kicad/pcbnew/class_pad.cpp

1541 lines
42 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 1992-2018 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file class_pad.cpp
* D_PAD class implementation.
*/
#include <fctsys.h>
#include <trigo.h>
#include <macros.h>
#include <msgpanel.h>
#include <base_units.h>
#include <bitmaps.h>
#include <view/view.h>
#include <pcbnew.h>
#include <class_board.h>
#include <class_module.h>
#include <polygon_test_point_inside.h>
#include <convert_to_biu.h>
#include <convert_basic_shapes_to_polygon.h>
/**
* Helper function
* Return a string (to be shown to the user) describing a layer mask.
* Useful for showing where is a pad.
* The BOARD is needed because layer names are (somewhat) customizable
*/
static wxString LayerMaskDescribe( const BOARD* aBoard, LSET aMask );
int D_PAD::m_PadSketchModePenSize = 0; // Pen size used to draw pads in sketch mode
D_PAD::D_PAD( MODULE* parent ) :
BOARD_CONNECTED_ITEM( parent, PCB_PAD_T )
{
m_Size.x = m_Size.y = Mils2iu( 60 ); // Default pad size 60 mils.
m_Drill.x = m_Drill.y = Mils2iu( 30 ); // Default drill size 30 mils.
m_Orient = 0; // Pad rotation in 1/10 degrees.
m_LengthPadToDie = 0;
if( m_Parent && m_Parent->Type() == PCB_MODULE_T )
{
m_Pos = GetParent()->GetPosition();
}
SetShape( PAD_SHAPE_CIRCLE ); // Default pad shape is PAD_CIRCLE.
SetAnchorPadShape( PAD_SHAPE_CIRCLE ); // Default shape for custom shaped pads
// is PAD_CIRCLE.
SetDrillShape( PAD_DRILL_SHAPE_CIRCLE ); // Default pad drill shape is a circle.
m_Attribute = PAD_ATTRIB_STANDARD; // Default pad type is NORMAL (thru hole)
m_LocalClearance = 0;
m_LocalSolderMaskMargin = 0;
m_LocalSolderPasteMargin = 0;
m_LocalSolderPasteMarginRatio = 0.0;
// Parameters for round rect only:
m_padRoundRectRadiusScale = 0.25; // from IPC-7351C standard
// Parameters for chamfered rect only:
m_padChamferRectScale = 0.2; // Size of chamfer: ratio of smallest of X,Y size
m_chamferPositions = RECT_NO_CHAMFER; // No chamfered corner
m_ZoneConnection = PAD_ZONE_CONN_INHERITED; // Use parent setting by default
m_ThermalWidth = 0; // Use parent setting by default
m_ThermalGap = 0; // Use parent setting by default
m_customShapeClearanceArea = CUST_PAD_SHAPE_IN_ZONE_OUTLINE;
// Set layers mask to default for a standard thru hole pad.
m_layerMask = StandardMask();
SetSubRatsnest( 0 ); // used in ratsnest calculations
m_boundingRadius = -1;
}
LSET D_PAD::StandardMask()
{
static LSET saved = LSET::AllCuMask() | LSET( 2, B_Mask, F_Mask );
return saved;
}
LSET D_PAD::SMDMask()
{
static LSET saved( 3, F_Cu, F_Paste, F_Mask );
return saved;
}
LSET D_PAD::ConnSMDMask()
{
static LSET saved( 2, F_Cu, F_Mask );
return saved;
}
LSET D_PAD::UnplatedHoleMask()
{
static LSET saved = LSET::AllCuMask() | LSET( 2, B_Mask, F_Mask );
return saved;
}
LSET D_PAD::ApertureMask()
{
static LSET saved = LSET( 1, F_Paste );
return saved;
}
bool D_PAD::IsFlipped() const
{
if( GetParent() && GetParent()->GetLayer() == B_Cu )
return true;
return false;
}
int D_PAD::boundingRadius() const
{
int x, y;
int radius;
switch( GetShape() )
{
case PAD_SHAPE_CIRCLE:
radius = m_Size.x / 2;
break;
case PAD_SHAPE_OVAL:
radius = std::max( m_Size.x, m_Size.y ) / 2;
break;
case PAD_SHAPE_RECT:
radius = 1 + KiROUND( EuclideanNorm( m_Size ) / 2 );
break;
case PAD_SHAPE_TRAPEZOID:
x = m_Size.x + std::abs( m_DeltaSize.y ); // Remember: m_DeltaSize.y is the m_Size.x change
y = m_Size.y + std::abs( m_DeltaSize.x ); // Remember: m_DeltaSize.x is the m_Size.y change
radius = 1 + KiROUND( hypot( x, y ) / 2 );
break;
case PAD_SHAPE_ROUNDRECT:
radius = GetRoundRectCornerRadius();
x = m_Size.x >> 1;
y = m_Size.y >> 1;
radius += 1 + KiROUND( EuclideanNorm( wxSize( x - radius, y - radius )));
break;
case PAD_SHAPE_CHAMFERED_RECT:
radius = GetRoundRectCornerRadius();
x = m_Size.x >> 1;
y = m_Size.y >> 1;
radius += 1 + KiROUND( EuclideanNorm( wxSize( x - radius, y - radius )));
// TODO: modify radius if the chamfer is smaller than corner radius
break;
case PAD_SHAPE_CUSTOM:
radius = 0;
for( int cnt = 0; cnt < m_customShapeAsPolygon.OutlineCount(); ++cnt )
{
const SHAPE_LINE_CHAIN& poly = m_customShapeAsPolygon.COutline( cnt );
for( int ii = 0; ii < poly.PointCount(); ++ii )
{
int dist = KiROUND( poly.CPoint( ii ).EuclideanNorm() );
radius = std::max( radius, dist );
}
}
radius += 1;
break;
default:
radius = 0;
}
return radius;
}
int D_PAD::GetRoundRectCornerRadius( const wxSize& aSize ) const
{
// radius of rounded corners, usually 25% of shorter pad edge for now
int r = aSize.x > aSize.y ? aSize.y : aSize.x;
r = int( r * m_padRoundRectRadiusScale );
return r;
}
void D_PAD::SetRoundRectCornerRadius( double aRadius )
{
int min_r = std::min( m_Size.x, m_Size.y );
