kicad/pcbnew/ratsnest/ratsnest_data.cpp

476 lines
13 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2013-2017 CERN
* Copyright (C) 2019-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* @author Maciej Suminski <maciej.suminski@cern.ch>
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file ratsnest_data.cpp
* @brief Class that computes missing connections on a PCB.
*/
#ifdef PROFILE
#include <profile.h>
#endif
#include <ratsnest/ratsnest_data.h>
#include <functional>
using namespace std::placeholders;
#include <algorithm>
#include <cassert>
#include <limits>
#include <delaunator.hpp>
class disjoint_set
{
public:
disjoint_set( size_t size )
{
m_data.resize( size );
m_depth.resize( size, 0 );
for( size_t i = 0; i < size; i++ )
m_data[i] = i;
}
int find( int aVal )
{
int root = aVal;
while( m_data[root] != root )
root = m_data[root];
// Compress the path
while( m_data[aVal] != aVal )
{
auto& tmp = m_data[aVal];
aVal = tmp;
tmp = root;
}
return root;
}
bool unite( int aVal1, int aVal2 )
{
aVal1 = find( aVal1 );
aVal2 = find( aVal2 );
if( aVal1 != aVal2 )
{
if( m_depth[aVal1] < m_depth[aVal2] )
{
m_data[aVal1] = aVal2;
}
else
{
m_data[aVal2] = aVal1;
if( m_depth[aVal1] == m_depth[aVal2] )
m_depth[aVal1]++;
}
return true;
}
return false;
}
private:
std::vector<int> m_data;
std::vector<int> m_depth;
};
void RN_NET::kruskalMST( std::vector<CN_EDGE>& aEdges,
const std::set< std::pair<KIID, KIID> >& aExclusions )
{
disjoint_set dset( m_nodes.size() );
m_rnEdges.clear();
int i = 0;
for( const CN_ANCHOR_PTR& node : m_nodes )
node->SetTag( i++ );
for( CN_EDGE& tmp : aEdges )
{
const CN_ANCHOR_PTR& source = tmp.GetSourceNode();
const CN_ANCHOR_PTR& target = tmp.GetTargetNode();
if( dset.unite( source->GetTag(), target->GetTag() ) )
{
if( tmp.GetWeight() > 0 )
{
std::pair<KIID, KIID> ids = { source->Parent()->m_Uuid, target->Parent()->m_Uuid };
tmp.SetVisible( aExclusions.count( ids ) == 0 );
m_rnEdges.push_back( tmp );
}
}
}
}
class RN_NET::TRIANGULATOR_STATE
{
private:
std::multiset<CN_ANCHOR_PTR, CN_PTR_CMP> m_allNodes;
// Checks if all nodes in aNodes lie on a single line. Requires the nodes to
// have unique coordinates!
bool areNodesColinear( const std::vector<CN_ANCHOR_PTR>& aNodes ) const
{
if ( aNodes.size() <= 2 )
return true;
const VECTOR2I p0( aNodes[0]->Pos() );
const VECTOR2I v0( aNodes[1]->Pos() - p0 );
for( unsigned i = 2; i < aNodes.size(); i++ )
{
const VECTOR2I v1 = aNodes[i]->Pos() - p0;
if( v0.Cross( v1 ) != 0 )
return false;
}
return true;
}
public:
void Clear()
{
m_allNodes.clear();
}
void AddNode( CN_ANCHOR_PTR aNode )
{
m_allNodes.insert( aNode );
}
void Triangulate( std::vector<CN_EDGE>& mstEdges )
{
std::vector<double> node_pts;
std::vector<CN_ANCHOR_PTR> anchors;
std::vector< std::vector<CN_ANCHOR_PTR> > anchorChains( m_allNodes.size() );
node_pts.reserve( 2 * m_allNodes.size() );
anchors.reserve( m_allNodes.size() );
CN_ANCHOR_PTR prev = nullptr;
for( const CN_ANCHOR_PTR& n : m_allNodes )
{
if( !prev || prev->Pos() != n->Pos() )
{
node_pts.push_back( n->Pos().x );
node_pts.push_back( n->Pos().y );
anchors.push_back( n );
prev = n;
}
anchorChains[anchors.size() - 1].push_back( n );
}
if( anchors.size() < 2 )
{
return;
}
else if( areNodesColinear( anchors ) )
{
// special case: all nodes are on the same line - there's no
// triangulation for such set. In this case, we sort along any coordinate
// and chain the nodes together.
