kicad/polygon/php_polygon.cpp

1227 lines
42 KiB
C++

// file php_polygon.cpp
// This is a port of a php class written by Brenor Brophy (see below)
/*------------------------------------------------------------------------------
** File: polygon.php
** Description: PHP class for a polygon.
** Version: 1.1
** Author: Brenor Brophy
** Email: brenor at sbcglobal dot net
** Homepage: www.brenorbrophy.com
**------------------------------------------------------------------------------
** COPYRIGHT (c) 2005 BRENOR BROPHY
**
** The source code included in this package is free software; you can
** redistribute it and/or modify it under the terms of the GNU General Public
** License as published by the Free Software Foundation. This license can be
** read at:
**
** http://www.opensource.org/licenses/gpl-license.php
**
** This program is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
** FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
**------------------------------------------------------------------------------
**
** Based on the paper "Efficient Clipping of Arbitary Polygons" by Gunther
** Greiner (greiner at informatik dot uni-erlangen dot de) and Kai Hormann
** (hormann at informatik dot tu-clausthal dot de), ACM Transactions on Graphics
** 1998;17(2):71-83.
**
** Available at: www.in.tu-clausthal.de/~hormann/papers/clipping.pdf
**
** Another useful site describing the algorithm and with some example
** C code by Ionel Daniel Stroe is at:
**
** http://davis.wpi.edu/~matt/courses/clipping/
**
** The algorithm is extended by Brenor Brophy to allow polygons with
** arcs between vertices.
**
** Rev History
** -----------------------------------------------------------------------------
** 1.0 08/25/2005 Initial Release
** 1.1 09/04/2005 Added Move(), Rotate(), isPolyInside() and bRect() methods.
** Added software license language to header comments
*/
//#include "stdafx.h"
#include <stdio.h>
#include <math.h>
#include "fctsys.h"
#include "php_polygon_vertex.h"
#include "php_polygon.h"
const double PT = 0.99999;
//const double eps = (1.0 - PT)/10.0;
const double eps = 0.0;
polygon::polygon( vertex* first )
{
m_first = first;
m_cnt = 0;
}
polygon::~polygon()
{
while( m_cnt > 1 )
{
vertex* v = getFirst();
del( v->m_nextV );
}
if( m_first )
{
delete m_first;
}
}
vertex* polygon::getFirst()
{
return m_first;
}
polygon* polygon::NextPoly()
{
return m_first->NextPoly();
}
/*
** Add a vertex object to the polygon (vertex is added at the "end" of the list)
** Which because polygons are closed lists means it is added just before the first
** vertex.
*/
void polygon::add( vertex* nv )
{
if( m_cnt == 0 ) // If this is the first vertex in the polygon
{
m_first = nv; // Save a reference to it in the polygon
m_first->setNext( nv ); // Set its pointer to point to itself
m_first->setPrev( nv ); // because it is the only vertex in the list
segment* ps = m_first->Nseg(); // Get ref to the Next segment object
m_first->setPseg( ps ); // and save it as Prev segment as well
}
else // At least one other vertex already exists
{
// p <-> nv <-> n
// ps ns
vertex* n = m_first; // Get a ref to the first vertex in the list
vertex* p = n->Prev(); // Get ref to previous vertex
n->setPrev( nv ); // Add at end of list (just before first)
nv->setNext( n ); // link the new vertex to it
nv->setPrev( p ); // link to the pervious EOL vertex
p->setNext( nv ); // And finally link the previous EOL vertex
// Segments
segment* ns = nv->Nseg(); // Get ref to the new next segment
segment* ps = p->Nseg(); // Get ref to the previous segment
n->setPseg( ns ); // Set new previous seg for m_first
nv->setPseg( ps ); // Set previous seg of the new vertex
}
m_cnt++; // Increment the count of vertices
}
/*
** Create a vertex and then add it to the polygon
*/
void polygon::addv( double x, double y,
double xc, double yc, int d )
{
vertex* nv = new vertex( x, y, xc, yc, d );
add( nv );
}
/*
** Delete a vertex object from the polygon. This is not used by the main algorithm
** but instead is used to clean-up a polygon so that a second boolean operation can
** be performed.
*/
vertex* polygon::del( vertex* v )
{
// p <-> v <-> n Will delete v and ns
// ps ns
vertex* p = v->Prev(); // Get ref to previous vertex
vertex* n = v->Next(); // Get ref to next vertex
p->setNext( n ); // Link previous forward to next
n->setPrev( p ); // Link next back to previous
// Segments
segment* ps = p->Nseg(); // Get ref to previous segment
segment* ns = v->Nseg(); // Get ref to next segment
n->setPseg( ps ); // Link next back to previous segment
delete ns; //AMW
v->m_nSeg = NULL; // AMW
delete v; //AMW
// ns = NULL;
