kicad/pcbnew/ratsnest_data.cpp

1033 lines
28 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2013 CERN
* @author Maciej Suminski <maciej.suminski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file ratsnest_data.cpp
* @brief Class that computes missing connections on a PCB.
*/
#ifdef USE_OPENMP
#include <omp.h>
#endif /* USE_OPENMP */
#include <ratsnest_data.h>
#include <class_board.h>
#include <class_module.h>
#include <class_pad.h>
#include <class_track.h>
#include <class_zone.h>
#include <boost/range/adaptor/map.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/make_shared.hpp>
#include <boost/bind.hpp>
#include <cassert>
#include <algorithm>
#include <limits>
uint64_t getDistance( const RN_NODE_PTR& aNode1, const RN_NODE_PTR& aNode2 )
{
// Drop the least significant bits to avoid overflow
int64_t x = ( aNode1->GetX() - aNode2->GetX() ) >> 16;
int64_t y = ( aNode1->GetY() - aNode2->GetY() ) >> 16;
// We do not need sqrt() here, as the distance is computed only for comparison
return ( x * x + y * y );
}
bool sortDistance( const RN_NODE_PTR& aOrigin, const RN_NODE_PTR& aNode1,
const RN_NODE_PTR& aNode2 )
{
return getDistance( aOrigin, aNode1 ) < getDistance( aOrigin, aNode2 );
}
bool sortWeight( const RN_EDGE_PTR& aEdge1, const RN_EDGE_PTR& aEdge2 )
{
return aEdge1->getWeight() < aEdge2->getWeight();
}
bool sortArea( const RN_POLY& aP1, const RN_POLY& aP2 )
{
return aP1.m_bbox.GetArea() < aP2.m_bbox.GetArea();
}
bool operator==( const RN_NODE_PTR& aFirst, const RN_NODE_PTR& aSecond )
{
return aFirst->GetX() == aSecond->GetX() && aFirst->GetY() == aSecond->GetY();
}
bool operator!=( const RN_NODE_PTR& aFirst, const RN_NODE_PTR& aSecond )
{
return aFirst->GetX() != aSecond->GetX() || aFirst->GetY() != aSecond->GetY();
}
bool isEdgeConnectingNode( const RN_EDGE_PTR& aEdge, const RN_NODE_PTR& aNode )
{
return aEdge->getSourceNode() == aNode || aEdge->getTargetNode() == aNode;
}
std::vector<RN_EDGE_PTR>* kruskalMST( RN_LINKS::RN_EDGE_LIST& aEdges,
const std::vector<RN_NODE_PTR>& aNodes )
{
unsigned int nodeNumber = aNodes.size();
unsigned int mstExpectedSize = nodeNumber - 1;
unsigned int mstSize = 0;
// The output
std::vector<RN_EDGE_PTR>* mst = new std::vector<RN_EDGE_PTR>;
mst->reserve( mstExpectedSize );
// Set tags for marking cycles
boost::unordered_map<RN_NODE_PTR, int> tags;
unsigned int tag = 0;
BOOST_FOREACH( const RN_NODE_PTR& node, aNodes )
tags[node] = tag++;
// Lists of nodes connected together (subtrees) to detect cycles in the graph
std::vector<std::list<int> > cycles( nodeNumber );
for( unsigned int i = 0; i < nodeNumber; ++i )
cycles[i].push_back( i );
// Kruskal algorithm requires edges to be sorted by their weight
aEdges.sort( sortWeight );
while( mstSize < mstExpectedSize && !aEdges.empty() )
{
RN_EDGE_PTR& dt = *aEdges.begin();
int srcTag = tags[dt->getSourceNode()];
int trgTag = tags[dt->getTargetNode()];
// Check if by adding this edge we are going to join two different forests
if( srcTag != trgTag )
{
// Update tags
std::list<int>::iterator it, itEnd;
for( it = cycles[trgTag].begin(), itEnd = cycles[trgTag].end(); it != itEnd; ++it )
tags[aNodes[*it]] = srcTag;