if( min_r > 0 )
SetRoundRectRadiusRatio( aRadius / min_r );
}
const EDA_RECT D_PAD::GetBoundingBox() const
{
EDA_RECT area;
wxPoint quadrant1, quadrant2, quadrant3, quadrant4;
int x, y, r, dx, dy;
wxPoint center = ShapePos();
wxPoint endPoint;
EDA_RECT endRect;
switch( GetShape() )
{
case PAD_SHAPE_CIRCLE:
area.SetOrigin( center );
area.Inflate( m_Size.x / 2 );
break;
case PAD_SHAPE_OVAL:
/* To get the BoundingBox of an oval pad:
* a) If the pad is ROUND, see method for PAD_SHAPE_CIRCLE above
* OTHERWISE:
* b) Construct EDA_RECT for portion between circular ends
* c) Rotate that EDA_RECT
* d) Add the circular ends to the EDA_RECT
*/
// Test if the shape is circular
if( m_Size.x == m_Size.y )
{
area.SetOrigin( center );
area.Inflate( m_Size.x / 2 );
break;
}
if( m_Size.x > m_Size.y )
{
// Pad is horizontal
dx = ( m_Size.x - m_Size.y ) / 2;
dy = m_Size.y / 2;
// Location of end-points
x = dx;
y = 0;
r = dy;
}
else
{
// Pad is vertical
dx = m_Size.x / 2;
dy = ( m_Size.y - m_Size.x ) / 2;
x = 0;
y = dy;
r = dx;
}
// Construct the center rectangle and rotate
area.SetOrigin( center );
area.Inflate( dx, dy );
area = area.GetBoundingBoxRotated( center, m_Orient );
endPoint = wxPoint( x, y );
RotatePoint( &endPoint, m_Orient );
// Add points at each quadrant of circular regions
endRect.SetOrigin( center + endPoint );
endRect.Inflate( r );
area.Merge( endRect );
endRect.SetSize( 0, 0 );
endRect.SetOrigin( center - endPoint );
endRect.Inflate( r );
area.Merge( endRect );
break;
case PAD_SHAPE_RECT:
case PAD_SHAPE_ROUNDRECT:
case PAD_SHAPE_CHAMFERED_RECT:
// Use two opposite corners and track their rotation
// (use symmetry for other points)
quadrant1.x = m_Size.x/2;
quadrant1.y = m_Size.y/2;
quadrant2.x = -m_Size.x/2;
quadrant2.y = m_Size.y/2;
RotatePoint( &quadrant1, m_Orient );
RotatePoint( &quadrant2, m_Orient );
dx = std::max( std::abs( quadrant1.x ) , std::abs( quadrant2.x ) );
dy = std::max( std::abs( quadrant1.y ) , std::abs( quadrant2.y ) );
// Set the bbox
area.SetOrigin( ShapePos() );
area.Inflate( dx, dy );
break;
case PAD_SHAPE_TRAPEZOID:
// Use the four corners and track their rotation
// (Trapezoids will not be symmetric)
quadrant1.x = (m_Size.x + m_DeltaSize.y)/2;
quadrant1.y = (m_Size.y - m_DeltaSize.x)/2;
quadrant2.x = -(m_Size.x + m_DeltaSize.y)/2;
quadrant2.y = (m_Size.y + m_DeltaSize.x)/2;
quadrant3.x = -(m_Size.x - m_DeltaSize.y)/2;
quadrant3.y = -(m_Size.y + m_DeltaSize.x)/2;
quadrant4.x = (m_Size.x - m_DeltaSize.y)/2;
quadrant4.y = -(m_Size.y - m_DeltaSize.x)/2;
RotatePoint( &quadrant1, m_Orient );
RotatePoint( &quadrant2, m_Orient );
RotatePoint( &quadrant3, m_Orient );
RotatePoint( &quadrant4, m_Orient );
x = std::min( quadrant1.x, std::min( quadrant2.x, std::min( quadrant3.x, quadrant4.x) ) );
y = std::min( quadrant1.y, std::min( quadrant2.y, std::min( quadrant3.y, quadrant4.y) ) );
dx = std::max( quadrant1.x, std::max( quadrant2.x, std::max( quadrant3.x, quadrant4.x) ) );
dy = std::max( quadrant1.y, std::max( quadrant2.y, std::max( quadrant3.y, quadrant4.y) ) );
area.SetOrigin( ShapePos().x + x, ShapePos().y + y );
area.SetSize( dx-x, dy-y );
break;
case PAD_SHAPE_CUSTOM:
{
SHAPE_POLY_SET polySet( m_customShapeAsPolygon );
// Move shape to actual position
CustomShapeAsPolygonToBoardPosition( &polySet, GetPosition(), GetOrientation() );
quadrant1 = m_Pos;
quadrant2 = m_Pos;
for( int cnt = 0; cnt < polySet.OutlineCount(); ++cnt )
{
const SHAPE_LINE_CHAIN& poly = polySet.COutline( cnt );
for( int ii = 0; ii < poly.PointCount(); ++ii )
{
quadrant1.x = std::min( quadrant1.x, poly.CPoint( ii ).x );
quadrant1.y = std::min( quadrant1.y, poly.CPoint( ii ).y );
quadrant2.x = std::max( quadrant2.x, poly.CPoint( ii ).x );
quadrant2.y = std::max( quadrant2.y, poly.CPoint( ii ).y );
}
}
area.SetOrigin( quadrant1 );
area.SetEnd( quadrant2 );
}
break;
default:
break;
}
return area;
}
void D_PAD::SetDrawCoord()
{
MODULE* module = (MODULE*) m_Parent;
m_Pos = m_Pos0;
if( module == NULL )
return;
double angle = module->GetOrientation();
RotatePoint( &m_Pos.x, &m_Pos.y, angle );
m_Pos += module->GetPosition();
}
void D_PAD::SetLocalCoord()
{
MODULE* module = (MODULE*) m_Parent;
if( module == NULL )
{
m_Pos0 = m_Pos;
return;
}
m_Pos0 = m_Pos - module->GetPosition();
RotatePoint( &m_Pos0.x, &m_Pos0.y, -module->GetOrientation() );
}
void D_PAD::SetAttribute( PAD_ATTR_T aAttribute )
{
m_Attribute = aAttribute;
if( aAttribute == PAD_ATTRIB_SMD )
m_Drill = wxSize( 0, 0 );
}
void D_PAD::SetOrientation( double aAngle )
{
NORMALIZE_ANGLE_POS( aAngle );
m_Orient = aAngle;
}
void D_PAD::Flip( const wxPoint& aCentre )
{
int y = GetPosition().y;
MIRROR( y, aCentre.y ); // invert about x axis.