// v = NULL; // Free the memory
m_cnt--; // One less vertex
return n; // Return a ref to the next valid vertex
}
/*
** Reset Polygon - Deletes all intersection vertices. This is used to
** restore a polygon that has been processed by the boolean method
** so that it can be processed again.
*/
void polygon::res()
{
vertex* v = getFirst(); // Get the first vertex
do
{
v = v->Next(); // Get the next vertex in the polygon
while( v->isIntersect() ) // Delete all intersection vertices
v = del( v );
} while( v->id() != m_first->id() );
}
/*
** Copy Polygon - Returns a reference to a new copy of the poly object
** including all its vertices & their segments
*/
polygon* polygon::copy_poly()
{
polygon* n = new polygon; // Create a new instance of this class
vertex* v = getFirst();
do
{
n->addv( v->X(), v->Y(), v->Xc(), v->Yc(), (int) v->d() );
v = v->Next();
} while( v->id() != m_first->id() );
return n;
}
/*
** Insert and Sort a vertex between a specified pair of vertices (start and end)
**
** This function inserts a vertex (most likely an intersection point) between two
** other vertices. These other vertices cannot be intersections (that is they must
** be actual vertices of the original polygon). If there are multiple intersection
** points between the two vertices then the new vertex is inserted based on its
** alpha value.
*/
void polygon::insertSort( vertex* nv, vertex* s, vertex* e )
{
vertex* c = s; // Set current to the starting vertex
// Move current past any intersections
// whose alpha is lower but don't go past
// the end vertex
while( c->id() != e->id() && c->Alpha() < nv->Alpha() )
c = c->Next();
// p <-> nv <-> c
nv->setNext( c ); // Link new vertex forward to curent one
vertex* p = c->Prev(); // Get a link to the previous vertex
nv->setPrev( p ); // Link the new vertex back to the previous one
p->setNext( nv ); // Link previous vertex forward to new vertex
c->setPrev( nv ); // Link current vertex back to the new vertex
// Segments
segment* ps = p->Nseg();
nv->setPseg( ps );
segment* ns = nv->Nseg();
c->setPseg( ns );
m_cnt++; // Just added a new vertex
}
/*
** return the next non intersecting vertex after the one specified
*/
vertex* polygon::nxt( vertex* v )
{
vertex* c = v; // Initialize current vertex
while( c && c->isIntersect() ) // Move until a non-intersection
c = c->Next(); // vertex if found
return c; // return that vertex
}
/*
** Check if any unchecked intersections remain in the polygon. The boolean
** method is complete when all intersections have been checked.
*/
BOOL polygon::unckd_remain()
{
BOOL remain = FALSE;
vertex* v = m_first;
do
{
if( v->isIntersect() && !v->isChecked() )
remain = TRUE; // Set if an unchecked intersection is found
v = v->Next();
} while( v->id() != m_first->id() );
return remain;
}
/*
** Return a ref to the first unchecked intersection point in the polygon.
** If none are found then just the first vertex is returned.
*/
vertex* polygon::first_unckd_intersect()
{
vertex* v = m_first;
do // Do-While
{ // Not yet reached end of the polygon
v = v->Next(); // AND the vertex if NOT an intersection
} // OR it IS an intersection, but has been checked already
while( v->id() != m_first->id() && ( !v->isIntersect() || ( v->isIntersect() && v->isChecked() ) ) );
return v;
}
/*
** Return the distance between two points
*/
double polygon::dist( double x1, double y1, double x2, double y2 )
{
return sqrt( (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) );
}
/*
** Calculate the angle between 2 points, where Xc,Yc is the center of a circle
** and x,y is a point on its circumference. All angles are relative to
** the 3 O'Clock position. Result returned in radians
*/
double polygon::angle( double xc, double yc, double x1, double y1 )
{
double d = dist( xc, yc, x1, y1 ); // calc distance between two points
double a1;
if( asin( (y1 - yc) / d ) >= 0 )
a1 = acos( (x1 - xc) / d );
else
a1 = 2 * PI - acos( (x1 - xc) / d );
return a1;
}
/*
** Return Alpha value for an Arc
**
** X1/Y1 & X2/Y2 are the end points of the arc, Xc/Yc is the center & Xi/Yi
** the intersection point on the arc. d is the direction of the arc
*/
double polygon::aAlpha( double x1, double y1, double x2, double y2,
double xc, double yc, double xi, double yi, double d )
{
double sa = angle( xc, yc, x1, y1 ); // Start Angle
double ea = angle( xc, yc, x2, y2 ); // End Angle
double ia = angle( xc, yc, xi, yi ); // Intersection Angle
double arc, aint;
if( d == 1 ) // Anti-Clockwise
{
arc = ea - sa;
aint = ia - sa;
}
else // Clockwise
{
arc = sa - ea;
aint = sa - ia;
}
if( arc < 0 )
arc += 2 * PI;
if( aint < 0 )
aint += 2 * PI;
double a = aint / arc;
return a;