for( size_t i = 0; i < anchors.size() - 1; i++ )
{
const CN_ANCHOR_PTR& src = anchors[i];
const CN_ANCHOR_PTR& dst = anchors[i + 1];
mstEdges.emplace_back( src, dst, src->Dist( *dst ) );
}
}
else
{
delaunator::Delaunator delaunator( node_pts );
auto& triangles = delaunator.triangles;
for( size_t i = 0; i < triangles.size(); i += 3 )
{
CN_ANCHOR_PTR src = anchors[triangles[i]];
CN_ANCHOR_PTR dst = anchors[triangles[i + 1]];
mstEdges.emplace_back( src, dst, src->Dist( *dst ) );
src = anchors[triangles[i + 1]];
dst = anchors[triangles[i + 2]];
mstEdges.emplace_back( src, dst, src->Dist( *dst ) );
src = anchors[triangles[i + 2]];
dst = anchors[triangles[i]];
mstEdges.emplace_back( src, dst, src->Dist( *dst ) );
}
for( size_t i = 0; i < delaunator.halfedges.size(); i++ )
{
if( delaunator.halfedges[i] == delaunator::INVALID_INDEX )
continue;
const CN_ANCHOR_PTR& src = anchors[triangles[i]];
const CN_ANCHOR_PTR& dst = anchors[triangles[delaunator.halfedges[i]]];
mstEdges.emplace_back( src, dst, src->Dist( *dst ) );
}
}
for( size_t i = 0; i < anchorChains.size(); i++ )
{
std::vector<CN_ANCHOR_PTR>& chain = anchorChains[i];
if( chain.size() < 2 )
continue;
std::sort( chain.begin(), chain.end(),
[] ( const CN_ANCHOR_PTR& a, const CN_ANCHOR_PTR& b )
{
return a->GetCluster().get() < b->GetCluster().get();
} );
for( unsigned int j = 1; j < chain.size(); j++ )
{
const CN_ANCHOR_PTR& prevNode = chain[j - 1];
const CN_ANCHOR_PTR& curNode = chain[j];
int weight = prevNode->GetCluster() != curNode->GetCluster() ? 1 : 0;
mstEdges.emplace_back( prevNode, curNode, weight );
}
}
}
};
RN_NET::RN_NET() : m_dirty( true )
{
m_triangulator.reset( new TRIANGULATOR_STATE );
}
void RN_NET::compute( const std::set< std::pair<KIID, KIID> >& aExclusions )
{
// Special cases do not need complicated algorithms (actually, it does not work well with
// the Delaunay triangulator)
if( m_nodes.size() <= 2 )
{
m_rnEdges.clear();
// Check if the only possible connection exists
if( m_boardEdges.size() == 0 && m_nodes.size() == 2 )
{
auto last = ++m_nodes.begin();
// There can be only one possible connection, but it is missing
CN_EDGE edge( *m_nodes.begin(), *last );
const CN_ANCHOR_PTR& source = edge.GetSourceNode();
const CN_ANCHOR_PTR& target = edge.GetTargetNode();
std::pair<KIID, KIID> ids = { source->Parent()->m_Uuid, target->Parent()->m_Uuid };
source->SetTag( 0 );
target->SetTag( 1 );
edge.SetVisible( aExclusions.count( ids ) == 0 );
m_rnEdges.push_back( edge );
}
else
{
// Set tags to m_nodes as connected
for( const CN_ANCHOR_PTR& node : m_nodes )
node->SetTag( 0 );
}
return;
}
m_triangulator->Clear();
for( const CN_ANCHOR_PTR& n : m_nodes )
m_triangulator->AddNode( n );
std::vector<CN_EDGE> triangEdges;
triangEdges.reserve( m_nodes.size() + m_boardEdges.size() );
#ifdef PROFILE
PROF_COUNTER cnt("triangulate");
#endif
m_triangulator->Triangulate( triangEdges );
#ifdef PROFILE
cnt.Show();
#endif
