetLayer(), &source );
aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ),
MessageTextFromValue( units, clearance ) ),
wxString::Format( _( "(from %s)" ), source ) );
// Useful for statistics, especially when zones are complex the number of hatches
// and filled polygons can explain the display and DRC calculation time:
msg.Printf( wxT( "%d" ), (int) m_borderHatchLines.size() );
aList.emplace_back( MSG_PANEL_ITEM( _( "HatchBorder Lines" ), msg ) );
PCB_LAYER_ID layer = m_layer;
// NOTE: This brings in dependence on PCB_EDIT_FRAME to the qa tests, which isn't ideal.
// TODO: Figure out a way for items to know the active layer without the whole edit frame?
#if 0
if( PCB_EDIT_FRAME* pcbframe = dynamic_cast<PCB_EDIT_FRAME*>( aFrame ) )
{
if( m_FilledPolysList.count( pcbframe->GetActiveLayer() ) )
layer = pcbframe->GetActiveLayer();
}
#endif
if( !GetIsRuleArea() )
{
auto layer_it = m_FilledPolysList.find( layer );
if( layer_it == m_FilledPolysList.end() )
layer_it = m_FilledPolysList.begin();
if( layer_it != m_FilledPolysList.end() )
{
msg.Printf( wxT( "%d" ), layer_it->second.TotalVertices() );
aList.emplace_back( MSG_PANEL_ITEM( _( "Corner Count" ), msg ) );
}
}
}
/* Geometric transforms: */
void ZONE::Move( const wxPoint& offset )
{
/* move outlines */
m_Poly->Move( offset );
HatchBorder();
for( std::pair<const PCB_LAYER_ID, SHAPE_POLY_SET>& pair : m_FilledPolysList )
pair.second.Move( offset );
for( std::pair<const PCB_LAYER_ID, ZONE_SEGMENT_FILL>& pair : m_FillSegmList )
{
for( SEG& seg : pair.second )
{
seg.A += VECTOR2I( offset );
seg.B += VECTOR2I( offset );
}
}
}
void ZONE::MoveEdge( const wxPoint& offset, int aEdge )
{
int next_corner;
if( m_Poly->GetNeighbourIndexes( aEdge, nullptr, &next_corner ) )
{
m_Poly->SetVertex( aEdge, m_Poly->CVertex( aEdge ) + VECTOR2I( offset ) );
m_Poly->SetVertex( next_corner, m_Poly->CVertex( next_corner ) + VECTOR2I( offset ) );
HatchBorder();
SetNeedRefill( true );
}
}
void ZONE::Rotate( const wxPoint& aCentre, double aAngle )
{
aAngle = -DECIDEG2RAD( aAngle );
m_Poly->Rotate( aAngle, VECTOR2I( aCentre ) );
HatchBorder();
/* rotate filled areas: */
for( std::pair<const PCB_LAYER_ID, SHAPE_POLY_SET>& pair : m_FilledPolysList )
pair.second.Rotate( aAngle, VECTOR2I( aCentre ) );
for( std::pair<const PCB_LAYER_ID, ZONE_SEGMENT_FILL>& pair : m_FillSegmList )
{
for( SEG& seg : pair.second )
{
wxPoint a( seg.A );
RotatePoint( &a, aCentre, aAngle );
seg.A = a;
wxPoint b( seg.B );
RotatePoint( &b, aCentre, aAngle );
seg.B = a;
}
}
}
void ZONE::Flip( const wxPoint& aCentre, bool aFlipLeftRight )
{
Mirror( aCentre, aFlipLeftRight );
int copperLayerCount = GetBoard()->GetCopperLayerCount();
if( GetIsRuleArea() )
SetLayerSet( FlipLayerMask( GetLayerSet(), copperLayerCount ) );
else
SetLayer( FlipLayer( GetLayer(), copperLayerCount ) );
}
void ZONE::Mirror( const wxPoint& aMirrorRef, bool aMirrorLeftRight )
{
// ZONEs mirror about the x-axis (why?!?)