}
/*
** This function handles the degenerate case where a vertex of one
** polygon lies directly on an edge of the other. This case can
** also occur during the isInside() function, where the search
** line exactly intersects with a vertex. The function works
** by shortening the line by a tiny amount.
*/
void polygon::perturb( vertex* p1, vertex* p2, vertex* q1, vertex* q2,
double aP, double aQ )
{
// if (aP == 0) // Move vertex p1 closer to p2
if( abs( aP ) <= eps ) // Move vertex p1 closer to p2
{
p1->setX( p1->X() + (1 - PT) * ( p2->X() - p1->X() ) );
p1->setY( p1->Y() + (1 - PT) * ( p2->Y() - p1->Y() ) );
}
// else if (aP == 1) // Move vertex p2 closer to p1
else if( abs( 1 - aP ) <= eps ) // Move vertex p2 closer to p1
{
p2->setX( p1->X() + PT * ( p2->X() - p1->X() ) );
p2->setY( p1->Y() + PT * ( p2->Y() - p1->Y() ) );
}
//** else if (aQ == 0) // Move vertex q1 closer to q2
if( abs( aQ ) <= eps ) // Move vertex q1 closer to q2
{
q1->setX( q1->X() + (1 - PT) * ( q2->X() - q1->X() ) );
q1->setY( q1->Y() + (1 - PT) * ( q2->Y() - q1->Y() ) );
}
//** else if (aQ == 1) // Move vertex q2 closer to q1
else if( abs( 1 - aQ ) <= eps ) // Move vertex q2 closer to q1
{
q2->setX( q1->X() + PT * ( q2->X() - q1->X() ) );
q2->setY( q1->Y() + PT * ( q2->Y() - q1->Y() ) );
}
}
/*
** Determine the intersection between two pairs of vertices p1/p2, q1/q2
**
** Either or both of the segments passed to this function could be arcs.
** Thus we must first determine if the intersection is line/line, arc/line
** or arc/arc. Then apply the correct math to calculate the intersection(s).
**
** Line/Line can have 0 (no intersection) or 1 intersection
** Line/Arc and Arc/Arc can have 0, 1 or 2 intersections
**
** The function returns TRUE is any intersections are found
** The number found is returned in n
** The arrays ix[], iy[], alphaP[] & alphaQ[] return the intersection points
** and their associated alpha values.
*/
BOOL polygon::ints( vertex* p1, vertex* p2, vertex* q1, vertex* q2,
int* n, double ix[], double iy[], double alphaP[], double alphaQ[] )
{
BOOL found = FALSE;
*n = 0; // No intersections found yet
int pt = (int) p1->d();
int qt = (int) q1->d(); // Do we have Arcs or Lines?
if( pt == 0 && qt == 0 ) // Is it line/Line ?
{
/* LINE/LINE
** Algorithm from: http://astronomy.swin.edu.au/~pbourke/geometry/lineline2d/
*/
double x1 = p1->X();
double y1 = p1->Y();
double x2 = p2->X();
double y2 = p2->Y();
double x3 = q1->X();
double y3 = q1->Y();
double x4 = q2->X();
double y4 = q2->Y();
double d = ( (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1) );
if( d != 0 )
{ // The lines intersect at a point somewhere
double ua = ( (x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3) ) / d;
double ub = ( (x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3) ) / d;
// TRACE( " ints: ua = %.17f, ub = %.17f\n", ua, ub );
// The values of $ua and $ub tell us where the intersection occurred.
// A value between 0 and 1 means the intersection occurred within the
// line segment.
// A value less than 0 or greater than 1 means the intersection occurred
// outside the line segment
// A value of exactly 0 or 1 means the intersection occurred right at the
// start or end of the line segment. For our purposes we will consider this
// NOT to be an intersection and we will move the vertex a tiny distance
// away from the intersecting line.
