kicad/common/geometry/hetriang.cpp

730 lines
20 KiB
C++

/*
* Copyright (C) 1998, 2000-2007, 2010, 2011, 2012, 2013 SINTEF ICT,
* Applied Mathematics, Norway.
* Copyright (C) 2013 CERN
* @author Maciej Suminski <maciej.suminski@cern.ch>
*
* Contact information: E-mail: tor.dokken@sintef.no
* SINTEF ICT, Department of Applied Mathematics,
* P.O. Box 124 Blindern,
* 0314 Oslo, Norway.
*
* This file is part of TTL.
*
* TTL is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* TTL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public
* License along with TTL. If not, see
* <http://www.gnu.org/licenses/>.
*
* In accordance with Section 7(b) of the GNU Affero General Public
* License, a covered work must retain the producer line in every data
* file that is created or manipulated using TTL.
*
* Other Usage
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial activities involving the TTL library without
* disclosing the source code of your own applications.
*
* This file may be used in accordance with the terms contained in a
* written agreement between you and SINTEF ICT.
*/
#include <ttl/halfedge/hetriang.h>
#include <ttl/halfedge/hetraits.h>
#include <ttl/ttl.h>
#include <algorithm>
#include <fstream>
#include <limits>
#include <boost/foreach.hpp>
#include <boost/make_shared.hpp>
using namespace hed;
#ifdef TTL_USE_NODE_ID
int NODE::id_count = 0;
#endif
//#define DEBUG_HE
#ifdef DEBUG_HE
#include <iostream>
static void errorAndExit( char* aMessage )
{
cout << "\n!!! ERROR: "<< aMessage << " !!!\n" << endl;
exit( -1 );
}
#endif
static EDGE_PTR getLeadingEdgeInTriangle( const EDGE_PTR& aEdge )
{
EDGE_PTR edge = aEdge;
// Code: 3EF (assumes triangle)
if( !edge->IsLeadingEdge() )
{
edge = edge->GetNextEdgeInFace();
if( !edge->IsLeadingEdge() )
edge = edge->GetNextEdgeInFace();
}
if( !edge->IsLeadingEdge() )
{
return EDGE_PTR();
}
return edge;
}
static void getLimits( NODES_CONTAINER::iterator aFirst, NODES_CONTAINER::iterator aLast,
int& aXmin, int& aYmin, int& aXmax, int& aYmax)
{
aXmin = aYmin = std::numeric_limits<int>::min();
aXmax = aYmax = std::numeric_limits<int>::max();
NODES_CONTAINER::iterator it;
for( it = aFirst; it != aLast; ++it )
{
aXmin = std::min( aXmin, ( *it )->GetX() );
aYmin = std::min( aYmin, ( *it )->GetY() );
aXmax = std::max( aXmax, ( *it )->GetX() );
aYmax = std::max( aYmax, ( *it )->GetY() );
}
}
EDGE_PTR TRIANGULATION::InitTwoEnclosingTriangles( NODES_CONTAINER::iterator aFirst,
NODES_CONTAINER::iterator aLast)
{
int xmin, ymin, xmax, ymax;
getLimits( aFirst, aLast, xmin, ymin, xmax, ymax );
// Add 10% of range:
double fac = 10.0;
double dx = ( xmax - xmin ) / fac;
double dy = ( ymax - ymin ) / fac;
NODE_PTR n1 = boost::make_shared<NODE>( xmin - dx, ymin - dy );
NODE_PTR n2 = boost::make_shared<NODE>( xmax + dx, ymin - dy );
NODE_PTR n3 = boost::make_shared<NODE>( xmax + dx, ymax + dy );
NODE_PTR n4 = boost::make_shared<NODE>( xmin - dx, ymax + dy );
// diagonal
EDGE_PTR e1d = boost::make_shared<EDGE>();
EDGE_PTR e2d = boost::make_shared<EDGE>();
// lower triangle
EDGE_PTR e11 = boost::make_shared<EDGE>();
EDGE_PTR e12 = boost::make_shared<EDGE>();
// upper triangle
EDGE_PTR e21 = boost::make_shared<EDGE>();
EDGE_PTR e22 = boost::make_shared<EDGE>();
// lower triangle
e1d->SetSourceNode( n3 );
e1d->SetNextEdgeInFace( e11 );
e1d->SetTwinEdge( e2d );
addLeadingEdge( e1d );
e11->SetSourceNode( n1 );
e11->SetNextEdgeInFace( e12 );
e12->SetSourceNode( n2 );
e12->SetNextEdgeInFace( e1d );
// upper triangle
e2d->SetSourceNode( n1 );
e2d->SetNextEdgeInFace( e21 );
e2d->SetTwinEdge( e1d );
addLeadingEdge( e2d );
e21->SetSourceNode( n3 );
e21->SetNextEdgeInFace( e22 );
e22->SetSourceNode( n4 );
e22->SetNextEdgeInFace( e2d );
return e11;
}
TRIANGULATION::TRIANGULATION()
{
m_helper = new ttl::TRIANGULATION_HELPER( *this );
}
TRIANGULATION::TRIANGULATION( const TRIANGULATION& aTriangulation )
{
m_helper = 0; // make coverity and static analysers quiet.