m_Poly->Mirror( aMirrorLeftRight, !aMirrorLeftRight, VECTOR2I( aMirrorRef ) );
HatchBorder();
for( std::pair<const PCB_LAYER_ID, SHAPE_POLY_SET>& pair : m_FilledPolysList )
pair.second.Mirror( aMirrorLeftRight, !aMirrorLeftRight, VECTOR2I( aMirrorRef ) );
for( std::pair<const PCB_LAYER_ID, ZONE_SEGMENT_FILL>& pair : m_FillSegmList )
{
for( SEG& seg : pair.second )
{
if( aMirrorLeftRight )
{
MIRROR( seg.A.x, aMirrorRef.x );
MIRROR( seg.B.x, aMirrorRef.x );
}
else
{
MIRROR( seg.A.y, aMirrorRef.y );
MIRROR( seg.B.y, aMirrorRef.y );
}
}
}
}
ZONE_CONNECTION ZONE::GetPadConnection( PAD* aPad, wxString* aSource ) const
{
if( aPad == NULL || aPad->GetEffectiveZoneConnection() == ZONE_CONNECTION::INHERITED )
{
if( aSource )
*aSource = _( "zone" );
return m_PadConnection;
}
else
{
return aPad->GetEffectiveZoneConnection( aSource );
}
}
void ZONE::RemoveCutout( int aOutlineIdx, int aHoleIdx )
{
// Ensure the requested cutout is valid
if( m_Poly->OutlineCount() < aOutlineIdx || m_Poly->HoleCount( aOutlineIdx ) < aHoleIdx )
return;
SHAPE_POLY_SET cutPoly( m_Poly->Hole( aOutlineIdx, aHoleIdx ) );
// Add the cutout back to the zone
m_Poly->BooleanAdd( cutPoly, SHAPE_POLY_SET::PM_FAST );
SetNeedRefill( true );
}
void ZONE::AddPolygon( const SHAPE_LINE_CHAIN& aPolygon )
{
wxASSERT( aPolygon.IsClosed() );
// Add the outline as a new polygon in the polygon set
if( m_Poly->OutlineCount() == 0 )
m_Poly->AddOutline( aPolygon );
else
m_Poly->AddHole( aPolygon );
SetNeedRefill( true );
}
void ZONE::AddPolygon( std::vector< wxPoint >& aPolygon )
{
if( aPolygon.empty() )
return;
SHAPE_LINE_CHAIN outline;
// Create an outline and populate it with the points of aPolygon
for( const wxPoint& pt : aPolygon)
outline.Append( pt );
outline.SetClosed( true );
AddPolygon( outline );
}
bool ZONE::AppendCorner( wxPoint aPosition, int aHoleIdx, bool aAllowDuplication )
{
// Ensure the main outline exists:
if( m_Poly->OutlineCount() == 0 )
m_Poly->NewOutline();
// If aHoleIdx >= 0, the corner musty be added to the hole, index aHoleIdx.
// (remember: the index of the first hole is 0)
// Return error if if does dot exist.
if( aHoleIdx >= m_Poly->HoleCount( 0 ) )
return false;
m_Poly->Append( aPosition.x, aPosition.y, -1, aHoleIdx, aAllowDuplication );
SetNeedRefill( true );
return true;
}
wxString ZONE::GetSelectMenuText( EDA_UNITS aUnits ) const
{
wxString layerDesc;
int count = 0;
for( PCB_LAYER_ID layer : m_layerSet.Seq() )
{
if( count == 0 )
layerDesc = GetBoard()->GetLayerName( layer );
count++;
}
if( count > 1 )
layerDesc.Printf( _( "%s and %d more" ), layerDesc, count - 1 );
// Check whether the selected contour is a hole (contour index > 0)
if( m_CornerSelection != nullptr && m_CornerSelection->m_contour > 0 )
{
if( GetIsRuleArea() )
return wxString::Format( _( "Rule Area Cutout on %s" ), layerDesc );
else
return wxString::Format( _( "Zone Cutout on %s" ), layerDesc );
}
else
{
if( GetIsRuleArea() )
return wxString::Format( _( "Rule Area on %s" ), layerDesc );
else
return wxString::Format( _( "Zone %s on %s" ), GetNetnameMsg(), layerDesc );
}
}
int ZONE::GetBorderHatchPitch() const
{
return m_borderHatchPitch;
}
void ZONE::SetBorderDisplayStyle( ZONE_BORDER_DISPLAY_STYLE aHatchStyle, int aHatchPitch,