// if( ua == 0 || ua == 1 || ub == 0 || ub == 1 )
if( abs( ua )<=eps || abs( 1.0 - ua )<=eps || abs( ub )<=eps || abs( 1.0 - ub )<=eps )
{
// Degenerate case - vertex touches a line
perturb( p1, p2, q1, q2, ua, ub );
//** for testing, see if we have successfully resolved the degeneracy
{
double tx1 = p1->X();
double ty1 = p1->Y();
double tx2 = p2->X();
double ty2 = p2->Y();
double tx3 = q1->X();
double ty3 = q1->Y();
double tx4 = q2->X();
double ty4 = q2->Y();
double td = ( (ty4 - ty3) * (tx2 - tx1) - (tx4 - tx3) * (ty2 - ty1) );
if( td != 0 )
{
// The lines intersect at a point somewhere
double tua =
( (tx4 - tx3) * (ty1 - ty3) - (ty4 - ty3) * (tx1 - tx3) ) / td;
double tub =
( (tx2 - tx1) * (ty1 - ty3) - (ty2 - ty1) * (tx1 - tx3) ) / td;
if( abs( tua )<=eps || abs( 1.0 - tua )<=eps || abs( tub )<=eps ||
abs( 1.0 - tub )<=eps )
wxASSERT( 0 );
else if( (tua > 0 && tua < 1) && (tub > 0 && tub < 1) )
wxASSERT( 0 );
TRACE(
" perturb:\n new s = (%f,%f) to (%f,%f)\n new c = (%f,%f) to (%f,%f)\n new ua = %.17f, ub = %.17f\n",
tx1,
ty1,
tx2,
ty2,
tx3,
ty3,
tx4,
ty4,
tua,
tub );
}
}
//** end test
found = FALSE;
}
else if( (ua > 0 && ua < 1) && (ub > 0 && ub < 1) )
{
// Intersection occurs on both line segments
double x = x1 + ua * (x2 - x1);
double y = y1 + ua * (y2 - y1);
iy[0] = y;
ix[0] = x;
alphaP[0] = ua;
alphaQ[0] = ub;
*n = 1;
found = TRUE;
}
else
{
// The lines do not intersect
found = FALSE;
}
}
else
{
// The lines do not intersect (they are parallel)
found = FALSE;
}
} // End of find Line/Line intersection
else if( pt != 0 && qt != 0 ) // Is it Arc/Arc?
{
/* ARC/ARC
** Algorithm from: http://astronomy.swin.edu.au/~pbourke/geometry/2circle/
*/
double x0 = p1->Xc();
double y0 = p1->Yc(); // Center of first Arc
double r0 = dist( x0, y0, p1->X(), p1->Y() ); // Calc the radius
double x1 = q1->Xc();
double y1 = q1->Yc(); // Center of second Arc
double r1 = dist( x1, y1, q1->X(), q1->Y() ); // Calc the radius
double dx = x1 - x0; // dx and dy are the vertical and horizontal
double dy = y1 - y0; // distances between the circle centers.
double d = sqrt( (dy * dy) + (dx * dx) ); // Distance between the centers.
if( d > (r0 + r1) ) // Check for solvability.
{ // no solution. circles do not intersect.
found = FALSE;
}
else if( d < abs( r0 - r1 ) )
{ // no solution. one circle inside the other
found = FALSE;
}
else
{
/*
** 'xy2' is the point where the line through the circle intersection
** points crosses the line between the circle centers.
*/
double a = ( (r0 * r0) - (r1 * r1) + (d * d) ) / (2.0 * d); // Calc the distance from xy0 to xy2.
double x2 = x0 + (dx * a / d); // Determine the coordinates of xy2.
double y2 = y0 + (dy * a / d);
if( d == (r0 + r1) ) // Arcs touch at xy2 exactly (unlikely)
{
alphaP[0] = aAlpha( p1->X(), p1->Y(), p2->X(), p2->Y(), x0, y0, x2, y2, pt );
alphaQ[0] = aAlpha( q1->X(), q1->Y(), q2->X(), q2->Y(), x1, y1, x2, y2, qt );
if( (alphaP[0] >0 && alphaP[0] < 1) && (alphaQ[0] >0 && alphaQ[0] < 1) )
{
ix[0] = x2;
iy[0] = y2;
*n = 1; found = TRUE;
}
}
else // Arcs intersect at two points
{
double alP[2], alQ[2];
double h = sqrt( (r0 * r0) - (a * a) ); // Calc the distance from xy2 to either
// of the intersection points.
double rx = -dy * (h / d); // Now determine the offsets of the
double ry = dx * (h / d);
// intersection points from xy2
double x[2], y[2];
x[0] = x2 + rx; x[1] = x2 - rx; // Calc the absolute intersection points.