// Move nodes that were marked with old tag to the list marked with the new tag
cycles[srcTag].splice( cycles[srcTag].end(), cycles[trgTag] );
if( dt->getWeight() == 0 ) // Skip already existing connections (weight == 0)
{
mstExpectedSize--;
}
else
{
// Do a copy of edge, but make it RN_EDGE_MST. In contrary to RN_EDGE,
// RN_EDGE_MST saves both source and target node and does not require any other
// edges to exist for getting source/target nodes
RN_EDGE_MST_PTR newEdge = boost::make_shared<RN_EDGE_MST>( dt->getSourceNode(),
dt->getTargetNode(),
dt->getWeight() );
mst->push_back( newEdge );
++mstSize;
}
}
// Remove the edge that was just processed
aEdges.erase( aEdges.begin() );
}
// Probably we have discarded some of edges, so reduce the size
mst->resize( mstSize );
return mst;
}
void RN_NET::validateEdge( RN_EDGE_PTR& aEdge )
{
RN_NODE_PTR source = aEdge->getSourceNode();
RN_NODE_PTR target = aEdge->getTargetNode();
bool valid = true;
// If any of nodes belonging to the edge has the flag set,
// change it to the closest node that has flag cleared
if( source->GetFlag() )
{
valid = false;
std::list<RN_NODE_PTR> closest = GetClosestNodes( source, WITHOUT_FLAG() );
BOOST_FOREACH( RN_NODE_PTR& node, closest )
{
if( node && node != target )
{
source = node;
break;
}
}
}
if( target->GetFlag() )
{
valid = false;
std::list<RN_NODE_PTR> closest = GetClosestNodes( target, WITHOUT_FLAG() );
BOOST_FOREACH( RN_NODE_PTR& node, closest )
{
if( node && node != source )
{
target = node;
break;
}
}
}
// Replace an invalid edge with new, valid one
if( !valid )
aEdge.reset( new RN_EDGE_MST( source, target ) );
}
const RN_NODE_PTR& RN_LINKS::AddNode( int aX, int aY )
{
RN_NODE_SET::iterator node;
bool wasNewElement;
boost::tie( node, wasNewElement ) = m_nodes.emplace( boost::make_shared<RN_NODE>( aX, aY ) );
(*node)->IncRefCount(); // TODO use the shared_ptr use_count
return *node;
}
bool RN_LINKS::RemoveNode( const RN_NODE_PTR& aNode )
{
aNode->DecRefCount(); // TODO use the shared_ptr use_count
if( aNode->GetRefCount() == 0 )
{
m_nodes.erase( aNode );
return true;
}
return false;
}
const RN_EDGE_PTR& RN_LINKS::AddConnection( const RN_NODE_PTR& aNode1, const RN_NODE_PTR& aNode2,
unsigned int aDistance )
{
m_edges.push_back( boost::make_shared<RN_EDGE_MST>( aNode1, aNode2, aDistance ) );
return m_edges.back();
}
void RN_NET::compute()
{
const RN_LINKS::RN_NODE_SET& boardNodes = m_links.GetNodes();
const RN_LINKS::RN_EDGE_LIST& boardEdges = m_links.GetConnections();
// Special case that does need so complicated algorithm
if( boardNodes.size() == 2 )
{
m_rnEdges.reset( new std::vector<RN_EDGE_PTR>( 0 ) );
// Check if the only possible connection exists
if( boardEdges.size() == 0 )
{
RN_LINKS::RN_NODE_SET::iterator last = ++boardNodes.begin();
// There can be only one possible connection, but it is missing
m_rnEdges->push_back( boost::make_shared<RN_EDGE_MST>( *boardNodes.begin(), *last ) );
}
return;
}
else if( boardNodes.size() <= 1 ) // This case is even simpler
{
m_rnEdges.reset( new std::vector<RN_EDGE_PTR>( 0 ) );
return;
}
// Move and sort (sorting speeds up) all nodes to a vector for the Delaunay triangulation