SetY( y );
MIRROR( m_Pos0.y, 0 );
MIRROR( m_Offset.y, 0 );
MIRROR( m_DeltaSize.y, 0 );
SetOrientation( -GetOrientation() );
// flip pads layers
// PADS items are currently on all copper layers, or
// currently, only on Front or Back layers.
// So the copper layers count is not taken in account
SetLayerSet( FlipLayerMask( m_layerMask ) );
// Flip the basic shapes, in custom pads
FlipPrimitives();
// m_boundingRadius = -1; the shape has not been changed
}
// Flip the basic shapes, in custom pads
void D_PAD::FlipPrimitives()
{
// Flip custom shapes
for( unsigned ii = 0; ii < m_basicShapes.size(); ++ii )
{
PAD_CS_PRIMITIVE& primitive = m_basicShapes[ii];
MIRROR( primitive.m_Start.y, 0 );
MIRROR( primitive.m_End.y, 0 );
primitive.m_ArcAngle = -primitive.m_ArcAngle;
switch( primitive.m_Shape )
{
case S_POLYGON: // polygon
for( unsigned jj = 0; jj < primitive.m_Poly.size(); jj++ )
MIRROR( primitive.m_Poly[jj].y, 0 );
break;
default:
break;
}
}
// Flip local coordinates in merged Polygon
for( int cnt = 0; cnt < m_customShapeAsPolygon.OutlineCount(); ++cnt )
{
SHAPE_LINE_CHAIN& poly = m_customShapeAsPolygon.Outline( cnt );
for( int ii = 0; ii < poly.PointCount(); ++ii )
MIRROR( poly.Point( ii ).y, 0 );
}
}
void D_PAD::MirrorXPrimitives( int aX )
{
// Mirror custom shapes
for( unsigned ii = 0; ii < m_basicShapes.size(); ++ii )
{
PAD_CS_PRIMITIVE& primitive = m_basicShapes[ii];
MIRROR( primitive.m_Start.x, aX );
MIRROR( primitive.m_End.x, aX );
primitive.m_ArcAngle = -primitive.m_ArcAngle;
switch( primitive.m_Shape )
{
case S_POLYGON: // polygon
for( unsigned jj = 0; jj < primitive.m_Poly.size(); jj++ )
MIRROR( primitive.m_Poly[jj].x, aX );
break;
default:
break;
}
}
// Mirror the local coordinates in merged Polygon
for( int cnt = 0; cnt < m_customShapeAsPolygon.OutlineCount(); ++cnt )
{
SHAPE_LINE_CHAIN& poly = m_customShapeAsPolygon.Outline( cnt );
for( int ii = 0; ii < poly.PointCount(); ++ii )
MIRROR( poly.Point( ii ).x, aX );
}
}
void D_PAD::AppendConfigs( PARAM_CFG_ARRAY* aResult )
{
// Parameters stored in config are only significant parameters
// for a template.
// So not all parameters are stored, just few.
aResult->push_back( new PARAM_CFG_INT_WITH_SCALE( wxT( "PadDrill" ),
&m_Drill.x,
Millimeter2iu( 0.6 ),
Millimeter2iu( 0.1 ), Millimeter2iu( 10.0 ),
NULL, MM_PER_IU ) );
aResult->push_back( new PARAM_CFG_INT_WITH_SCALE( wxT( "PadDrillOvalY" ),
&m_Drill.y,
Millimeter2iu( 0.6 ),
Millimeter2iu( 0.1 ), Millimeter2iu( 10.0 ),
NULL, MM_PER_IU ) );
aResult->push_back( new PARAM_CFG_INT_WITH_SCALE( wxT( "PadSizeH" ),
&m_Size.x,
Millimeter2iu( 1.4 ),
Millimeter2iu( 0.1 ), Millimeter2iu( 20.0 ),
NULL, MM_PER_IU ) );
aResult->push_back( new PARAM_CFG_INT_WITH_SCALE( wxT( "PadSizeV" ),
&m_Size.y,
Millimeter2iu( 1.4 ),
Millimeter2iu( 0.1 ), Millimeter2iu( 20.0 ),
NULL, MM_PER_IU ) );
}
// Returns the position of the pad.
