kicad/eeschema/autoplace_fields.cpp

677 lines
22 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015 Chris Pavlina <pavlina.chris@gmail.com>
* Copyright (C) 2015, 2019 KiCad Developers, see change_log.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/******************************************************************************
* Field autoplacer: Tries to find an optimal place for component fields, and
* places them there. There are two modes: "auto"-autoplace, and "manual" autoplace.
* Auto mode is for when the process is run automatically, like when rotating parts,
* and it avoids doing things that would be helpful for the final positioning but
* annoying if they happened without permission.
* Short description of the process:
*
* 1. Compute the dimensions of the fields' bounding box ::ComputeFBoxSize
* 2. Determine which side the fields will go on. ::choose_side_for_fields
* 1. Sort the four sides in preference order,
* depending on the component's shape and
* orientation ::get_preferred_sides
* 2. If in manual mode, sift out the sides that would
* cause fields to overlap other items ::get_colliding_sides
* 3. If any remaining sides have zero pins there,
* choose the highest zero-pin side according to
* preference order.
* 4. If all sides have pins, choose the side with the
* fewest pins.
* 3. Compute the position of the fields' bounding box ::field_box_placement
* 4. In manual mode, shift the box vertically if possible
* to fit fields between adjacent wires ::fit_fields_between_wires
* 5. Move all fields to their final positions
* 1. Re-justify fields if options allow that ::justify_field
* 2. Round to a 50-mil grid coordinate if desired
*/
#include <boost/range/adaptor/reversed.hpp>
#include <sch_edit_frame.h>
#include <hotkeys_basic.h>
#include <sch_component.h>
#include <sch_line.h>
#include <lib_pin.h>
#include <sch_draw_panel.h>
#include <class_libentry.h>
#include <eeschema_config.h>
#include <kiface_i.h>
#include <vector>
#include <algorithm>
#include <tool/tool_manager.h>
#include <tools/ee_selection_tool.h>
#define FIELD_PADDING Mils2iu( 10 ) // arbitrarily chosen for aesthetics
#define FIELD_PADDING_ALIGNED Mils2iu( 18 ) // aligns 50 mil text to a 100 mil grid
#define WIRE_V_SPACING Mils2iu( 100 )
#define HPADDING Mils2iu( 25 )
#define VPADDING Mils2iu( 25 )
/**
* Round up/down to the nearest multiple of n
*/
template<typename T> T round_n( const T& value, const T& n, bool aRoundUp )
{
if( value % n )
return n * (value / n + (aRoundUp ? 1 : 0));
else
return value;
}
/**
* Convert an integer to a horizontal justification; neg=L zero=C pos=R
*/
EDA_TEXT_HJUSTIFY_T TO_HJUSTIFY( int x )
{
return static_cast<EDA_TEXT_HJUSTIFY_T>( x );
}
class AUTOPLACER
{
SCH_SCREEN* m_screen;
SCH_COMPONENT* m_component;
std::vector<SCH_FIELD*> m_fields;
std::vector<SCH_ITEM*> m_colliders;
EDA_RECT m_comp_bbox;
wxSize m_fbox_size;
bool m_allow_rejustify, m_align_to_grid;
bool m_power_symbol;
public:
typedef wxPoint SIDE;
static const SIDE SIDE_TOP, SIDE_BOTTOM, SIDE_LEFT, SIDE_RIGHT;
enum COLLISION { COLLIDE_NONE, COLLIDE_OBJECTS, COLLIDE_H_WIRES };
struct SIDE_AND_NPINS
{
SIDE side;
unsigned pins;
};
struct SIDE_AND_COLL
{
SIDE side;
COLLISION collision;
};
AUTOPLACER( SCH_COMPONENT* aComponent, SCH_SCREEN* aScreen )
:m_screen( aScreen ), m_component( aComponent )
{
m_component->GetFields( m_fields, /* aVisibleOnly */ true );
Kiface().KifaceSettings()->Read( AutoplaceJustifyEntry, &m_allow_rejustify, true );
Kiface().KifaceSettings()->Read( AutoplaceAlignEntry, &m_align_to_grid, false );
m_comp_bbox = m_component->GetBodyBoundingBox();
m_fbox_size = ComputeFBoxSize( /* aDynamic */ true );
m_power_symbol = ! m_component->IsInNetlist();
if( aScreen )
get_possible_colliders( m_colliders );
}
/**
* Do the actual autoplacement.