std::vector<RN_NODE_PTR> nodes( boardNodes.size() );
std::partial_sort_copy( boardNodes.begin(), boardNodes.end(), nodes.begin(), nodes.end() );
TRIANGULATOR triangulator;
triangulator.createDelaunay( nodes.begin(), nodes.end() );
boost::scoped_ptr<RN_LINKS::RN_EDGE_LIST> triangEdges( triangulator.getEdges() );
// Compute weight/distance for edges resulting from triangulation
RN_LINKS::RN_EDGE_LIST::iterator eit, eitEnd;
for( eit = (*triangEdges).begin(), eitEnd = (*triangEdges).end(); eit != eitEnd; ++eit )
(*eit)->setWeight( getDistance( (*eit)->getSourceNode(), (*eit)->getTargetNode() ) );
// Add the currently existing connections list to the results of triangulation
std::copy( boardEdges.begin(), boardEdges.end(), std::front_inserter( *triangEdges ) );
// Get the minimal spanning tree
m_rnEdges.reset( kruskalMST( *triangEdges, nodes ) );
}
void RN_NET::clearNode( const RN_NODE_PTR& aNode )
{
if( !m_rnEdges )
return;
std::vector<RN_EDGE_PTR>::iterator newEnd;
// Remove all ratsnest edges for associated with the node
newEnd = std::remove_if( m_rnEdges->begin(), m_rnEdges->end(),
boost::bind( isEdgeConnectingNode, _1, aNode ) );
m_rnEdges->resize( std::distance( m_rnEdges->begin(), newEnd ) );
}
RN_POLY::RN_POLY( const CPolyPt* aBegin, const CPolyPt* aEnd, const ZONE_CONTAINER* aParent,
RN_LINKS& aConnections, const BOX2I& aBBox ) :
m_parent( aParent), m_begin( aBegin ), m_end( aEnd ), m_bbox( aBBox )
{
m_node = aConnections.AddNode( m_begin->x, m_begin->y );
// Mark it as not feasible as a destination of ratsnest edges
// (edges coming out from a polygon vertex look weird)
m_node->SetFlag( true );
}
bool RN_POLY::HitTest( const RN_NODE_PTR& aNode ) const
{
long xt = aNode->GetX();
long yt = aNode->GetY();
// If the point lies outside the bounding box, there is no point to check it further
if( !m_bbox.Contains( xt, yt ) )
return false;
long xNew, yNew, xOld, yOld, x1, y1, x2, y2;
bool inside = false;
// For the first loop we have to use the last point as the previous point
xOld = m_end->x;
yOld = m_end->y;
for( const CPolyPt* point = m_begin; point <= m_end; ++point )
{
xNew = point->x;
yNew = point->y;
// Swap points if needed, so always x2 >= x1
if( xNew > xOld )
{
x1 = xOld; y1 = yOld;
x2 = xNew; y2 = yNew;
}
else
{
x1 = xNew; y1 = yNew;
x2 = xOld; y2 = yOld;
}
if( ( xNew < xt ) == ( xt <= xOld ) /* edge "open" at left end */
&& ( yt - y1 ) * ( x2 - x1 ) < ( y2 - y1 ) * ( xt - x1 ) )
{
inside = !inside;
}
xOld = xNew;
yOld = yNew;
}
return inside;
}
void RN_NET::Update()
{
// Add edges resulting from nodes being connected by zones
processZones();
compute();
BOOST_FOREACH( RN_EDGE_PTR& edge, *m_rnEdges )
validateEdge( edge );
m_dirty = false;
}
void RN_NET::AddItem( const D_PAD* aPad )
{
RN_NODE_PTR nodePtr = m_links.AddNode( aPad->GetPosition().x, aPad->GetPosition().y );
m_pads[aPad] = nodePtr;
m_dirty = true;
}
void RN_NET::AddItem( const SEGVIA* aVia )
{
m_vias[aVia] = m_links.AddNode( aVia->GetPosition().x, aVia->GetPosition().y );
m_dirty = true;
}
void RN_NET::AddItem( const TRACK* aTrack )
{
RN_NODE_PTR start = m_links.AddNode( aTrack->GetStart().x, aTrack->GetStart().y );