// Triangulation: Copy constructor not present
assert( false );
}
TRIANGULATION::~TRIANGULATION()
{
cleanAll();
delete m_helper;
}
void TRIANGULATION::CreateDelaunay( NODES_CONTAINER::iterator aFirst,
NODES_CONTAINER::iterator aLast )
{
cleanAll();
EDGE_PTR bedge = InitTwoEnclosingTriangles( aFirst, aLast );
DART dc( bedge );
DART d_iter = dc;
NODES_CONTAINER::iterator it;
for( it = aFirst; it != aLast; ++it )
{
m_helper->InsertNode<TTLtraits>( d_iter, *it );
}
// In general (e.g. for the triangle based data structure), the initial dart
// may have been changed.
// It is the users responsibility to get a valid boundary dart here.
// The half-edge data structure preserves the initial dart.
// (A dart at the boundary can also be found by trying to locate a
// triangle "outside" the triangulation.)
// Assumes rectangular domain
m_helper->RemoveRectangularBoundary<TTLtraits>( dc );
}
void TRIANGULATION::RemoveTriangle( EDGE_PTR& aEdge )
{
EDGE_PTR e1 = getLeadingEdgeInTriangle( aEdge );
#ifdef DEBUG_HE
if( !e1 )
errorAndExit( "Triangulation::removeTriangle: could not find leading aEdge" );
#endif
removeLeadingEdgeFromList( e1 );
// cout << "No leading edges = " << leadingEdges_.size() << endl;
// Remove the triangle
EDGE_PTR e2( e1->GetNextEdgeInFace() );
EDGE_PTR e3( e2->GetNextEdgeInFace() );
e1->Clear();
e2->Clear();
e3->Clear();
}
void TRIANGULATION::ReverseSplitTriangle( EDGE_PTR& aEdge )
{
// Reverse operation of splitTriangle
EDGE_PTR e1( aEdge->GetNextEdgeInFace() );
EDGE_PTR le( getLeadingEdgeInTriangle( e1 ) );
#ifdef DEBUG_HE
if (!le)
errorAndExit("Triangulation::removeTriangle: could not find leading edge");
#endif
removeLeadingEdgeFromList( le );
EDGE_PTR e2( e1->GetNextEdgeInFace()->GetTwinEdge()->GetNextEdgeInFace() );
le = getLeadingEdgeInTriangle( e2 );
#ifdef DEBUG_HE
if (!le)
errorAndExit("Triangulation::removeTriangle: could not find leading edge");
#endif
removeLeadingEdgeFromList( le );
EDGE_PTR e3( aEdge->GetTwinEdge()->GetNextEdgeInFace()->GetNextEdgeInFace() );
le = getLeadingEdgeInTriangle( e3 );
#ifdef DEBUG_HE
if (!le)
errorAndExit("Triangulation::removeTriangle: could not find leading edge");
#endif
removeLeadingEdgeFromList( le );
// The three triangles at the node have now been removed
// from the triangulation, but the arcs have not been deleted.
// Next delete the 6 half edges radiating from the node
// The node is maintained by handle and need not be deleted explicitly
EDGE_PTR estar = aEdge;
EDGE_PTR enext = estar->GetTwinEdge()->GetNextEdgeInFace();
estar->GetTwinEdge()->Clear();
estar->Clear();
estar = enext;
enext = estar->GetTwinEdge()->GetNextEdgeInFace();
estar->GetTwinEdge()->Clear();
estar->Clear();
enext->GetTwinEdge()->Clear();
enext->Clear();
// Create the new triangle
e1->SetNextEdgeInFace( e2 );
e2->SetNextEdgeInFace( e3 );
e3->SetNextEdgeInFace( e1 );
addLeadingEdge( e1 );
}
DART TRIANGULATION::CreateDart()
{
// Return an arbitrary CCW dart
return DART( *m_leadingEdges.begin() );
}
bool TRIANGULATION::removeLeadingEdgeFromList( EDGE_PTR& aLeadingEdge )
{
// Remove the edge from the list of leading edges,
// but don't delete it.