* @param aManual - if true, use extra heuristics for smarter placement when manually
* called up.
*/
void DoAutoplace( bool aManual )
{
bool force_wire_spacing = false;
SIDE field_side = choose_side_for_fields( aManual );
wxPoint fbox_pos = field_box_placement( field_side );
EDA_RECT field_box( fbox_pos, m_fbox_size );
if( aManual )
force_wire_spacing = fit_fields_between_wires( &field_box, field_side );
// Move the fields
int last_y_coord = field_box.GetTop();
for( unsigned field_idx = 0; field_idx < m_fields.size(); ++field_idx )
{
SCH_FIELD* field = m_fields[field_idx];
if( m_allow_rejustify )
justify_field( field, field_side );
wxPoint pos(
field_horiz_placement( field, field_box ),
field_vert_placement( field, field_box, &last_y_coord, !force_wire_spacing ) );
if( m_align_to_grid )
{
pos.x = round_n( pos.x, Mils2iu( 50 ), field_side.x >= 0 );
pos.y = round_n( pos.y, Mils2iu( 50 ), field_side.y == 1 );
}
field->SetPosition( pos );
}
}
protected:
/**
* Compute and return the size of the fields' bounding box.
* @param aDynamic - if true, use dynamic spacing
*/
wxSize ComputeFBoxSize( bool aDynamic )
{
int max_field_width = 0;
int total_height = 0;
for( SCH_FIELD* field : m_fields )
{
int field_width;
int field_height;
if( m_component->GetTransform().y1 )
{
field->SetTextAngle( TEXT_ANGLE_VERT );
}
else
{
field->SetTextAngle( TEXT_ANGLE_HORIZ );
}
field_width = field->GetBoundingBox().GetWidth();
field_height = field->GetBoundingBox().GetHeight();
max_field_width = std::max( max_field_width, field_width );
if( aDynamic )
total_height += field_height + get_field_padding();
else
total_height += WIRE_V_SPACING;
}
return wxSize( max_field_width, total_height );
}
/**
* Return the side that a pin is on.
*/
SIDE get_pin_side( LIB_PIN* aPin )
{
int pin_orient = aPin->PinDrawOrient( m_component->GetTransform() );
switch( pin_orient )
{
case PIN_RIGHT: return SIDE_LEFT;
case PIN_LEFT: return SIDE_RIGHT;
case PIN_UP: return SIDE_BOTTOM;
case PIN_DOWN: return SIDE_TOP;
default:
wxFAIL_MSG( "Invalid pin orientation" );
return SIDE_LEFT;
}
}
/**
* Count the number of pins on a side of the component.
*/
unsigned pins_on_side( SIDE aSide )
{
unsigned pin_count = 0;
std::vector<LIB_PIN*> pins;
m_component->GetPins( pins );
for( LIB_PIN* each_pin : pins )
{
if( !each_pin->IsVisible() && !m_power_symbol )
continue;
if( get_pin_side( each_pin ) == aSide )
++pin_count;
}
return pin_count;
}
/**
* Populate a list of all drawing items that *may* collide with the fields. That is,
* all drawing items, including other fields, that are not the current component or
* its own fields.
*/
void get_possible_colliders( std::vector<SCH_ITEM*>& aItems )
{
wxASSERT_MSG( m_screen, "get_possible_colliders() with null m_screen" );
for( SCH_ITEM* item = m_screen->GetDrawItems(); item; item = item->Next() )
{
if( SCH_COMPONENT* comp = dynamic_cast<SCH_COMPONENT*>( item ) )
{
if( comp == m_component ) continue;
std::vector<SCH_FIELD*> fields;
comp->GetFields( fields, /* aVisibleOnly */ true );
for( SCH_FIELD* field : fields )
aItems.push_back( field );
}
aItems.push_back( item );
}
}
/**
* Filter a list of possible colliders to include only those that actually collide
* with a given rectangle. Returns the new vector.