bool aRebuildHatch )
{
SetHatchPitch( aHatchPitch );
m_borderStyle = aHatchStyle;
if( aRebuildHatch )
HatchBorder();
}
void ZONE::SetHatchPitch( int aPitch )
{
m_borderHatchPitch = aPitch;
}
void ZONE::UnHatchBorder()
{
m_borderHatchLines.clear();
}
// Creates hatch lines inside the outline of the complex polygon
// sort function used in ::HatchBorder to sort points by descending wxPoint.x values
bool sortEndsByDescendingX( const VECTOR2I& ref, const VECTOR2I& tst )
{
return tst.x < ref.x;
}
void ZONE::HatchBorder()
{
UnHatchBorder();
if( m_borderStyle == ZONE_BORDER_DISPLAY_STYLE::NO_HATCH
|| m_borderHatchPitch == 0
|| m_Poly->IsEmpty() )
{
return;
}
// define range for hatch lines
int min_x = m_Poly->CVertex( 0 ).x;
int max_x = m_Poly->CVertex( 0 ).x;
int min_y = m_Poly->CVertex( 0 ).y;
int max_y = m_Poly->CVertex( 0 ).y;
for( auto iterator = m_Poly->IterateWithHoles(); iterator; iterator++ )
{
if( iterator->x < min_x )
min_x = iterator->x;
if( iterator->x > max_x )
max_x = iterator->x;
if( iterator->y < min_y )
min_y = iterator->y;
if( iterator->y > max_y )
max_y = iterator->y;
}
// Calculate spacing between 2 hatch lines
int spacing;
if( m_borderStyle == ZONE_BORDER_DISPLAY_STYLE::DIAGONAL_EDGE )
spacing = m_borderHatchPitch;
else
spacing = m_borderHatchPitch * 2;
// set the "length" of hatch lines (the length on horizontal axis)
int hatch_line_len = m_borderHatchPitch;
// To have a better look, give a slope depending on the layer
LAYER_NUM layer = GetLayer();
int slope_flag = (layer & 1) ? 1 : -1; // 1 or -1
double slope = 0.707106 * slope_flag; // 45 degrees slope
int max_a, min_a;
if( slope_flag == 1 )
{
max_a = KiROUND( max_y - slope * min_x );
min_a = KiROUND( min_y - slope * max_x );
}
else
{
max_a = KiROUND( max_y - slope * max_x );
min_a = KiROUND( min_y - slope * min_x );
}
min_a = (min_a / spacing) * spacing;
// calculate an offset depending on layer number,
// for a better look of hatches on a multilayer board
int offset = (layer * 7) / 8;
min_a += offset;
// loop through hatch lines
#define MAXPTS 200 // Usually we store only few values per one hatch line
// depending on the complexity of the zone outline
static std::vector<VECTOR2I> pointbuffer;
pointbuffer.clear();
pointbuffer.reserve( MAXPTS + 2 );
for( int a = min_a; a < max_a; a += spacing )
{
// get intersection points for this hatch line
// Note: because we should have an even number of intersections with the
// current hatch line and the zone outline (a closed polygon,
// or a set of closed polygons), if an odd count is found
// we skip this line (should not occur)
pointbuffer.clear();
// Iterate through all vertices
for( auto iterator = m_Poly->IterateSegmentsWithHoles(); iterator; iterator++ )
{
double x, y;
bool ok;
SEG segment = *iterator;
ok = FindLineSegmentIntersection( a, slope,
segment.A.x, segment.A.y,
segment.B.x, segment.B.y,
x, y );
if( ok )
{
VECTOR2I point( KiROUND( x ), KiROUND( y ) );
pointbuffer.push_back( point );
}
if( pointbuffer.size() >= MAXPTS ) // overflow
{
wxASSERT( 0 );
break;
}
}
// ensure we have found an even intersection points count
// because intersections are the ends of segments
// inside the polygon(s) and a segment has 2 ends.