wxPoint D_PAD::ShapePos() const
{
if( m_Offset.x == 0 && m_Offset.y == 0 )
return m_Pos;
wxPoint loc_offset = m_Offset;
RotatePoint( &loc_offset, m_Orient );
wxPoint shape_pos = m_Pos + loc_offset;
return shape_pos;
}
bool D_PAD::IncrementPadName( bool aSkipUnconnectable, bool aFillSequenceGaps )
{
bool skip = aSkipUnconnectable && ( GetAttribute() == PAD_ATTRIB_HOLE_NOT_PLATED );
if( !skip )
SetName( GetParent()->GetNextPadName( aFillSequenceGaps ) );
return !skip;
}
void D_PAD::CopyNetlistSettings( D_PAD* aPad, bool aCopyLocalSettings )
{
// Don't do anything foolish like trying to copy to yourself.
wxCHECK_RET( aPad != NULL && aPad != this, wxT( "Cannot copy to NULL or yourself." ) );
aPad->SetNetCode( GetNetCode() );
if( aCopyLocalSettings )
{
aPad->SetLocalClearance( m_LocalClearance );
aPad->SetLocalSolderMaskMargin( m_LocalSolderMaskMargin );
aPad->SetLocalSolderPasteMargin( m_LocalSolderPasteMargin );
aPad->SetLocalSolderPasteMarginRatio( m_LocalSolderPasteMarginRatio );
aPad->SetZoneConnection( m_ZoneConnection );
aPad->SetThermalWidth( m_ThermalWidth );
aPad->SetThermalGap( m_ThermalGap );
}
}
int D_PAD::GetClearance( BOARD_CONNECTED_ITEM* aItem ) const
{
// A pad can have specific clearance parameters that
// overrides its NETCLASS clearance value
int clearance = m_LocalClearance;
if( clearance == 0 )
{
// If local clearance is 0, use the parent footprint clearance value
if( GetParent() && GetParent()->GetLocalClearance() )
clearance = GetParent()->GetLocalClearance();
}
if( clearance == 0 ) // If the parent footprint clearance value = 0, use NETCLASS value
return BOARD_CONNECTED_ITEM::GetClearance( aItem );
// We have a specific clearance.
// if aItem, return the biggest clearance
if( aItem )
{
int hisClearance = aItem->GetClearance();
return std::max( hisClearance, clearance );
}
// Return the specific clearance.
return clearance;
}
// Mask margins handling:
int D_PAD::GetSolderMaskMargin() const
{
// The pad inherits the margin only to calculate a default shape,
// therefore only if it is also a copper layer
// Pads defined only on mask layers (and perhaps on other tech layers) use the shape
// defined by the pad settings only
bool isOnCopperLayer = ( m_layerMask & LSET::AllCuMask() ).any();
if( !isOnCopperLayer )
return 0;
int margin = m_LocalSolderMaskMargin;
MODULE* module = GetParent();
if( module )
{
if( margin == 0 )
{
if( module->GetLocalSolderMaskMargin() )
margin = module->GetLocalSolderMaskMargin();
}
if( margin == 0 )
{
BOARD* brd = GetBoard();
if( brd )
{
margin = brd->GetDesignSettings().m_SolderMaskMargin;
}
}
}
// ensure mask have a size always >= 0
if( margin < 0 )
{
int minsize = -std::min( m_Size.x, m_Size.y ) / 2;
if( margin < minsize )
margin = minsize;
}
return margin;
}
wxSize D_PAD::GetSolderPasteMargin() const
{
// The pad inherits the margin only to calculate a default shape,
// therefore only if it is also a copper layer.
// Pads defined only on mask layers (and perhaps on other tech layers) use the shape
// defined by the pad settings only
bool isOnCopperLayer = ( m_layerMask & LSET::AllCuMask() ).any();
if( !isOnCopperLayer )
return wxSize( 0, 0 );
int margin = m_LocalSolderPasteMargin;
double mratio = m_LocalSolderPasteMarginRatio;
MODULE* module = GetParent();
if( module )
{
if( margin == 0 )
margin = module->GetLocalSolderPasteMargin();
auto brd = GetBoard();
if( margin == 0 && brd )
{
margin = brd->GetDesignSettings().m_SolderPasteMargin;
}
if( mratio == 0.0 )
mratio = module->GetLocalSolderPasteMarginRatio();
if( mratio == 0.0 && brd )
{
mratio = brd->GetDesignSettings().m_SolderPasteMarginRatio;
}
}
wxSize pad_margin;
pad_margin.x = margin + KiROUND( m_Size.x * mratio );
pad_margin.y = margin + KiROUND( m_Size.y * mratio );
// ensure mask have a size always >= 0
if( pad_margin.x < -m_Size.x / 2 )
pad_margin.x = -m_Size.x / 2;
if( pad_margin.y < -m_Size.y / 2 )
pad_margin.y = -m_Size.y / 2;
return pad_margin;
}
ZoneConnection D_PAD::GetZoneConnection() const
{
MODULE* module = GetParent();
if( m_ZoneConnection == PAD_ZONE_CONN_INHERITED && module )
return module->GetZoneConnection();
else
return m_ZoneConnection;
}
int D_PAD::GetThermalWidth() const
{
MODULE* module = GetParent();
if( m_ThermalWidth == 0 && module )
return module->GetThermalWidth();
else
return m_ThermalWidth;
}
int D_PAD::GetThermalGap() const
{
MODULE* module = GetParent();
if( m_ThermalGap == 0 && module )
return module->GetThermalGap();
else
return m_ThermalGap;
}
void D_PAD::GetMsgPanelInfo( EDA_UNITS_T aUnits, std::vector< MSG_PANEL_ITEM>& aList )
{
MODULE* module;
wxString msg;
BOARD* board;
module = (MODULE*) m_Parent;
if( module )
{
aList.push_back( MSG_PANEL_ITEM( _( "Footprint" ), module->GetReference(), DARKCYAN ) );