*/
std::vector<SCH_ITEM*> filtered_colliders( const EDA_RECT& aRect )
{
std::vector<SCH_ITEM*> filtered;
for( SCH_ITEM* item : m_colliders )
{
EDA_RECT item_box;
if( SCH_COMPONENT* item_comp = dynamic_cast<SCH_COMPONENT*>( item ) )
item_box = item_comp->GetBodyBoundingBox();
else
item_box = item->GetBoundingBox();
if( item_box.Intersects( aRect ) )
filtered.push_back( item );
}
return filtered;
}
/**
* Return a list with the preferred field sides for the component, in
* decreasing order of preference.
*/
std::vector<SIDE_AND_NPINS> get_preferred_sides()
{
SIDE_AND_NPINS sides_init[] = {
{ SIDE_RIGHT, pins_on_side( SIDE_RIGHT ) },
{ SIDE_TOP, pins_on_side( SIDE_TOP ) },
{ SIDE_LEFT, pins_on_side( SIDE_LEFT ) },
{ SIDE_BOTTOM, pins_on_side( SIDE_BOTTOM ) },
};
std::vector<SIDE_AND_NPINS> sides( sides_init, sides_init + arrayDim( sides_init ) );
int orient = m_component->GetOrientation();
int orient_angle = orient & 0xff; // enum is a bitmask
bool h_mirrored = ( ( orient & CMP_MIRROR_X )
&& ( orient_angle == CMP_ORIENT_0 || orient_angle == CMP_ORIENT_180 ) );
double w = double( m_comp_bbox.GetWidth() );
double h = double( m_comp_bbox.GetHeight() );
// The preferred-sides heuristics are a bit magical. These were determined mostly
// by trial and error.
if( m_power_symbol )
{
// For power symbols, we generally want the label at the top first.
switch( orient_angle )
{
case CMP_ORIENT_0:
std::swap( sides[0], sides[1] );
std::swap( sides[1], sides[3] );
// TOP, BOTTOM, RIGHT, LEFT
break;
case CMP_ORIENT_90:
std::swap( sides[0], sides[2] );
std::swap( sides[1], sides[2] );
// LEFT, RIGHT, TOP, BOTTOM
break;
case CMP_ORIENT_180:
std::swap( sides[0], sides[3] );
// BOTTOM, TOP, LEFT, RIGHT
break;
case CMP_ORIENT_270:
std::swap( sides[1], sides[2] );
// RIGHT, LEFT, TOP, BOTTOM
break;
}
}
else
{
// If the component is horizontally mirrored, swap left and right
if( h_mirrored )
{
std::swap( sides[0], sides[2] );
}
// If the component is very long or is a power symbol, swap H and V
if( w/h > 3.0 )
{
std::swap( sides[0], sides[1] );
std::swap( sides[1], sides[3] );
}
}
return sides;
}
/**
* Return a list of the sides where a field set would collide with another item.
*/
std::vector<SIDE_AND_COLL> get_colliding_sides()
{
SIDE sides_init[] = { SIDE_RIGHT, SIDE_TOP, SIDE_LEFT, SIDE_BOTTOM };
std::vector<SIDE> sides( sides_init, sides_init + arrayDim( sides_init ) );
std::vector<SIDE_AND_COLL> colliding;
// Iterate over all sides and find the ones that collide
for( SIDE side : sides )
{
EDA_RECT box( field_box_placement( side ), m_fbox_size );
COLLISION collision = COLLIDE_NONE;
for( SCH_ITEM* collider : filtered_colliders( box ) )
{
SCH_LINE* line = dynamic_cast<SCH_LINE*>( collider );
if( line && !side.x )
{
wxPoint start = line->GetStartPoint(), end = line->GetEndPoint();
if( start.y == end.y && collision != COLLIDE_OBJECTS )
collision = COLLIDE_H_WIRES;
else
collision = COLLIDE_OBJECTS;
}
else
collision = COLLIDE_OBJECTS;
}
if( collision != COLLIDE_NONE )
colliding.push_back( { side, collision } );
}
return colliding;
}
/**
* Choose a side for the fields, filtered on only one side collision type.