// Also set flag for leading edge to false.
// Must search from start of list. Since edges are added to the
// start of the list during triangulation, this operation will
// normally be fast (when used in the triangulation algorithm)
std::list<EDGE_PTR>::iterator it;
for( it = m_leadingEdges.begin(); it != m_leadingEdges.end(); ++it )
{
EDGE_PTR edge = *it;
if( edge == aLeadingEdge )
{
edge->SetAsLeadingEdge( false );
it = m_leadingEdges.erase( it );
return true;
}
}
return false;
}
void TRIANGULATION::cleanAll()
{
BOOST_FOREACH( EDGE_PTR& edge, m_leadingEdges )
edge->SetNextEdgeInFace( EDGE_PTR() );
}
void TRIANGULATION::swapEdge( DART& aDart )
{
SwapEdge( aDart.GetEdge() );
}
void TRIANGULATION::splitTriangle( DART& aDart, const NODE_PTR& aPoint )
{
EDGE_PTR edge = SplitTriangle( aDart.GetEdge(), aPoint );
aDart.Init( edge );
}
void TRIANGULATION::reverseSplitTriangle( DART& aDart )
{
ReverseSplitTriangle( aDart.GetEdge() );
}
void TRIANGULATION::removeBoundaryTriangle( DART& aDart )
{
RemoveTriangle( aDart.GetEdge() );
}
#ifdef TTL_USE_NODE_FLAG
void TRIANGULATION::FlagNodes( bool aFlag ) const
{
std::list<EDGE_PTR>::const_iterator it;
for( it = m_leadingEdges.begin(); it != m_leadingEdges.end(); ++it )
{
EDGE_PTR edge = *it;
for( int i = 0; i < 3; ++i )
{
edge->GetSourceNode()->SetFlag( aFlag );
edge = edge->GetNextEdgeInFace();
}
}
}
std::list<NODE_PTR>* TRIANGULATION::GetNodes() const
{
FlagNodes( false );
std::list<NODE_PTR>* nodeList = new std::list<NODE_PTR>;
std::list<EDGE_PTR>::const_iterator it;
for( it = m_leadingEdges.begin(); it != m_leadingEdges.end(); ++it )
{
EDGE_PTR edge = *it;
for( int i = 0; i < 3; ++i )
{
const NODE_PTR& node = edge->GetSourceNode();
if( node->GetFlag() == false )
{
nodeList->push_back( node );
node->SetFlag( true );
}
edge = edge->GetNextEdgeInFace();
}
}
return nodeList;
}
#endif
std::list<EDGE_PTR>* TRIANGULATION::GetEdges( bool aSkipBoundaryEdges ) const
{
// collect all arcs (one half edge for each arc)
// (boundary edges are also collected).
std::list<EDGE_PTR>::const_iterator it;
std::list<EDGE_PTR>* elist = new std::list<EDGE_PTR>;
for( it = m_leadingEdges.begin(); it != m_leadingEdges.end(); ++it )
{
EDGE_PTR edge = *it;
for( int i = 0; i < 3; ++i )
{
EDGE_PTR twinedge = edge->GetTwinEdge();
// only one of the half-edges
if( ( !twinedge && !aSkipBoundaryEdges )
|| ( twinedge && ( (size_t) edge.get() > (size_t) twinedge.get() ) ) )
elist->push_front( edge );
edge = edge->GetNextEdgeInFace();
}
}
return elist;
}
EDGE_PTR TRIANGULATION::SplitTriangle( EDGE_PTR& aEdge, const NODE_PTR& aPoint )
{
// Add a node by just splitting a triangle into three triangles
// Assumes the half aEdge is located in the triangle
// Returns a half aEdge with source node as the new node
// e#_n are new edges
// e# are existing edges
// e#_n and e##_n are new twin edges
// e##_n are edges incident to the new node
// Add the node to the structure
//NODE_PTR new_node(new Node(x,y,z));
NODE_PTR n1( aEdge->GetSourceNode() );
EDGE_PTR e1( aEdge );
EDGE_PTR e2( aEdge->GetNextEdgeInFace() );