aList.push_back( MSG_PANEL_ITEM( _( "Pad" ), m_name, BROWN ) );
}
aList.push_back( MSG_PANEL_ITEM( _( "Net" ), UnescapeString( GetNetname() ), DARKCYAN ) );
board = GetBoard();
aList.push_back( MSG_PANEL_ITEM( _( "Layer" ),
LayerMaskDescribe( board, m_layerMask ), DARKGREEN ) );
aList.push_back( MSG_PANEL_ITEM( ShowPadShape(), ShowPadAttr(), DARKGREEN ) );
msg = MessageTextFromValue( aUnits, m_Size.x, true );
aList.push_back( MSG_PANEL_ITEM( _( "Width" ), msg, RED ) );
msg = MessageTextFromValue( aUnits, m_Size.y, true );
aList.push_back( MSG_PANEL_ITEM( _( "Height" ), msg, RED ) );
msg = MessageTextFromValue( aUnits, m_Drill.x, true );
if( GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE )
{
aList.push_back( MSG_PANEL_ITEM( _( "Drill" ), msg, RED ) );
}
else
{
msg = MessageTextFromValue( aUnits, m_Drill.x, true )
+ wxT( "/" )
+ MessageTextFromValue( aUnits, m_Drill.y, true );
aList.push_back( MSG_PANEL_ITEM( _( "Drill X / Y" ), msg, RED ) );
}
double module_orient_degrees = module ? module->GetOrientationDegrees() : 0;
if( module_orient_degrees != 0.0 )
msg.Printf( wxT( "%3.1f(+%3.1f)" ),
GetOrientationDegrees() - module_orient_degrees,
module_orient_degrees );
else
msg.Printf( wxT( "%3.1f" ), GetOrientationDegrees() );
aList.push_back( MSG_PANEL_ITEM( _( "Angle" ), msg, LIGHTBLUE ) );
msg = MessageTextFromValue( aUnits, m_Pos.x )
+ wxT( ", " )
+ MessageTextFromValue( aUnits, m_Pos.y );
aList.push_back( MSG_PANEL_ITEM( _( "Position" ), msg, LIGHTBLUE ) );
if( GetPadToDieLength() )
{
msg = MessageTextFromValue( aUnits, GetPadToDieLength(), true );
aList.push_back( MSG_PANEL_ITEM( _( "Length in package" ), msg, CYAN ) );
}
}
void D_PAD::GetOblongDrillGeometry( wxPoint& aStartPoint,
wxPoint& aEndPoint, int& aWidth ) const
{
// calculates the start point, end point and width
// of an equivalent segment which have the same position and width as the hole
int delta_cx, delta_cy;
wxSize halfsize = GetDrillSize();
halfsize.x /= 2;
halfsize.y /= 2;
if( m_Drill.x > m_Drill.y ) // horizontal
{
delta_cx = halfsize.x - halfsize.y;
delta_cy = 0;
aWidth = m_Drill.y;
}
else // vertical
{
delta_cx = 0;
delta_cy = halfsize.y - halfsize.x;
aWidth = m_Drill.x;
}
RotatePoint( &delta_cx, &delta_cy, m_Orient );
aStartPoint.x = delta_cx;
aStartPoint.y = delta_cy;
aEndPoint.x = - delta_cx;
aEndPoint.y = - delta_cy;
}
bool D_PAD::HitTest( const wxPoint& aPosition ) const
{
int dx, dy;
wxPoint shape_pos = ShapePos();
wxPoint delta = aPosition - shape_pos;
// first test: a test point must be inside a minimum sized bounding circle.
int radius = GetBoundingRadius();
if( ( abs( delta.x ) > radius ) || ( abs( delta.y ) > radius ) )
return false;
dx = m_Size.x >> 1; // dx also is the radius for rounded pads
dy = m_Size.y >> 1;
switch( GetShape() )
{
case PAD_SHAPE_CIRCLE:
if( KiROUND( EuclideanNorm( delta ) ) <= dx )
return true;
break;
case PAD_SHAPE_TRAPEZOID:
{
wxPoint poly[4];
BuildPadPolygon( poly, wxSize(0,0), 0 );
RotatePoint( &delta, -m_Orient );
return TestPointInsidePolygon( poly, 4, delta );
}
case PAD_SHAPE_OVAL:
{
RotatePoint( &delta, -m_Orient );
// An oval pad has the same shape as a segment with rounded ends
// After rotation, the test point is relative to an horizontal pad
int dist;
wxPoint offset;
if( dy > dx ) // shape is a vertical oval
{
offset.y = dy - dx;
dist = dx;
}
else //if( dy <= dx ) shape is an horizontal oval
{
offset.x = dy - dx;
dist = dy;
}
return TestSegmentHit( delta, - offset, offset, dist );
}
break;
case PAD_SHAPE_RECT:
RotatePoint( &delta, -m_Orient );
if( (abs( delta.x ) <= dx ) && (abs( delta.y ) <= dy) )
return true;
break;
case PAD_SHAPE_CHAMFERED_RECT:
case PAD_SHAPE_ROUNDRECT:
{
// Check for hit in polygon
SHAPE_POLY_SET outline;
const int segmentToCircleCount = ARC_APPROX_SEGMENTS_COUNT_HIGH_DEF;
bool doChamfer = GetShape() == PAD_SHAPE_CHAMFERED_RECT;
TransformRoundChamferedRectToPolygon( outline, wxPoint(0,0), GetSize(), m_Orient,
GetRoundRectCornerRadius(),
doChamfer ? GetChamferRectRatio() : 0.0,
doChamfer ? GetChamferPositions() : 0,
segmentToCircleCount );
const SHAPE_LINE_CHAIN &poly = outline.COutline( 0 );
return TestPointInsidePolygon( (const wxPoint*)&poly.CPoint(0), poly.PointCount(), delta );
}
break;
case PAD_SHAPE_CUSTOM:
// Check for hit in polygon
RotatePoint( &delta, -m_Orient );
if( m_customShapeAsPolygon.OutlineCount() )
{
const SHAPE_LINE_CHAIN& poly = m_customShapeAsPolygon.COutline( 0 );
return TestPointInsidePolygon( (const wxPoint*)&poly.CPoint(0), poly.PointCount(), delta );
}
break;
}
return false;
}
bool D_PAD::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const
{
EDA_RECT arect = aRect;
arect.Normalize();
arect.Inflate( aAccuracy );
wxPoint shapePos = ShapePos();
EDA_RECT shapeRect;
int r;