y[0] = y2 + ry; y[1] = y2 - ry;
alP[0] = aAlpha( p1->X(), p1->Y(), p2->X(), p2->Y(), x0, y0, x[0], y[0], pt );
alQ[0] = aAlpha( q1->X(), q1->Y(), q2->X(), q2->Y(), x1, y1, x[0], y[0], qt );
alP[1] = aAlpha( p1->X(), p1->Y(), p2->X(), p2->Y(), x0, y0, x[1], y[1], pt );
alQ[1] = aAlpha( q1->X(), q1->Y(), q2->X(), q2->Y(), x1, y1, x[1], y[1], qt );
for( int i = 0; i<=1; i++ )
if( (alP[i] >0 && alP[i] < 1) && (alQ[i] >0 && alQ[i] < 1) )
{
ix[*n] = x[i];
iy[*n] = y[i];
alphaP[*n] = alP[i];
alphaQ[*n] = alQ[i];
*n++;
found = TRUE;
}
}
}
} // End of find Arc/Arc intersection
else // It must be Arc/Line
{
/* ARC/LINE
** Algorithm from: http://astronomy.swin.edu.au/~pbourke/geometry/sphereline/
*/
double d, x1, x2, xc, xs, xe;
double y1, y2, yc, ys, ye;
if( pt == 0 ) // Segment p1,p2 is the line
{ // Segment q1,q2 is the arc
x1 = p1->X();
y1 = p1->Y();
x2 = p2->X();
y2 = p2->Y();
xc = q1->Xc();
yc = q1->Yc();
xs = q1->X();
ys = q1->Y();
xe = q2->X();
ye = q2->Y();
d = qt;
}
else // Segment q1,q2 is the line
{
// Segment p1,p2 is the arc
x1 = q1->X(); y1 = q1->Y();
x2 = q2->X(); y2 = q2->Y();
xc = p1->Xc(); yc = p1->Yc();
xs = p1->X(); ys = p1->Y();
xe = p2->X(); ye = p2->Y();
d = pt;
}
double r = dist( xc, yc, xs, ys );
double a = pow( (x2 - x1), 2 ) + pow( (y2 - y1), 2 );
double b = 2 * ( (x2 - x1) * (x1 - xc)
+ (y2 - y1) * (y1 - yc) );
double c = pow( xc, 2 ) + pow( yc, 2 ) +
pow( x1, 2 ) + pow( y1, 2 ) -
2 * ( xc * x1 + yc * y1) - pow( r, 2 );
double i = b * b - 4 * a * c;
if( i < 0.0 ) // no intersection
{
found = FALSE;
}
else if( i == 0.0 ) // one intersection
{
double mu = -b / (2 * a);
double x = x1 + mu * (x2 - x1);
double y = y1 + mu * (y2 - y1);
double al = mu; // Line Alpha
double aa = this->aAlpha( xs, ys, xe, ye, xc, yc, x, y, d ); // Arc Alpha
if( (al >0 && al <1)&&(aa >0 && aa <1) )
{
ix[0] = x; iy[0] = y;
*n = 1;
found = TRUE;
if( pt == 0 )
{
alphaP[0] = al; alphaQ[0] = aa;
}
else
{
alphaP[0] = aa; alphaQ[0] = al;
}
}
}
else if( i > 0.0 ) // two intersections
{
double mu[2], x[2], y[2], al[2], aa[2];
mu[0] = ( -b + sqrt( pow( b, 2 ) - 4 * a * c ) ) / (2 * a); // first intersection
x[0] = x1 + mu[0] * (x2 - x1);
y[0] = y1 + mu[0] * (y2 - y1);
mu[1] = ( -b - sqrt( pow( b, 2 ) - 4 * a * c ) ) / (2 * a); // second intersection
x[1] = x1 + mu[1] * (x2 - x1);
y[1] = y1 + mu[1] * (y2 - y1);
al[0] = mu[0];
aa[0] = aAlpha( xs, ys, xe, ye, xc, yc, x[0], y[0], d );
al[1] = mu[1];
aa[1] = aAlpha( xs, ys, xe, ye, xc, yc, x[1], y[1], d );
for( int i = 0; i<=1; i++ )
if( (al[i] >0 && al[i] < 1) && (aa[i] >0 && aa[i] < 1) )
{
ix[*n] = x[i];
iy[*n] = y[i];
if( pt == 0 )
{
alphaP[*n] = al[i];
alphaQ[*n] = aa[i];
}
else
{
alphaP[*n] = aa[i];
alphaQ[*n] = al[i];
}
*n++;
found = TRUE;
}
}
} // End of find Arc/Line intersection
return found;