RN_NODE_PTR end = m_links.AddNode( aTrack->GetEnd().x, aTrack->GetEnd().y );
m_tracks[aTrack] = m_links.AddConnection( start, end );
m_dirty = true;
}
void RN_NET::AddItem( const ZONE_CONTAINER* aZone )
{
// Prepare a list of polygons (every zone can contain one or more polygons)
const std::vector<CPolyPt>& polyPoints = aZone->GetFilledPolysList().GetList();
if( polyPoints.size() == 0 )
return;
// Origin and end of bounding box for a polygon
VECTOR2I origin( polyPoints[0].x, polyPoints[0].y );
VECTOR2I end( polyPoints[0].x, polyPoints[0].y );
unsigned int idxStart = 0;
// Extract polygons from zones
for( unsigned int i = 0; i < polyPoints.size(); ++i )
{
const CPolyPt& point = polyPoints[i];
// Determine bounding box
if( point.x < origin.x )
origin.x = point.x;
else if( point.x > end.x )
end.x = point.x;
if( point.y < origin.y )
origin.y = point.y;
else if( point.y > end.y )
end.y = point.y;
if( point.end_contour )
{
// The last vertex is enclosing the polygon (it repeats at the beginning and
// at the end), so we skip it
m_zonePolygons[aZone].push_back( RN_POLY( &polyPoints[idxStart], &point, aZone,
m_links, BOX2I( origin, end - origin ) ) );
idxStart = i + 1;
if( idxStart < polyPoints.size() )
{
origin.x = polyPoints[idxStart].x;
origin.y = polyPoints[idxStart].y;
end.x = polyPoints[idxStart].x;
end.y = polyPoints[idxStart].y;
}
}
}
m_dirty = true;
}
void RN_NET::RemoveItem( const D_PAD* aPad )
{
try
{
RN_NODE_PTR node = m_pads.at( aPad );
if( m_links.RemoveNode( node ) )
clearNode( node );
m_pads.erase( aPad );
m_dirty = true;
}
catch( ... )
{
}
}
void RN_NET::RemoveItem( const SEGVIA* aVia )
{
try
{
RN_NODE_PTR node = m_vias.at( aVia );
if( m_links.RemoveNode( node ) )
clearNode( node );
m_vias.erase( aVia );
m_dirty = true;
}
catch( ... )
{
}
}
void RN_NET::RemoveItem( const TRACK* aTrack )
{
try
{
RN_EDGE_PTR& edge = m_tracks.at( aTrack );
// Save nodes, so they can be cleared later
RN_NODE_PTR aBegin = edge->getSourceNode();
RN_NODE_PTR aEnd = edge->getTargetNode();
m_links.RemoveConnection( edge );
// Remove nodes associated with the edge. It is done in a safe way, there is a check
// if nodes are not used by other edges.
if( m_links.RemoveNode( aBegin ) )
clearNode( aBegin );
if( m_links.RemoveNode( aEnd ) )
clearNode( aEnd );
m_tracks.erase( aTrack );
m_dirty = true;
}
catch( ... )
{
}
}
void RN_NET::RemoveItem( const ZONE_CONTAINER* aZone )
{
try
{
// Remove all subpolygons that make the zone
std::deque<RN_POLY>& polygons = m_zonePolygons.at( aZone );
BOOST_FOREACH( RN_POLY& polygon, polygons )
{
const RN_NODE_PTR node = polygon.GetNode();
if( m_links.RemoveNode( node ) )
clearNode( node );
}
polygons.clear();
// Remove all connections added by the zone
std::deque<RN_EDGE_PTR>& edges = m_zoneConnections.at( aZone );
BOOST_FOREACH( RN_EDGE_PTR& edge, edges )
m_links.RemoveConnection( edge );
edges.clear();
m_dirty = true;
}
catch( ... )
{
}
}
const RN_NODE_PTR RN_NET::GetClosestNode( const RN_NODE_PTR& aNode ) const
{
const RN_LINKS::RN_NODE_SET& nodes = m_links.GetNodes();
RN_LINKS::RN_NODE_SET::const_iterator it, itEnd;
unsigned int minDistance = std::numeric_limits<unsigned int>::max();