NODE_PTR n2( e2->GetSourceNode() );
EDGE_PTR e3( e2->GetNextEdgeInFace() );
NODE_PTR n3( e3->GetSourceNode() );
EDGE_PTR e1_n = boost::make_shared<EDGE>();
EDGE_PTR e11_n = boost::make_shared<EDGE>();
EDGE_PTR e2_n = boost::make_shared<EDGE>();
EDGE_PTR e22_n = boost::make_shared<EDGE>();
EDGE_PTR e3_n = boost::make_shared<EDGE>();
EDGE_PTR e33_n = boost::make_shared<EDGE>();
e1_n->SetSourceNode( n1 );
e11_n->SetSourceNode( aPoint );
e2_n->SetSourceNode( n2 );
e22_n->SetSourceNode( aPoint );
e3_n->SetSourceNode( n3 );
e33_n->SetSourceNode( aPoint );
e1_n->SetTwinEdge( e11_n );
e11_n->SetTwinEdge( e1_n );
e2_n->SetTwinEdge( e22_n );
e22_n->SetTwinEdge( e2_n );
e3_n->SetTwinEdge( e33_n );
e33_n->SetTwinEdge( e3_n );
e1_n->SetNextEdgeInFace( e33_n );
e2_n->SetNextEdgeInFace( e11_n );
e3_n->SetNextEdgeInFace( e22_n );
e11_n->SetNextEdgeInFace( e1 );
e22_n->SetNextEdgeInFace( e2 );
e33_n->SetNextEdgeInFace( e3 );
// and update old's next aEdge
e1->SetNextEdgeInFace( e2_n );
e2->SetNextEdgeInFace( e3_n );
e3->SetNextEdgeInFace( e1_n );
// add the three new leading edges,
// Must remove the old leading aEdge from the list.
// Use the field telling if an aEdge is a leading aEdge
// NOTE: Must search in the list!!!
if( e1->IsLeadingEdge() )
removeLeadingEdgeFromList( e1 );
else if( e2->IsLeadingEdge() )
removeLeadingEdgeFromList( e2 );
else if( e3->IsLeadingEdge() )
removeLeadingEdgeFromList( e3 );
else
assert( false ); // one of the edges should be leading
addLeadingEdge( e1_n );
addLeadingEdge( e2_n );
addLeadingEdge( e3_n );
// Return a half aEdge incident to the new node (with the new node as source node)
return e11_n;
}
void TRIANGULATION::SwapEdge( EDGE_PTR& aDiagonal )
{
// Note that diagonal is both input and output and it is always
// kept in counterclockwise direction (this is not required by all
// functions in TriangulationHelper now)
// Swap by rotating counterclockwise
// Use the same objects - no deletion or new objects
EDGE_PTR eL( aDiagonal );
EDGE_PTR eR( eL->GetTwinEdge() );
EDGE_PTR eL_1( eL->GetNextEdgeInFace() );
EDGE_PTR eL_2( eL_1->GetNextEdgeInFace() );
EDGE_PTR eR_1( eR->GetNextEdgeInFace() );
EDGE_PTR eR_2( eR_1->GetNextEdgeInFace() );
// avoid node to be dereferenced to zero and deleted
NODE_PTR nR( eR_2->GetSourceNode() );
NODE_PTR nL( eL_2->GetSourceNode() );
eL->SetSourceNode( nR );
eR->SetSourceNode( nL );
// and now 6 1-sewings
eL->SetNextEdgeInFace( eL_2 );
eL_2->SetNextEdgeInFace( eR_1 );
eR_1->SetNextEdgeInFace( eL );
eR->SetNextEdgeInFace( eR_2 );
eR_2->SetNextEdgeInFace( eL_1 );
eL_1->SetNextEdgeInFace( eR );
if( eL->IsLeadingEdge() )
removeLeadingEdgeFromList( eL );
else if( eL_1->IsLeadingEdge() )
removeLeadingEdgeFromList( eL_1 );
else if( eL_2->IsLeadingEdge() )
removeLeadingEdgeFromList( eL_2 );
if( eR->IsLeadingEdge() )
removeLeadingEdgeFromList( eR );
else if( eR_1->IsLeadingEdge() )
removeLeadingEdgeFromList( eR_1 );
else if( eR_2->IsLeadingEdge() )
removeLeadingEdgeFromList( eR_2 );
addLeadingEdge( eL );
addLeadingEdge( eR );
}
bool TRIANGULATION::CheckDelaunay() const
{
// ???? outputs !!!!