// if not, this is a strange case (a bug ?) so skip this hatch
if( pointbuffer.size() % 2 != 0 )
continue;
// sort points in order of descending x (if more than 2) to
// ensure the starting point and the ending point of the same segment
// are stored one just after the other.
if( pointbuffer.size() > 2 )
sort( pointbuffer.begin(), pointbuffer.end(), sortEndsByDescendingX );
// creates lines or short segments inside the complex polygon
for( unsigned ip = 0; ip < pointbuffer.size(); ip += 2 )
{
int dx = pointbuffer[ip + 1].x - pointbuffer[ip].x;
// Push only one line for diagonal hatch,
// or for small lines < twice the line length
// else push 2 small lines
if( m_borderStyle == ZONE_BORDER_DISPLAY_STYLE::DIAGONAL_FULL
|| std::abs( dx ) < 2 * hatch_line_len )
{
m_borderHatchLines.emplace_back( SEG( pointbuffer[ip], pointbuffer[ ip + 1] ) );
}
else
{
double dy = pointbuffer[ip + 1].y - pointbuffer[ip].y;
slope = dy / dx;
if( dx > 0 )
dx = hatch_line_len;
else
dx = -hatch_line_len;
int x1 = KiROUND( pointbuffer[ip].x + dx );
int x2 = KiROUND( pointbuffer[ip + 1].x - dx );
int y1 = KiROUND( pointbuffer[ip].y + dx * slope );
int y2 = KiROUND( pointbuffer[ip + 1].y - dx * slope );
m_borderHatchLines.emplace_back( SEG( pointbuffer[ip].x, pointbuffer[ip].y, x1, y1 ) );
m_borderHatchLines.emplace_back( SEG( pointbuffer[ip+1].x, pointbuffer[ip+1].y, x2, y2 ) );
}
}
}
}
int ZONE::GetDefaultHatchPitch()
{
return Mils2iu( 20 );
}
BITMAP_DEF ZONE::GetMenuImage() const
{
return add_zone_xpm;
}
void ZONE::SwapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_ZONE_T );
std::swap( *((ZONE*) this), *((ZONE*) aImage) );
}
void ZONE::CacheTriangulation( PCB_LAYER_ID aLayer )
{
if( aLayer == UNDEFINED_LAYER )
{
for( std::pair<const PCB_LAYER_ID, SHAPE_POLY_SET>& pair : m_FilledPolysList )
pair.second.CacheTriangulation();
}
else
{
if( m_FilledPolysList.count( aLayer ) )
m_FilledPolysList[ aLayer ].CacheTriangulation();
}
}
bool ZONE::IsIsland( PCB_LAYER_ID aLayer, int aPolyIdx ) const
{
if( GetNetCode() < 1 )
return true;
if( !m_insulatedIslands.count( aLayer ) )
return false;
return m_insulatedIslands.at( aLayer ).count( aPolyIdx );
}
void ZONE::GetInteractingZones( PCB_LAYER_ID aLayer, std::vector<ZONE*>* aZones ) const
{
int epsilon = Millimeter2iu( 0.001 );
for( ZONE* candidate : GetBoard()->Zones() )
{
if( candidate == this )
continue;
if( !candidate->GetLayerSet().test( aLayer ) )
continue;
if( candidate->GetIsRuleArea() )
continue;
if( candidate->GetNetCode() != GetNetCode() )
continue;
for( auto iter = m_Poly->CIterate(); iter; iter++ )
{
if( candidate->m_Poly->Collide( iter.Get(), epsilon ) )
{
aZones->push_back( candidate );
break;
}
}
}
}
bool ZONE::BuildSmoothedPoly( SHAPE_POLY_SET& aSmoothedPoly, PCB_LAYER_ID aLayer,
SHAPE_POLY_SET* aBoardOutline,
SHAPE_POLY_SET* aSmoothedPolyWithApron ) const
{
if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations will not like it ...
return false;
int zoneClearance = m_ZoneClearance;
if( GetIsRuleArea() )
{
// We like keepouts just the way they are....