* Removes the sides matching the filter from the list.
*/
SIDE_AND_NPINS choose_side_filtered( std::vector<SIDE_AND_NPINS>& aSides,
const std::vector<SIDE_AND_COLL>& aCollidingSides, COLLISION aCollision,
SIDE_AND_NPINS aLastSelection)
{
SIDE_AND_NPINS sel = aLastSelection;
std::vector<SIDE_AND_NPINS>::iterator it = aSides.begin();
while( it != aSides.end() )
{
bool collide = false;
for( SIDE_AND_COLL collision : aCollidingSides )
{
if( collision.side == it->side && collision.collision == aCollision )
collide = true;
}
if( !collide )
++it;
else
{
if( it->pins <= sel.pins )
{
sel.pins = it->pins;
sel.side = it->side;
}
it = aSides.erase( it );
}
}
return sel;
}
/**
* Look where a component's pins are to pick a side to put the fields on
* @param aAvoidCollisions - if true, pick last the sides where the label will collide
* with other items.
*/
SIDE choose_side_for_fields( bool aAvoidCollisions )
{
std::vector<SIDE_AND_NPINS> sides = get_preferred_sides();
std::reverse( sides.begin(), sides.end() );
SIDE_AND_NPINS side = { wxPoint( 1, 0 ), UINT_MAX };
if( aAvoidCollisions )
{
std::vector<SIDE_AND_COLL> colliding_sides = get_colliding_sides();
side = choose_side_filtered( sides, colliding_sides, COLLIDE_OBJECTS, side );
side = choose_side_filtered( sides, colliding_sides, COLLIDE_H_WIRES, side );
}
for( SIDE_AND_NPINS& each_side : sides | boost::adaptors::reversed )
{
if( !each_side.pins ) return each_side.side;
}
for( SIDE_AND_NPINS& each_side : sides )
{
if( each_side.pins <= side.pins )
{
side.pins = each_side.pins;
side.side = each_side.side;
}
}
return side.side;
}
/**
* Set the justification of a field based on the side it's supposed to be on, taking
* into account whether the field will be displayed with flipped justification due to
* mirroring.
*/
void justify_field( SCH_FIELD* aField, SIDE aFieldSide )
{
// Justification is set twice to allow IsHorizJustifyFlipped() to work correctly.
aField->SetHorizJustify( TO_HJUSTIFY( -aFieldSide.x ) );
aField->SetHorizJustify( TO_HJUSTIFY( -aFieldSide.x *
( aField->IsHorizJustifyFlipped() ? -1 : 1 ) ) );
aField->SetVertJustify( GR_TEXT_VJUSTIFY_CENTER );
}
/**
* Return the position of the field bounding box.
*/
wxPoint field_box_placement( SIDE aFieldSide )
{
wxPoint fbox_center = m_comp_bbox.Centre();
int offs_x = ( m_comp_bbox.GetWidth() + m_fbox_size.GetWidth() ) / 2 + HPADDING;
int offs_y = ( m_comp_bbox.GetHeight() + m_fbox_size.GetHeight() ) / 2 + VPADDING;
fbox_center.x += aFieldSide.x * offs_x;
fbox_center.y += aFieldSide.y * offs_y;
wxPoint fbox_pos(
fbox_center.x - m_fbox_size.GetWidth() / 2,
fbox_center.y - m_fbox_size.GetHeight() / 2 );
return fbox_pos;
}
/**
* Shift a field box up or down a bit to make the fields fit between some wires.
* Returns true if a shift was made.