} // end of intersect function
/*
** Test if a vertex lies inside the polygon
**
** This function calculates the "winding" number for the point. This number
** represents the number of times a ray emitted from the point to infinity
** intersects any edge of the polygon. An even winding number means the point
** lies OUTSIDE the polygon, an odd number means it lies INSIDE it.
**
** Right now infinity is set to -10000000, some people might argue that infinity
** actually is a bit bigger. Those people have no lives.
**
** Allan Wright 4/16/2006: I guess I have no life: I had to increase it to -1000000000
*/
BOOL polygon::isInside( vertex* v )
{
//** modified for testing
if( v->isIntersect() )
wxASSERT( 0 );
int winding_number = 0;
int winding_number2 = 0;
int winding_number3 = 0;
int winding_number4 = 0;
//** vertex * point_at_infinity = new vertex(-10000000,v->Y()); // Create point at infinity
/* vertex * point_at_infinity = new vertex(-1000000000,-50000000); // Create point at infinity
* vertex * point_at_infinity2 = new vertex(1000000000,+50000000); // Create point at infinity
* vertex * point_at_infinity3 = new vertex(500000000,1000000000); // Create point at infinity
* vertex * point_at_infinity4 = new vertex(-500000000,1000000000); // Create point at infinity
*/
vertex point_at_infinity( -1000000000, -50000000 ); // Create point at infinity
vertex point_at_infinity2( 1000000000, +50000000 ); // Create point at infinity
vertex point_at_infinity3( 500000000, 1000000000 ); // Create point at infinity
vertex point_at_infinity4( -500000000, 1000000000 ); // Create point at infinity
vertex* q = m_first; // End vertex of a line segment in polygon
do
{
if( !q->isIntersect() )
{
int n;
double x[2], y[2], aP[2], aQ[2];
if( ints( &point_at_infinity, v, q, nxt( q->Next() ), &n, x, y, aP, aQ ) )
winding_number += n; // Add number of intersections found
if( ints( &point_at_infinity2, v, q, nxt( q->Next() ), &n, x, y, aP, aQ ) )
winding_number2 += n; // Add number of intersections found
if( ints( &point_at_infinity3, v, q, nxt( q->Next() ), &n, x, y, aP, aQ ) )
winding_number3 += n; // Add number of intersections found
if( ints( &point_at_infinity4, v, q, nxt( q->Next() ), &n, x, y, aP, aQ ) )
winding_number4 += n; // Add number of intersections found
}
q = q->Next();
} while( q->id() != m_first->id() );
// delete point_at_infinity;
// delete point_at_infinity2;
if( winding_number % 2 != winding_number2 % 2
|| winding_number3 % 2 != winding_number4 % 2
|| winding_number % 2 != winding_number3 % 2 )
wxASSERT( 0 );
if( winding_number % 2 == 0 ) // Check even or odd
return FALSE; // even == outside
else
return TRUE; // odd == inside
}
/*
** Execute a Boolean operation on a polygon
**
** This is the key method. It allows you to AND/OR this polygon with another one
** (equvalent to a UNION or INTERSECT operation. You may also subtract one from
** the other (same as DIFFERENCE). Given two polygons A, B the following operations
** may be performed:
**
** A|B ... A OR B (Union of A and B)
** A&B ... A AND B (Intersection of A and B)
** A\B ... A - B
** B\A ... B - A
**
** A is the object and B is the polygon passed to the method.
*/
polygon* polygon::boolean( polygon* polyB, int oper )
{
polygon* last = NULL;
vertex* s = m_first; // First vertex of the subject polygon
vertex* c = polyB->getFirst(); // First vertex of the "clip" polygon
/*
** Phase 1 of the algoritm is to find all intersection points between the two
** polygons. A new vertex is created for each intersection and it is added to
** the linked lists for both polygons. The "neighbor" reference in each vertex
** stores the link between the same intersection point in each polygon.
*/
TRACE( "boolean...phase 1\n" );
do
{
TRACE( "s=(%f,%f) to (%f,%f) I=%d\n",
s->m_x, s->m_y, s->m_nextV->m_x, s->m_nextV->m_y, s->m_intersect );
if( !s->isIntersect() )
{
do
{
TRACE( " c=(%f,%f) to (%f,%f) I=%d\n",
c->m_x, c->m_y, c->m_nextV->m_x, c->m_nextV->m_y, c->m_intersect );
if( !c->isIntersect() )
{
int n;
double ix[2], iy[2], alphaS[2], alphaC[2];
BOOL bInt = ints( s, nxt( s->Next() ), c, polyB->nxt(
c->Next() ), &n, ix, iy, alphaS, alphaC );
if( bInt )
{
TRACE( " int at (%f,%f) aS = %.17f, aC = %.17f\n",
ix[0],
iy[0],
alphaS[0],
alphaC[0] );
for( int i = 0; i<n; i++ )
{
vertex* is = new vertex( ix[i], iy[i], s->Xc(), s->Yc(),
s->d(), NULL, NULL, NULL, TRUE, NULL, alphaS[i], FALSE, FALSE );
vertex* ic = new vertex( ix[i], iy[i], c->Xc(), c->Yc(),
c->d(), NULL, NULL, NULL, TRUE, NULL, alphaC[i], FALSE, FALSE );
is->setNeighbor( ic );
ic->setNeighbor( is );
insertSort( is, s, this->nxt( s->Next() ) );
polyB->insertSort( ic, c, polyB->nxt( c->Next() ) );
}
}
} // end if c is not an intersect point
c = c->Next();
} while( c->id() != polyB->m_first->id() );
} // end if s not an intersect point
s = s->Next();
} while( s->id() != m_first->id() );
//** for testing...check number of intersections in each poly
TRACE( "boolean...phase 1 testing\n" );
int n_ints = 0;
s = m_first;
do
{
if( s->isIntersect() )
n_ints++;
s = s->Next();
} while( s->id() != m_first->id() );
int n_polyB_ints = 0;
s = polyB->m_first;
do
{
if( s->isIntersect() )
n_polyB_ints++;
s = s->Next();
} while( s->id() != polyB->m_first->id() );
if( n_ints != n_polyB_ints )
wxASSERT( 0 );
if( n_ints % 2 != 0 )
wxASSERT( 0 );