// ofstream os("qweND.dat");
const std::list<EDGE_PTR>& leadingEdges = GetLeadingEdges();
std::list<EDGE_PTR>::const_iterator it;
bool ok = true;
int noNotDelaunay = 0;
for( it = leadingEdges.begin(); it != leadingEdges.end(); ++it )
{
EDGE_PTR edge = *it;
for( int i = 0; i < 3; ++i )
{
EDGE_PTR twinedge = edge->GetTwinEdge();
// only one of the half-edges
if( !twinedge || (size_t) edge.get() > (size_t) twinedge.get() )
{
DART dart( edge );
if( m_helper->SwapTestDelaunay<TTLtraits>( dart ) )
{
noNotDelaunay++;
//printEdge(dart,os); os << "\n";
ok = false;
//cout << "............. not Delaunay .... " << endl;
}
}
edge = edge->GetNextEdgeInFace();
}
}
#ifdef DEBUG_HE
cout << "!!! Triangulation is NOT Delaunay: " << noNotDelaunay << " edges\n" << endl;
#endif
return ok;
}
void TRIANGULATION::OptimizeDelaunay()
{
// This function is also present in ttl where it is implemented
// generically.
// The implementation below is tailored for the half-edge data structure,
// and is thus more efficient
// Collect all interior edges (one half edge for each arc)
bool skip_boundary_edges = true;
std::list<EDGE_PTR>* elist = GetEdges( skip_boundary_edges );
// Assumes that elist has only one half-edge for each arc.
bool cycling_check = true;
bool optimal = false;
std::list<EDGE_PTR>::const_iterator it;
while( !optimal )
{
optimal = true;
for( it = elist->begin(); it != elist->end(); ++it )
{
EDGE_PTR edge = *it;
DART dart( edge );
// Constrained edges should not be swapped
if( m_helper->SwapTestDelaunay<TTLtraits>( dart, cycling_check ) )
{
optimal = false;
SwapEdge( edge );
}
}
}
delete elist;
}
EDGE_PTR TRIANGULATION::GetInteriorNode() const
{
const std::list<EDGE_PTR>& leadingEdges = GetLeadingEdges();
std::list<EDGE_PTR>::const_iterator it;
for( it = leadingEdges.begin(); it != leadingEdges.end(); ++it )
{
EDGE_PTR edge = *it;
// multiple checks, but only until found
for( int i = 0; i < 3; ++i )
{
if( edge->GetTwinEdge() )
{
if( !m_helper->IsBoundaryNode( DART( edge ) ) )
return edge;
}
edge = edge->GetNextEdgeInFace();
}
}
return EDGE_PTR(); // no boundary nodes
}
EDGE_PTR TRIANGULATION::GetBoundaryEdgeInTriangle( const EDGE_PTR& aEdge ) const
{
EDGE_PTR edge = aEdge;
if( m_helper->IsBoundaryEdge( DART( edge ) ) )
return edge;
edge = edge->GetNextEdgeInFace();
if( m_helper->IsBoundaryEdge( DART( edge ) ) )
return edge;
edge = edge->GetNextEdgeInFace();
if( m_helper->IsBoundaryEdge( DART( edge ) ) )
return edge;
return EDGE_PTR();
}
EDGE_PTR TRIANGULATION::GetBoundaryEdge() const
{
// Get an arbitrary (CCW) boundary edge
// If the triangulation is closed, NULL is returned
const std::list<EDGE_PTR>& leadingEdges = GetLeadingEdges();
std::list<EDGE_PTR>::const_iterator it;
EDGE_PTR edge;
for( it = leadingEdges.begin(); it != leadingEdges.end(); ++it )
{
edge = GetBoundaryEdgeInTriangle( *it );
if( edge )
return edge;
}
return EDGE_PTR();
}
void TRIANGULATION::PrintEdges( std::ofstream& aOutput ) const
{
// Print source node and target node for each edge face by face,
// but only one of the half-edges.
const std::list<EDGE_PTR>& leadingEdges = GetLeadingEdges();
std::list<EDGE_PTR>::const_iterator it;
for( it = leadingEdges.begin(); it != leadingEdges.end(); ++it )
{
EDGE_PTR edge = *it;
for( int i = 0; i < 3; ++i )
{
EDGE_PTR twinedge = edge->GetTwinEdge();
// Print only one edge (the highest value of the pointer)
if( !twinedge || (size_t) edge.get() > (size_t) twinedge.get() )
{
// Print source node and target node
NODE_PTR node = edge->GetSourceNode();
aOutput << node->GetX() << " " << node->GetY() << std::endl;
node = edge->GetTargetNode();
aOutput << node->GetX() << " " << node->GetY() << std::endl;
aOutput << '\n'; // blank line
}
edge = edge->GetNextEdgeInFace();
}
}
}