EDA_RECT bb = GetBoundingBox();
wxPoint endCenter;
int radius;
if( !arect.Intersects( bb ) )
return false;
// This covers total containment for all test cases
if( arect.Contains( bb ) )
return true;
switch( GetShape() )
{
case PAD_SHAPE_CIRCLE:
return arect.IntersectsCircle( GetPosition(), GetBoundingRadius() );
case PAD_SHAPE_RECT:
case PAD_SHAPE_CHAMFERED_RECT: // TODO use a finer shape analysis
shapeRect.SetOrigin( shapePos );
shapeRect.Inflate( m_Size.x / 2, m_Size.y / 2 );
return arect.Intersects( shapeRect, m_Orient );
case PAD_SHAPE_OVAL:
// Circlular test if dimensions are equal
if( m_Size.x == m_Size.y )
return arect.IntersectsCircle( shapePos, GetBoundingRadius() );
shapeRect.SetOrigin( shapePos );
// Horizontal dimension is greater
if( m_Size.x > m_Size.y )
{
radius = m_Size.y / 2;
shapeRect.Inflate( m_Size.x / 2 - radius, radius );
endCenter = wxPoint( m_Size.x / 2 - radius, 0 );
RotatePoint( &endCenter, m_Orient );
// Test circular ends
if( arect.IntersectsCircle( shapePos + endCenter, radius ) ||
arect.IntersectsCircle( shapePos - endCenter, radius ) )
{
return true;
}
}
else
{
radius = m_Size.x / 2;
shapeRect.Inflate( radius, m_Size.y / 2 - radius );
endCenter = wxPoint( 0, m_Size.y / 2 - radius );
RotatePoint( &endCenter, m_Orient );
// Test circular ends
if( arect.IntersectsCircle( shapePos + endCenter, radius ) ||
arect.IntersectsCircle( shapePos - endCenter, radius ) )
{
return true;
}
}
// Test rectangular portion between rounded ends
if( arect.Intersects( shapeRect, m_Orient ) )
{
return true;
}
break;
case PAD_SHAPE_TRAPEZOID:
/* Trapezoid intersection tests:
* A) Any points of rect inside trapezoid
* B) Any points of trapezoid inside rect
* C) Any sides of trapezoid cross rect
*/
{
wxPoint poly[4];
BuildPadPolygon( poly, wxSize( 0, 0 ), 0 );
wxPoint corners[4];
corners[0] = wxPoint( arect.GetLeft(), arect.GetTop() );
corners[1] = wxPoint( arect.GetRight(), arect.GetTop() );
corners[2] = wxPoint( arect.GetRight(), arect.GetBottom() );
corners[3] = wxPoint( arect.GetLeft(), arect.GetBottom() );
for( int i=0; i<4; i++ )
{
RotatePoint( &poly[i], m_Orient );
poly[i] += shapePos;
}
for( int ii=0; ii<4; ii++ )
{
if( TestPointInsidePolygon( poly, 4, corners[ii] ) )
{
return true;
}
if( arect.Contains( poly[ii] ) )
{
return true;
}
if( arect.Intersects( poly[ii], poly[(ii+1) % 4] ) )
{
return true;
}
}
return false;
}
case PAD_SHAPE_ROUNDRECT:
/* RoundRect intersection can be broken up into simple tests:
* a) Test intersection of horizontal rect
* b) Test intersection of vertical rect
* c) Test intersection of each corner
*/
r = GetRoundRectCornerRadius();
/* Test A - intersection of horizontal rect */
shapeRect.SetSize( 0, 0 );
shapeRect.SetOrigin( shapePos );
shapeRect.Inflate( m_Size.x / 2, m_Size.y / 2 - r );
// Short-circuit test for zero width or height
if( shapeRect.GetWidth() > 0 && shapeRect.GetHeight() > 0 &&
arect.Intersects( shapeRect, m_Orient ) )
{
return true;
}
/* Test B - intersection of vertical rect */
shapeRect.SetSize( 0, 0 );
shapeRect.SetOrigin( shapePos );
shapeRect.Inflate( m_Size.x / 2 - r, m_Size.y / 2 );
// Short-circuit test for zero width or height
if( shapeRect.GetWidth() > 0 && shapeRect.GetHeight() > 0 &&
arect.Intersects( shapeRect, m_Orient ) )
{
return true;
}
/* Test C - intersection of each corner */
endCenter = wxPoint( m_Size.x / 2 - r, m_Size.y / 2 - r );
RotatePoint( &endCenter, m_Orient );
if( arect.IntersectsCircle( shapePos + endCenter, r ) ||
arect.IntersectsCircle( shapePos - endCenter, r ) )
{
return true;
}
endCenter = wxPoint( m_Size.x / 2 - r, -m_Size.y / 2 + r );
RotatePoint( &endCenter, m_Orient );
if( arect.IntersectsCircle( shapePos + endCenter, r ) ||
arect.IntersectsCircle( shapePos - endCenter, r ) )
{
return true;
}
break;
default:
break;
}
return false;
}
int D_PAD::Compare( const D_PAD* padref, const D_PAD* padcmp )
{
int diff;
if( ( diff = padref->GetShape() - padcmp->GetShape() ) != 0 )
return diff;
if( ( diff = padref->GetDrillShape() - padcmp->GetDrillShape() ) != 0)
return diff;
if( ( diff = padref->m_Drill.x - padcmp->m_Drill.x ) != 0 )
return diff;
if( ( diff = padref->m_Drill.y - padcmp->m_Drill.y ) != 0 )
return diff;
if( ( diff = padref->m_Size.x - padcmp->m_Size.x ) != 0 )
return diff;
if( ( diff = padref->m_Size.y - padcmp->m_Size.y ) != 0 )
return diff;
if( ( diff = padref->m_Offset.x - padcmp->m_Offset.x ) != 0 )
return diff;
if( ( diff = padref->m_Offset.y - padcmp->m_Offset.y ) != 0 )
return diff;
if( ( diff = padref->m_DeltaSize.x - padcmp->m_DeltaSize.x ) != 0 )
return diff;
if( ( diff = padref->m_DeltaSize.y - padcmp->m_DeltaSize.y ) != 0 )
return diff;
// TODO: test custom shapes
// Dick: specctra_export needs this
// Lorenzo: gencad also needs it to implement padstacks!