//** end test
/*
** Phase 2 of the algorithm is to identify every intersection point as an
** entry or exit point to the other polygon. This will set the entry bits
** in each vertex object.
**
** What is really stored in the entry record for each intersection is the
** direction the algorithm should take when it arrives at that entry point.
** Depending in the operation requested (A&B, A|B, A/B, B/A) the direction is
** set as follows for entry points (f=foreward, b=Back), exit points are always set
** to the opposite:
** Enter Exit
** A B A B
** A|B b b f f
** A&B f f b b
** A\B b f f b
** B\A f b b f
**
** f = TRUE, b = FALSE when stored in the entry record
*/
TRACE( "boolean...phase 2\n" );
BOOL A, B;
switch( oper )
{
case A_OR_B:
A = FALSE; B = FALSE; break;
case A_AND_B:
A = TRUE; B = TRUE; break;
case A_MINUS_B:
A = FALSE; B = TRUE; break;
case B_MINUS_A:
A = TRUE; B = FALSE; break;
default:
A = TRUE; B = TRUE; break;
}
s = m_first;
//** testing
if( s->isIntersect() )
wxASSERT( 0 );
//** end test
BOOL entry;
if( polyB->isInside( s ) ) // if we are already inside
entry = !A; // next intersection must be an exit
else // otherwise
entry = A; // next intersection must be an entry
do
{
if( s->isIntersect() )
{
s->setEntry( entry );
entry = !entry;
}
s = s->Next();
} while( s->id() != m_first->id() );
/*
** Repeat for other polygon
*/
c = polyB->m_first;
if( this->isInside( c ) ) // if we are already inside
entry = !B; // next intersection must be an exit
else // otherwise
entry = B; // next intersection must be an entry
do
{
if( c->isIntersect() )
{
c->setEntry( entry );
entry = !entry;
}
c = c->Next();
} while( c->id() != polyB->m_first->id() );
/*
** Phase 3 of the algorithm is to scan the linked lists of the
** two input polygons an construct a linked list of result
** polygons. We start at the first intersection then depending
** on whether it is an entry or exit point we continue building
** our result polygon by following the source or clip polygon
** either forwards or backwards.
*/
TRACE( "boolean...phase 3\n" );
while( this->unckd_remain() ) // Loop while unchecked intersections remain
{
vertex* v = first_unckd_intersect(); // Get the first unchecked intersect point
polygon* r = new polygon; // Create a new instance of that class
do
{
v->setChecked(); // Set checked flag true for this intersection
if( v->isEntry() )
{
do
{
v = v->Next();
vertex* nv = new vertex( v->X(), v->Y(), v->Xc(), v->Yc(), v->d() );
r->add( nv );
} while( !v->isIntersect() );
}
else
{
do
{
v = v->Prev();
vertex* nv =
new vertex( v->X(), v->Y(), v->Xc( FALSE ), v->Yc( FALSE ), v->d( FALSE ) );
r->add( nv );
} while( !v->isIntersect() );
}
v = v->Neighbor();
} while( !v->isChecked() ); // until polygon closed
if( last ) // Check in case first time thru the loop
r->m_first->setNextPoly( last ); // Save ref to the last poly in the first vertex
// of this poly
last = r; // Save this polygon
} // end of while there is another intersection to check
/*
** Clean up the input polygons by deleting the intersection points
*/
res();
polyB->res();
/*
** It is possible that no intersection between the polygons was found and
** there is no result to return. In this case we make function fail
** gracefully as follows (depending on the requested operation):
**
** A|B : Return this with polyB in m_first->nextPoly
** A&B : Return this
** A\B : Return this
** B\A : return polyB
*/
polygon* p;
if( !last )
{
TRACE( "boolean...end with no intersection\n" );
switch( oper )
{
case A_OR_B:
last = copy_poly();
p = polyB->copy_poly();
last->m_first->setNextPoly( p );
break;
case A_AND_B:
last = copy_poly();
break;
case A_MINUS_B:
last = copy_poly();
break;
case B_MINUS_A:
last = polyB->copy_poly();
break;
default:
last = copy_poly();
break;
}
}
else if( m_first->m_nextPoly )
{
TRACE( "boolean...end with nextPoly\n" );
last->m_first->m_nextPoly = m_first->NextPoly();
}
vertex * curr_vertex = last->getFirst();
for( int ii = 0; ii < last->m_cnt; ii++ )
{
int x = (int) curr_vertex->X();
int y = (int) curr_vertex->Y();
TRACE( "point %d @ %.4f %.4f\n", ii, (float)x/10000, (float)y/10000 );
curr_vertex = curr_vertex->Next();
}
return last;