RN_NODE_PTR closest;
for( it = nodes.begin(), itEnd = nodes.end(); it != itEnd; ++it )
{
RN_NODE_PTR node = *it;
// Obviously the distance between node and itself is the shortest,
// that's why we have to skip it
if( node != aNode )
{
unsigned int distance = getDistance( node, aNode );
if( distance < minDistance )
{
minDistance = distance;
closest = node;
}
}
}
return closest;
}
const RN_NODE_PTR RN_NET::GetClosestNode( const RN_NODE_PTR& aNode,
const RN_NODE_FILTER& aFilter ) const
{
const RN_LINKS::RN_NODE_SET& nodes = m_links.GetNodes();
RN_LINKS::RN_NODE_SET::const_iterator it, itEnd;
unsigned int minDistance = std::numeric_limits<unsigned int>::max();
RN_NODE_PTR closest;
for( it = nodes.begin(), itEnd = nodes.end(); it != itEnd; ++it )
{
RN_NODE_PTR node = *it;
// Obviously the distance between node and itself is the shortest,
// that's why we have to skip it
if( node != aNode && aFilter( node ) )
{
unsigned int distance = getDistance( node, aNode );
if( distance < minDistance )
{
minDistance = distance;
closest = node;
}
}
}
return closest;
}
std::list<RN_NODE_PTR> RN_NET::GetClosestNodes( const RN_NODE_PTR& aNode, int aNumber ) const
{
std::list<RN_NODE_PTR> closest;
const RN_LINKS::RN_NODE_SET& nodes = m_links.GetNodes();
// Copy nodes
BOOST_FOREACH( const RN_NODE_PTR& node, nodes )
closest.push_back( node );
// Sort by the distance from aNode
closest.sort( boost::bind( sortDistance, aNode, _1, _2 ) );
// Remove the first node (==aNode), as it is surely located within the smallest distance
closest.pop_front();
// Trim the result to the asked size
if( aNumber > 0 )
closest.resize( std::min( (size_t)aNumber, nodes.size() ) );
return closest;
}
std::list<RN_NODE_PTR> RN_NET::GetClosestNodes( const RN_NODE_PTR& aNode,
const RN_NODE_FILTER& aFilter, int aNumber ) const
{
std::list<RN_NODE_PTR> closest;
const RN_LINKS::RN_NODE_SET& nodes = m_links.GetNodes();
// Copy nodes
BOOST_FOREACH( const RN_NODE_PTR& node, nodes )
closest.push_back( node );
// Sort by the distance from aNode
closest.sort( boost::bind( sortDistance, aNode, _1, _2 ) );
// Remove the first node (==aNode), as it is surely located within the smallest distance
closest.pop_front();
// Filter out by condition
std::remove_if( closest.begin(), closest.end(), aFilter );
// Trim the result to the asked size
if( aNumber > 0 )
closest.resize( std::min( static_cast<size_t>( aNumber ), nodes.size() ) );
return closest;
}
std::list<RN_NODE_PTR> RN_NET::GetNodes( const BOARD_CONNECTED_ITEM* aItem ) const
{
std::list<RN_NODE_PTR> nodes;
try
{
switch( aItem->Type() )
{
case PCB_PAD_T:
{
const D_PAD* pad = static_cast<const D_PAD*>( aItem );
nodes.push_back( m_pads.at( pad ) );
}
break;
case PCB_VIA_T:
{
const SEGVIA* via = static_cast<const SEGVIA*>( aItem );
nodes.push_back( m_vias.at( via ) );
}
break;
case PCB_TRACE_T:
{
const TRACK* track = static_cast<const TRACK*>( aItem );
RN_EDGE_PTR edge = m_tracks.at( track );
nodes.push_back( edge->getSourceNode() );
nodes.push_back( edge->getTargetNode() );
}
break;
default:
break;
}
}
catch ( ... )
{
return nodes;
}
return nodes;
}
void RN_DATA::AddSimple( const BOARD_ITEM* aItem )