#if __cplusplus >= 201103L
long long d = padref->m_layerMask.to_ullong() - padcmp->m_layerMask.to_ullong();
if( d < 0 )
return -1;
else if( d > 0 )
return 1;
return 0;
#else
// these strings are not typically constructed, since we don't get here often.
std::string s1 = padref->m_layerMask.to_string();
std::string s2 = padcmp->m_layerMask.to_string();
return s1.compare( s2 );
#endif
}
void D_PAD::Rotate( const wxPoint& aRotCentre, double aAngle )
{
RotatePoint( &m_Pos, aRotCentre, aAngle );
m_Orient = NormalizeAngle360Min( m_Orient + aAngle );
SetLocalCoord();
}
wxString D_PAD::ShowPadShape() const
{
switch( GetShape() )
{
case PAD_SHAPE_CIRCLE:
return _( "Circle" );
case PAD_SHAPE_OVAL:
return _( "Oval" );
case PAD_SHAPE_RECT:
return _( "Rect" );
case PAD_SHAPE_TRAPEZOID:
return _( "Trap" );
case PAD_SHAPE_ROUNDRECT:
return _( "Roundrect" );
case PAD_SHAPE_CHAMFERED_RECT:
return _( "Chamferedrect" );
case PAD_SHAPE_CUSTOM:
return _( "CustomShape" );
default:
return wxT( "???" );
}
}
wxString D_PAD::ShowPadAttr() const
{
switch( GetAttribute() )
{
case PAD_ATTRIB_STANDARD:
return _( "Std" );
case PAD_ATTRIB_SMD:
return _( "SMD" );
case PAD_ATTRIB_CONN:
return _( "Conn" );
case PAD_ATTRIB_HOLE_NOT_PLATED:
return _( "Not Plated" );
default:
return wxT( "???" );
}
}
wxString D_PAD::GetSelectMenuText( EDA_UNITS_T aUnits ) const
{
if( GetName().IsEmpty() )
{
return wxString::Format( _( "Pad of %s on %s" ),
GetParent()->GetReference(),
LayerMaskDescribe( GetBoard(), m_layerMask ) );
}
else
{
return wxString::Format( _( "Pad %s of %s on %s" ),
GetName(),
GetParent()->GetReference(),
LayerMaskDescribe( GetBoard(), m_layerMask ) );
}
}
BITMAP_DEF D_PAD::GetMenuImage() const
{
return pad_xpm;
}
EDA_ITEM* D_PAD::Clone() const
{
return new D_PAD( *this );
}
bool D_PAD::PadShouldBeNPTH() const
{
return( m_Attribute == PAD_ATTRIB_STANDARD
&& m_Drill.x >= m_Size.x && m_Drill.y >= m_Size.y );
}
void D_PAD::ViewGetLayers( int aLayers[], int& aCount ) const
{
aCount = 0;
// These 2 types of pads contain a hole
if( m_Attribute == PAD_ATTRIB_STANDARD )
aLayers[aCount++] = LAYER_PADS_PLATEDHOLES;
if( m_Attribute == PAD_ATTRIB_HOLE_NOT_PLATED )
aLayers[aCount++] = LAYER_NON_PLATEDHOLES;
if( IsOnLayer( F_Cu ) && IsOnLayer( B_Cu ) )
{
// Multi layer pad
aLayers[aCount++] = LAYER_PADS_TH;
aLayers[aCount++] = LAYER_PADS_NETNAMES;
}
else if( IsOnLayer( F_Cu ) )
{
aLayers[aCount++] = LAYER_PAD_FR;
aLayers[aCount++] = LAYER_PAD_FR_NETNAMES;
}
else if( IsOnLayer( B_Cu ) )
{
aLayers[aCount++] = LAYER_PAD_BK;
aLayers[aCount++] = LAYER_PAD_BK_NETNAMES;
}
// Check non-copper layers. This list should include all the layers that the
// footprint editor allows a pad to be placed on.