} // end of boolean function
/*
** Test if a polygon lies entirly inside this polygon
**
** First every point in the polygon is tested to determine if it is
** inside this polygon. If all points are inside, then the second
** test is performed that looks for any intersections between the
** two polygons. If no intersections are found then the polygon
** must be completely enclosed by this polygon.
*/
#if 0
function polygon::isPolyInside( p )
{
inside = TRUE;
c = p->getFirst(); // Get the first vertex in polygon p
do
{
if( !this->isInside( c ) ) // If vertex is NOT inside this polygon
inside = FALSE; // then set flag to false
c = c->Next(); // Get the next vertex in polygon p
} while( c->id() != p->first->id() );
if( inside )
{
c = p->getFirst(); // Get the first vertex in polygon p
s = getFirst(); // Get the first vertex in this polygon
do
{
do
{
if( this->ints( s, s->Next(), c, c->Next(), n, x, y, aS, aC ) )
inside = FALSE;
c = c->Next();
} while( c->id() != p->first->id() );
s = s->Next();
} while( s->id() != m_first->id() );
}
return inside;
} // end of isPolyInside
/*
** Move Polygon
**
** Translates polygon by delta X and delta Y
*/
function polygon::move( dx, dy )
{
v = getFirst();
do
{
v->setX( v->X() + dx );
v->setY( v->Y() + dy );
if( v->d() != 0 )
{
v->setXc( v->Xc() + dx );
v->setYc( v->Yc() + dy );
}
v = v->Next();
} while( v->id() != m_first->id() );
} // end of move polygon
/*
** Rotate Polygon
**
** Rotates a polgon about point xr/yr by a radians
*/
function polygon::rotate( xr, yr, a )
{
this->move( -xr, -yr ); // Move the polygon so that the point of
// rotation is at the origin (0,0)
if( a < 0 ) // We might be passed a negitive angle
a += 2 * pi(); // make it positive
v = m_first;
do
{
x = v->X(); y = v->Y();
v->setX( x * cos( a ) - y * sin( a ) ); // x' = xCos(a)-ySin(a)
v->setY( x * sin( a ) + y * cos( a ) ); // y' = xSin(a)+yCos(a)
if( v->d() != 0 )
{
x = v->Xc(); y = v->Yc();
v->setXc( x * cos( a ) - y * sin( a ) );
v->setYc( x * sin( a ) + y * cos( a ) );
}
v = v->Next();
} while( v->id() != m_first->id() );
this->move( xr, yr ); // Move the rotated polygon back
} // end of rotate polygon
/*
** Return Bounding Rectangle for a Polygon
**
** returns a polygon object that represents the bounding rectangle
** for this polygon. Arc segments are correctly handled.
*/
function polygon::& bRect()
{
minX = INF; minY = INF; maxX = -INF; maxY = -INF;
v = m_first;
do
{
if( v->d() != 0 ) // Is it an arc segment
{
vn = v->Next(); // end vertex of the arc segment
v1 = new vertex( v->Xc(), -infinity ); // bottom point of vertical line thru arc center
v2 = new vertex( v->Xc(), +infinity ); // top point of vertical line thru arc center
if( this->ints( v, vn, v1, v2, n, x, y, aS, aC ) ) // Does line intersect the arc ?
{
for( i = 0; i<n; i++ ) // check y portion of all intersections
{
minY = min( minY, y[i], v->Y() );
maxY = max( maxY, y[i], v->Y() );
}
}
else // There was no intersection so bounding rect is determined
{
// by the start point only, not teh edge of the arc
minY = min( minY, v->Y() );
maxY = max( maxY, v->Y() );
}
v1 = NULL; v2 = NULL; // Free the memory used
h1 = new vertex( -infinity, v->Yc() ); // left point of horozontal line thru arc center
h2 = new vertex( +infinity, v->Yc() ); // right point of horozontal line thru arc center
if( this->ints( v, vn, h1, h2, n, x, y, aS, aC ) ) // Does line intersect the arc ?
{
for( i = 0; i<n; i++ ) // check x portion of all intersections
{
minX = min( minX, x[i], v->X() );
maxX = max( maxX, x[i], v->X() );
}
}
else
{
minX = min( minX, v->X() );
maxX = max( maxX, v->X() );
}
h1 = NULL; h2 = NULL;
}
else // Straight segment so just check the vertex
{
minX = min( minX, v->X() );
minY = min( minY, v->Y() );
maxX = max( maxX, v->X() );
maxY = max( maxY, v->Y() );
}
v = v->Next();
} while( v->id() != m_first->id() );
//
// Now create an return a polygon with the bounding rectangle
//
this_class = get_class( this ); // Findout the class I'm in (might be an extension of polygon)
p = new this_class; // Create a new instance of that class
p->addv( minX, minY );
p->addv( minX, maxY );
p->addv( maxX, maxY );
p->addv( maxX, minY );
return p;
} // end of bounding rectangle
#endif