{
int net;
if( aItem->IsConnected() )
{
const BOARD_CONNECTED_ITEM* item = static_cast<const BOARD_CONNECTED_ITEM*>( aItem );
net = item->GetNetCode();
if( net < 1 ) // do not process unconnected items
return;
// Add all nodes belonging to the item
BOOST_FOREACH( RN_NODE_PTR node, m_nets[net].GetNodes( item ) )
m_nets[net].AddSimpleNode( node );
}
else if( aItem->Type() == PCB_MODULE_T )
{
const MODULE* module = static_cast<const MODULE*>( aItem );
for( const D_PAD* pad = module->Pads().GetFirst(); pad; pad = pad->Next() )
AddSimple( pad );
return;
}
else
return;
}
void RN_DATA::AddBlocked( const BOARD_ITEM* aItem )
{
int net;
if( aItem->IsConnected() )
{
const BOARD_CONNECTED_ITEM* item = static_cast<const BOARD_CONNECTED_ITEM*>( aItem );
net = item->GetNetCode();
if( net < 1 ) // do not process unconnected items
return;
// Block all nodes belonging to the item
BOOST_FOREACH( RN_NODE_PTR node, m_nets[net].GetNodes( item ) )
m_nets[net].AddBlockedNode( node );
}
else if( aItem->Type() == PCB_MODULE_T )
{
const MODULE* module = static_cast<const MODULE*>( aItem );
for( const D_PAD* pad = module->Pads().GetFirst(); pad; pad = pad->Next() )
AddBlocked( pad );
return;
}
else
return;
}
void RN_DATA::AddSimple( const VECTOR2I& aPosition, int aNetCode )
{
assert( aNetCode > 0 );
RN_NODE_PTR newNode = boost::make_shared<RN_NODE>( aPosition.x, aPosition.y );
m_nets[aNetCode].AddSimpleNode( newNode );
}
void RN_NET::processZones()
{
BOOST_FOREACH( std::deque<RN_EDGE_PTR>& edges, m_zoneConnections | boost::adaptors::map_values )
{
BOOST_FOREACH( RN_EDGE_PTR& edge, edges )
m_links.RemoveConnection( edge );
edges.clear();
}
RN_LINKS::RN_NODE_SET candidates = m_links.GetNodes();
BOOST_FOREACH( std::deque<RN_POLY>& polygons, m_zonePolygons | boost::adaptors::map_values )
{
RN_LINKS::RN_NODE_SET::iterator point, pointEnd;
std::deque<RN_POLY>::iterator poly, polyEnd;
// Sorting by area should speed up the processing, as smaller polygons are computed
// faster and may reduce the number of points for further checks
std::sort( polygons.begin(), polygons.end(), sortArea );
for( poly = polygons.begin(), polyEnd = polygons.end(); poly != polyEnd; ++poly )
{
point = candidates.begin();
pointEnd = candidates.end();
while( point != pointEnd )
{
if( poly->HitTest( *point ) )
{
const RN_EDGE_PTR& connection = m_links.AddConnection( poly->GetNode(), *point );
m_zoneConnections[poly->GetParent()].push_back( connection );
// This point already belongs to a polygon, we do not need to check it anymore
point = candidates.erase( point );
pointEnd = candidates.end();
}
else
{
++point;
}
}
}
}
}
void RN_DATA::Add( const BOARD_ITEM* aItem )
{
int net;
if( aItem->IsConnected() )
{
net = static_cast<const BOARD_CONNECTED_ITEM*>( aItem )->GetNetCode();
if( net < 1 ) // do not process unconnected items
return;
// Autoresize
if( net >= (int) m_nets.size() )
m_nets.resize( net + 1 );
}
else if( aItem->Type() == PCB_MODULE_T )
{
const MODULE* module = static_cast<const MODULE*>( aItem );
for( const D_PAD* pad = module->Pads().GetFirst(); pad; pad = pad->Next() )
{
net = pad->GetNetCode();