for( const CN_EDGE& e : m_boardEdges )
triangEdges.emplace_back( e );
std::sort( triangEdges.begin(), triangEdges.end() );
// Get the minimal spanning tree
#ifdef PROFILE
PROF_COUNTER cnt2("mst");
#endif
kruskalMST( triangEdges, aExclusions );
#ifdef PROFILE
cnt2.Show();
#endif
}
void RN_NET::Update( const std::set< std::pair<KIID, KIID> >& aExclusions )
{
compute( aExclusions );
m_dirty = false;
}
void RN_NET::Clear()
{
m_rnEdges.clear();
m_boardEdges.clear();
m_nodes.clear();
m_dirty = true;
}
void RN_NET::AddCluster( CN_CLUSTER_PTR aCluster )
{
CN_ANCHOR_PTR firstAnchor;
for( CN_ITEM* item : *aCluster )
{
bool isZone = dynamic_cast<CN_ZONE_LAYER*>( item );
std::vector<CN_ANCHOR_PTR>& anchors = item->Anchors();
unsigned int nAnchors = isZone ? 1 : anchors.size();
if( nAnchors > anchors.size() )
nAnchors = anchors.size();
for( unsigned int i = 0; i < nAnchors; i++ )
{
anchors[i]->SetCluster( aCluster );
m_nodes.insert( anchors[i] );
if( firstAnchor )
{
if( firstAnchor != anchors[i] )
m_boardEdges.emplace_back( firstAnchor, anchors[i], 0 );
}
else
{
firstAnchor = anchors[i];
}
}
}
}
bool RN_NET::NearestBicoloredPair( const RN_NET& aOtherNet, CN_ANCHOR_PTR& aNode1,
CN_ANCHOR_PTR& aNode2 ) const
{
bool rv = false;
SEG::ecoord distMax_sq = VECTOR2I::ECOORD_MAX;
auto verify =
[&]( const std::shared_ptr<CN_ANCHOR>& aTestNode1,
const std::shared_ptr<CN_ANCHOR>& aTestNode2 )
{
VECTOR2I diff = aTestNode1->Pos() - aTestNode2->Pos();
SEG::ecoord dist_sq = diff.SquaredEuclideanNorm();
if( dist_sq < distMax_sq )
{
rv = true;
distMax_sq = dist_sq;
aNode1 = aTestNode1;
aNode2 = aTestNode2;
}
};
/// Sweep-line algorithm to cut the number of comparisons to find the closest point
///
/// Step 1: The outer loop needs to be the subset (selected nodes) as it is a linear search
for( const std::shared_ptr<CN_ANCHOR>& nodeA : aOtherNet.m_nodes )
{
if( nodeA->GetNoLine() )
continue;
/// Step 2: O( log n ) search to identify a close element ordered by x
/// The fwd_it iterator will move forward through the elements while
/// the rev_it iterator will move backward through the same set
auto fwd_it = m_nodes.lower_bound( nodeA );
auto rev_it = std::make_reverse_iterator( fwd_it );
for( ; fwd_it != m_nodes.end(); ++fwd_it )
{
const std::shared_ptr<CN_ANCHOR>& nodeB = *fwd_it;
if( nodeB->GetNoLine() )
continue;
SEG::ecoord distX_sq = SEG::Square( nodeA->Pos().x - nodeB->Pos().x );
/// As soon as the x distance (primary sort) is larger than the smallest distance,
/// stop checking further elements
if( distX_sq > distMax_sq )
break;
verify( nodeA, nodeB );
}
/// Step 3: using the same starting point, check points backwards for closer points
for( ; rev_it != m_nodes.rend(); ++rev_it )
{
const std::shared_ptr<CN_ANCHOR>& nodeB = *rev_it;
if( nodeB->GetNoLine() )
continue;
SEG::ecoord distX_sq = SEG::Square( nodeA->Pos().x - nodeB->Pos().x );
if( distX_sq > distMax_sq )
break;
verify( nodeA, nodeB );
}
}
return rv;
}