aSmoothedPoly = *m_Poly;
return true;
}
else if( !IsOnCopperLayer() )
{
// Non-copper zones don't have electrical clearances
zoneClearance = 0;
}
BOARD* board = GetBoard();
int edgeClearance = 0;
int maxError = ARC_HIGH_DEF;
bool keepExternalFillets = false;
if( board )
{
BOARD_DESIGN_SETTINGS& bds = board->GetDesignSettings();
DRC_CONSTRAINT c = bds.m_DRCEngine->EvalRules( EDGE_CLEARANCE_CONSTRAINT, this, nullptr,
aLayer );
edgeClearance = c.Value().Min();
maxError = bds.m_MaxError;
keepExternalFillets = bds.m_ZoneKeepExternalFillets;
}
auto smooth = [&]( SHAPE_POLY_SET& aPoly )
{
switch( m_cornerSmoothingType )
{
case ZONE_SETTINGS::SMOOTHING_CHAMFER:
aPoly = aPoly.Chamfer( (int) m_cornerRadius );
break;
case ZONE_SETTINGS::SMOOTHING_FILLET:
{
aPoly = aPoly.Fillet( (int) m_cornerRadius, maxError );
break;
}
default:
break;
}
};
std::vector<ZONE*> interactingZones;
GetInteractingZones( aLayer, &interactingZones );
SHAPE_POLY_SET* maxExtents = m_Poly;
SHAPE_POLY_SET withFillets;
aSmoothedPoly = *m_Poly;
// Should external fillets (that is, those applied to concave corners) be kept? While it
// seems safer to never have copper extend outside the zone outline, 5.1.x and prior did
// indeed fill them so we leave the mode available.
if( keepExternalFillets )
{
withFillets = *m_Poly;
smooth( withFillets );
withFillets.BooleanAdd( *m_Poly, SHAPE_POLY_SET::PM_FAST );
maxExtents = &withFillets;
}
for( ZONE* zone : interactingZones )
aSmoothedPoly.BooleanAdd( *zone->Outline(), SHAPE_POLY_SET::PM_FAST );
if( aBoardOutline )
{
SHAPE_POLY_SET poly = *aBoardOutline;
poly.Deflate( std::max( zoneClearance, edgeClearance ), 16 );
aSmoothedPoly.BooleanIntersection( poly, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
}
smooth( aSmoothedPoly );
if( aSmoothedPolyWithApron )
{
SHAPE_POLY_SET poly = *maxExtents;
poly.Inflate( m_ZoneMinThickness, 16 );
*aSmoothedPolyWithApron = aSmoothedPoly;
aSmoothedPolyWithApron->BooleanIntersection( poly, SHAPE_POLY_SET::PM_FAST );
}
aSmoothedPoly.BooleanIntersection( *maxExtents, SHAPE_POLY_SET::PM_FAST );
return true;
}
double ZONE::CalculateFilledArea()
{
m_area = 0.0;
// Iterate over each outline polygon in the zone and then iterate over
// each hole it has to compute the total area.
for( std::pair<const PCB_LAYER_ID, SHAPE_POLY_SET>& pair : m_FilledPolysList )
{
SHAPE_POLY_SET& poly = pair.second;
for( int i = 0; i < poly.OutlineCount(); i++ )
{
m_area += poly.Outline( i ).Area();
for( int j = 0; j < poly.HoleCount( i ); j++ )
m_area -= poly.Hole( i, j ).Area();
}
}
return m_area;
}
/**
* Function TransformSmoothedOutlineToPolygon
* Convert the smoothed outline to polygons (optionally inflated by \a aClearance) and copy them
* into \a aCornerBuffer.
*/
void ZONE::TransformSmoothedOutlineToPolygon( SHAPE_POLY_SET& aCornerBuffer, int aClearance,
SHAPE_POLY_SET* aBoardOutline ) const
{
// Creates the zone outline polygon (with holes if any)
SHAPE_POLY_SET polybuffer;
BuildSmoothedPoly( polybuffer, GetLayer(), aBoardOutline );
// Calculate the polygon with clearance
// holes are linked to the main outline, so only one polygon is created.
if( aClearance )
{
BOARD* board = GetBoard();
int maxError = ARC_HIGH_DEF;
if( board )
maxError = board->GetDesignSettings().m_MaxError;
int segCount = GetArcToSegmentCount( aClearance, maxError, 360.0 );
polybuffer.Inflate( aClearance, segCount );
}
polybuffer.Fracture( SHAPE_POLY_SET::PM_FAST );
aCornerBuffer.Append( polybuffer );
}
//
/********* FP_ZONE **************/
//
FP_ZONE::FP_ZONE( BOARD_ITEM_CONTAINER* aParent ) :
ZONE( aParent, true )
{
// in a footprint, net classes are not managed.