static const PCB_LAYER_ID layers_mech[] = { F_Mask, B_Mask, F_Paste, B_Paste,
F_Adhes, B_Adhes, F_SilkS, B_SilkS, Dwgs_User, Eco1_User, Eco2_User };
for( PCB_LAYER_ID each_layer : layers_mech )
{
if( IsOnLayer( each_layer ) )
aLayers[aCount++] = each_layer;
}
#ifdef __WXDEBUG__
if( aCount == 0 ) // Should not occur
{
wxString msg;
msg.Printf( wxT( "footprint %s, pad %s: could not find valid layer for pad" ),
GetParent() ? GetParent()->GetReference() : "<null>",
GetName().IsEmpty() ? "(unnamed)" : GetName() );
wxLogWarning( msg );
}
#endif
}
unsigned int D_PAD::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const
{
if( aView->GetPrintMode() > 0 ) // In printing mode the pad is always drawable
return 0;
const int HIDE = std::numeric_limits<unsigned int>::max();
BOARD* board = GetBoard();
// Handle Render tab switches
if( ( GetAttribute() == PAD_ATTRIB_STANDARD || GetAttribute() == PAD_ATTRIB_HOLE_NOT_PLATED )
&& !aView->IsLayerVisible( LAYER_PADS_TH ) )
return HIDE;
if( !IsFlipped() && !aView->IsLayerVisible( LAYER_MOD_FR ) )
return HIDE;
if( IsFlipped() && !aView->IsLayerVisible( LAYER_MOD_BK ) )
return HIDE;
if( IsFrontLayer( ( PCB_LAYER_ID )aLayer ) && !aView->IsLayerVisible( LAYER_PAD_FR ) )
return HIDE;
if( IsBackLayer( ( PCB_LAYER_ID )aLayer ) && !aView->IsLayerVisible( LAYER_PAD_BK ) )
return HIDE;
// Only draw the pad if at least one of the layers it crosses is being displayed
if( board && !( board->GetVisibleLayers() & GetLayerSet() ).any() )
return HIDE;
// Netnames will be shown only if zoom is appropriate
if( IsNetnameLayer( aLayer ) )
{
int divisor = std::max( m_Size.x, m_Size.y );
// Pad sizes can be zero briefly when someone is typing a number like "0.5"
// in the pad properties dialog
if( divisor == 0 )
return HIDE;
return ( Millimeter2iu( 10 ) / divisor );
}
// Other layers are shown without any conditions
return 0;
}
const BOX2I D_PAD::ViewBBox() const
{
// Bounding box includes soldermask too
int solderMaskMargin = GetSolderMaskMargin();
VECTOR2I solderPasteMargin = VECTOR2D( GetSolderPasteMargin() );
EDA_RECT bbox = GetBoundingBox();
// Look for the biggest possible bounding box
int xMargin = std::max( solderMaskMargin, solderPasteMargin.x );
int yMargin = std::max( solderMaskMargin, solderPasteMargin.y );
return BOX2I( VECTOR2I( bbox.GetOrigin() ) - VECTOR2I( xMargin, yMargin ),
VECTOR2I( bbox.GetSize() ) + VECTOR2I( 2 * xMargin, 2 * yMargin ) );
}
wxString LayerMaskDescribe( const BOARD *aBoard, LSET aMask )
{
// Try to be smart and useful. Check all copper first.
if( aMask[F_Cu] && aMask[B_Cu] )
return _( "All copper layers" );
// Check for copper.
auto layer = aBoard->GetEnabledLayers().AllCuMask() & aMask;
for( int i = 0; i < 2; i++ )
{
for( int bit = PCBNEW_LAYER_ID_START; bit < PCB_LAYER_ID_COUNT; ++bit )
{
if( layer[ bit ] )
{
wxString layerInfo = aBoard->GetLayerName( static_cast<PCB_LAYER_ID>( bit ) );
if( aMask.count() > 1 )
layerInfo << _( " and others" );
return layerInfo;
}
}
// No copper; check for technicals.
layer = aBoard->GetEnabledLayers().AllTechMask() & aMask;
}
// No copper, no technicals: no layer
return _( "no layers" );
}
void D_PAD::ImportSettingsFromMaster( const D_PAD& aMasterPad )
{
SetShape( aMasterPad.GetShape() );
SetLayerSet( aMasterPad.GetLayerSet() );
SetAttribute( aMasterPad.GetAttribute() );
// The pad orientation, for historical reasons is the
// pad rotation + parent rotation.
// So we have to manage this parent rotation
double pad_rot = aMasterPad.GetOrientation();
if( aMasterPad.GetParent() )
pad_rot -= aMasterPad.GetParent()->GetOrientation();
if( GetParent() )
pad_rot += GetParent()->GetOrientation();
SetOrientation( pad_rot );
SetSize( aMasterPad.GetSize() );
SetDelta( wxSize( 0, 0 ) );
SetOffset( aMasterPad.GetOffset() );
SetDrillSize( aMasterPad.GetDrillSize() );
SetDrillShape( aMasterPad.GetDrillShape() );
SetRoundRectRadiusRatio( aMasterPad.GetRoundRectRadiusRatio() );
SetChamferRectRatio( aMasterPad.GetChamferRectRatio() );
SetChamferPositions( aMasterPad.GetChamferPositions() );
switch( aMasterPad.GetShape() )
{
case PAD_SHAPE_TRAPEZOID:
SetDelta( aMasterPad.GetDelta() );
break;
case PAD_SHAPE_CIRCLE:
// ensure size.y == size.x
SetSize( wxSize( GetSize().x, GetSize().x ) );
break;
default:
;
}
switch( aMasterPad.GetAttribute() )
{
case PAD_ATTRIB_SMD:
case PAD_ATTRIB_CONN:
// These pads do not have hole (they are expected to be only on one
// external copper layer)
SetDrillSize( wxSize( 0, 0 ) );
break;
default:
;
}
// copy also local settings:
SetLocalClearance( aMasterPad.GetLocalClearance() );
SetLocalSolderMaskMargin( aMasterPad.GetLocalSolderMaskMargin() );
SetLocalSolderPasteMargin( aMasterPad.GetLocalSolderPasteMargin() );
SetLocalSolderPasteMarginRatio( aMasterPad.GetLocalSolderPasteMarginRatio() );
SetZoneConnection( aMasterPad.GetZoneConnection() );
SetThermalWidth( aMasterPad.GetThermalWidth() );
SetThermalGap( aMasterPad.GetThermalGap() );
// Add or remove custom pad shapes:
SetPrimitives( aMasterPad.GetPrimitives() );
SetAnchorPadShape( aMasterPad.GetAnchorPadShape() );
MergePrimitivesAsPolygon();
}
void D_PAD::SwapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_PAD_T );
std::swap( *((MODULE*) this), *((MODULE*) aImage) );
}