if( net < 1 ) // do not process unconnected items
continue;
// Autoresize
if( net >= (int) m_nets.size() )
m_nets.resize( net + 1 );
m_nets[net].AddItem( pad );
}
return;
}
else
return;
switch( aItem->Type() )
{
case PCB_PAD_T:
m_nets[net].AddItem( static_cast<const D_PAD*>( aItem ) );
break;
case PCB_TRACE_T:
m_nets[net].AddItem( static_cast<const TRACK*>( aItem ) );
break;
case PCB_VIA_T:
m_nets[net].AddItem( static_cast<const SEGVIA*>( aItem ) );
break;
case PCB_ZONE_AREA_T:
m_nets[net].AddItem( static_cast<const ZONE_CONTAINER*>( aItem ) );
break;
default:
break;
}
}
void RN_DATA::Remove( const BOARD_ITEM* aItem )
{
int net;
if( aItem->IsConnected() )
{
net = static_cast<const BOARD_CONNECTED_ITEM*>( aItem )->GetNetCode();
if( net < 1 ) // do not process unconnected items
return;
}
else if( aItem->Type() == PCB_MODULE_T )
{
const MODULE* module = static_cast<const MODULE*>( aItem );
for( const D_PAD* pad = module->Pads().GetFirst(); pad; pad = pad->Next() )
{
net = pad->GetNetCode();
if( net < 1 ) // do not process unconnected items
continue;
m_nets[net].RemoveItem( pad );
}
return;
}
else
return;
switch( aItem->Type() )
{
case PCB_PAD_T:
m_nets[net].RemoveItem( static_cast<const D_PAD*>( aItem ) );
break;
case PCB_TRACE_T:
m_nets[net].RemoveItem( static_cast<const TRACK*>( aItem ) );
break;
case PCB_VIA_T:
m_nets[net].RemoveItem( static_cast<const SEGVIA*>( aItem ) );
break;
case PCB_ZONE_AREA_T:
m_nets[net].RemoveItem( static_cast<const ZONE_CONTAINER*>( aItem ) );
break;
default:
break;
}
}
void RN_DATA::Update( const BOARD_ITEM* aItem )
{
Remove( aItem );
Add( aItem );
}
void RN_DATA::ProcessBoard()
{
m_nets.clear();
m_nets.resize( m_board->GetNetCount() );
int netCode;
// Iterate over all items that may need to be connected
for( MODULE* module = m_board->m_Modules; module; module = module->Next() )
{
for( D_PAD* pad = module->Pads().GetFirst(); pad; pad = pad->Next() )
{
netCode = pad->GetNetCode();
if( netCode > 0 )
m_nets[netCode].AddItem( pad );
}
}
for( TRACK* track = m_board->m_Track; track; track = track->Next() )
{
netCode = track->GetNetCode();
if( netCode > 0 )
{
if( track->Type() == PCB_VIA_T )
m_nets[netCode].AddItem( static_cast<SEGVIA*>( track ) );
else if( track->Type() == PCB_TRACE_T )
m_nets[netCode].AddItem( track );
}
}
for( int i = 0; i < m_board->GetAreaCount(); ++i )
{
ZONE_CONTAINER* zone = m_board->GetArea( i );
netCode = zone->GetNetCode();
if( netCode > 0 )
m_nets[netCode].AddItem( zone );
}
}
void RN_DATA::Recalculate( int aNet )
{
if( aNet < 0 ) // Recompute everything
{
unsigned int i, netCount;
netCount = m_board->GetNetCount();
#ifdef USE_OPENMP
#pragma omp parallel shared(netCount) private(i)
{
#pragma omp for schedule(guided, 1)
#else /* USE_OPENMP */
{
#endif
// Start with net number 1, as 0 stands for not connected
for( i = 1; i < netCount; ++i )
{
if( m_nets[i].IsDirty() )
updateNet( i );
}
} /* end of parallel section */
}
else if( aNet > 0 ) // Recompute only specific net
{
updateNet( aNet );
}
}
void RN_DATA::updateNet( int aNetCode )
{
assert( aNetCode < (int) m_nets.size() );
if( aNetCode < 1 )
return;
m_nets[aNetCode].ClearSimple();
m_nets[aNetCode].Update();
}