*/
bool fit_fields_between_wires( EDA_RECT* aBox, SIDE aSide )
{
if( aSide != SIDE_TOP && aSide != SIDE_BOTTOM )
return false;
std::vector<SCH_ITEM*> colliders = filtered_colliders( *aBox );
if( colliders.empty() )
return false;
// Find the offset of the wires for proper positioning
int offset = 0;
for( SCH_ITEM* item : colliders )
{
SCH_LINE* line = dynamic_cast<SCH_LINE*>( item );
if( !line )
return false;
wxPoint start = line->GetStartPoint(), end = line->GetEndPoint();
if( start.y != end.y )
return false;
int this_offset = (3 * WIRE_V_SPACING / 2) - ( start.y % WIRE_V_SPACING );
if( offset == 0 )
offset = this_offset;
else if( offset != this_offset )
return false;
}
// At this point we are recomputing the field box size. Do not
// return false after this point.
m_fbox_size = ComputeFBoxSize( /* aDynamic */ false );
wxPoint pos = aBox->GetPosition();
// Remove the existing padding to get a bit more space to work with
if( aSide == SIDE_BOTTOM )
{
pos.y = m_comp_bbox.GetBottom() - get_field_padding();
}
else
{
pos.y = m_comp_bbox.GetTop() - m_fbox_size.y + get_field_padding();
}
pos.y = round_n( pos.y, WIRE_V_SPACING, aSide == SIDE_BOTTOM );
aBox->SetOrigin( pos );
return true;
}
/**
* Place a field horizontally, taking into account the field width and justification.
*
* @param aField - the field to place.
* @param aFieldBox - box in which fields will be placed
*
* @return Correct field horizontal position
*/
int field_horiz_placement( SCH_FIELD *aField, const EDA_RECT &aFieldBox )
{
int field_hjust;
int field_xcoord;
if( aField->IsHorizJustifyFlipped() )
field_hjust = -aField->GetHorizJustify();
else
field_hjust = aField->GetHorizJustify();
switch( field_hjust )
{
case GR_TEXT_HJUSTIFY_LEFT:
field_xcoord = aFieldBox.GetLeft();
break;
case GR_TEXT_HJUSTIFY_CENTER:
field_xcoord = aFieldBox.Centre().x;
break;
case GR_TEXT_HJUSTIFY_RIGHT:
field_xcoord = aFieldBox.GetRight();
break;
default:
wxFAIL_MSG( "Unexpected value for SCH_FIELD::GetHorizJustify()" );
field_xcoord = aFieldBox.Centre().x; // Most are centered
}
return field_xcoord;
}
/**
* Place a field vertically. Because field vertical placements accumulate,
* this takes a pointer to a vertical position accumulator.
*
* @param aField - the field to place.
* @param aFieldBox - box in which fields will be placed.
* @param aPosAccum - pointer to a position accumulator
* @param aDynamic - use dynamic spacing
*
* @return Correct field vertical position
*/
int field_vert_placement( SCH_FIELD *aField, const EDA_RECT &aFieldBox, int *aPosAccum,
bool aDynamic )
{
int field_height;
int padding;
if( aDynamic )
{
field_height = aField->GetBoundingBox().GetHeight();
padding = get_field_padding();
}
else
{
field_height = WIRE_V_SPACING / 2;
padding = WIRE_V_SPACING / 2;
}
int placement = *aPosAccum + padding / 2 + field_height / 2;
*aPosAccum += padding + field_height;
return placement;
}
/**
* Return the desired padding between fields.
*/
int get_field_padding()
{
if( m_align_to_grid )
return FIELD_PADDING_ALIGNED;
else
return FIELD_PADDING;
}
};
const AUTOPLACER::SIDE AUTOPLACER::SIDE_TOP( 0, -1 );
const AUTOPLACER::SIDE AUTOPLACER::SIDE_BOTTOM( 0, 1 );
const AUTOPLACER::SIDE AUTOPLACER::SIDE_LEFT( -1, 0 );
const AUTOPLACER::SIDE AUTOPLACER::SIDE_RIGHT( 1, 0 );
void SCH_COMPONENT::AutoplaceFields( SCH_SCREEN* aScreen, bool aManual )
{
if( aManual )
wxASSERT_MSG( aScreen, "A SCH_SCREEN pointer must be given for manual autoplacement" );
AUTOPLACER autoplacer( this, aScreen );
autoplacer.DoAutoplace( aManual );
m_fieldsAutoplaced = ( aManual? AUTOPLACED_MANUAL : AUTOPLACED_AUTO );
}