// so set the net to NETINFO_LIST::ORPHANED_ITEM
SetNetCode( -1, true );
}
FP_ZONE::FP_ZONE( const FP_ZONE& aZone ) :
ZONE( aZone.GetParent(), true )
{
InitDataFromSrcInCopyCtor( aZone );
}
FP_ZONE& FP_ZONE::operator=( const FP_ZONE& aOther )
{
ZONE::operator=( aOther );
return *this;
}
EDA_ITEM* FP_ZONE::Clone() const
{
return new FP_ZONE( *this );
}
double FP_ZONE::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const
{
constexpr double HIDE = (double)std::numeric_limits<double>::max();
if( !aView )
return 0;
if( !aView->IsLayerVisible( LAYER_ZONES ) )
return HIDE;
bool flipped = GetParent() && GetParent()->GetLayer() == B_Cu;
// Handle Render tab switches
if( !flipped && !aView->IsLayerVisible( LAYER_MOD_FR ) )
return HIDE;
if( flipped && !aView->IsLayerVisible( LAYER_MOD_BK ) )
return HIDE;
// Other layers are shown without any conditions
return 0.0;
}
std::shared_ptr<SHAPE> ZONE::GetEffectiveShape( PCB_LAYER_ID aLayer ) const
{
std::shared_ptr<SHAPE> shape;
if( m_FilledPolysList.find( aLayer ) == m_FilledPolysList.end() )
{
shape = std::make_shared<SHAPE_NULL>();
}
else
{
shape.reset( m_FilledPolysList.at( aLayer ).Clone() );
}
return shape;
}
static struct ZONE_DESC
{
ZONE_DESC()
{
ENUM_MAP<ZONE_CONNECTION>::Instance()
.Map( ZONE_CONNECTION::INHERITED, _HKI( "Inherited" ) )
.Map( ZONE_CONNECTION::NONE, _HKI( "None" ) )
.Map( ZONE_CONNECTION::THERMAL, _HKI( "Thermal reliefs" ) )
.Map( ZONE_CONNECTION::FULL, _HKI( "Solid" ) )
.Map( ZONE_CONNECTION::THT_THERMAL, _HKI( "Reliefs for PTH" ) );
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
REGISTER_TYPE( ZONE );
propMgr.InheritsAfter( TYPE_HASH( ZONE ), TYPE_HASH( BOARD_CONNECTED_ITEM ) );
propMgr.AddProperty( new PROPERTY<ZONE, unsigned>( _HKI( "Priority" ),
&ZONE::SetPriority, &ZONE::GetPriority ) );
//propMgr.AddProperty( new PROPERTY<ZONE, bool>( "Filled",
//&ZONE::SetIsFilled, &ZONE::IsFilled ) );
propMgr.AddProperty( new PROPERTY<ZONE, wxString>( _HKI( "Name" ),
&ZONE::SetZoneName, &ZONE::GetZoneName ) );
propMgr.AddProperty( new PROPERTY<ZONE, int>( _HKI( "Clearance" ),
&ZONE::SetLocalClearance, &ZONE::GetLocalClearance,
PROPERTY_DISPLAY::DISTANCE ) );
propMgr.AddProperty( new PROPERTY<ZONE, int>( _HKI( "Min Width" ),
&ZONE::SetMinThickness, &ZONE::GetMinThickness,
PROPERTY_DISPLAY::DISTANCE ) );
propMgr.AddProperty( new PROPERTY_ENUM<ZONE, ZONE_CONNECTION>( _HKI( "Pad Connections" ),
&ZONE::SetPadConnection, &ZONE::GetPadConnection ) );
propMgr.AddProperty( new PROPERTY<ZONE, int>( _HKI( "Thermal Clearance" ),
&ZONE::SetThermalReliefGap, &ZONE::GetThermalReliefGap,
PROPERTY_DISPLAY::DISTANCE ) );
propMgr.AddProperty( new PROPERTY<ZONE, int>( _HKI( "Thermal Spoke Width" ),
&ZONE::SetThermalReliefSpokeWidth, &ZONE::GetThermalReliefSpokeWidth,
PROPERTY_DISPLAY::DISTANCE ) );
}
} _ZONE_DESC;
ENUM_TO_WXANY( ZONE_CONNECTION );