kicad/include/boost/heap/pairing_heap.hpp

703 lines
21 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// boost heap: pairing heap
//
// Copyright (C) 2010 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HEAP_PAIRING_HEAP_HPP
#define BOOST_HEAP_PAIRING_HEAP_HPP
#include <algorithm>
#include <vector>
#include <boost/assert.hpp>
#include <boost/heap/detail/heap_comparison.hpp>
#include <boost/heap/detail/heap_node.hpp>
#include <boost/heap/policies.hpp>
#include <boost/heap/detail/stable_heap.hpp>
#include <boost/heap/detail/tree_iterator.hpp>
#ifndef BOOST_DOXYGEN_INVOKED
#ifdef BOOST_HEAP_SANITYCHECKS
#define BOOST_HEAP_ASSERT BOOST_ASSERT
#else
#define BOOST_HEAP_ASSERT(expression)
#endif
#endif
namespace boost {
namespace heap {
namespace detail {
typedef parameter::parameters<boost::parameter::optional<tag::allocator>,
boost::parameter::optional<tag::compare>,
boost::parameter::optional<tag::stable>,
boost::parameter::optional<tag::constant_time_size>,
boost::parameter::optional<tag::stability_counter_type>
> pairing_heap_signature;
template <typename T, typename Parspec>
struct make_pairing_heap_base
{
static const bool constant_time_size = parameter::binding<Parspec,
tag::constant_time_size,
boost::mpl::true_
>::type::value;
typedef typename detail::make_heap_base<T, Parspec, constant_time_size>::type base_type;
typedef typename detail::make_heap_base<T, Parspec, constant_time_size>::allocator_argument allocator_argument;
typedef typename detail::make_heap_base<T, Parspec, constant_time_size>::compare_argument compare_argument;
typedef heap_node<typename base_type::internal_type, false> node_type;
typedef typename allocator_argument::template rebind<node_type>::other allocator_type;
struct type:
base_type,
allocator_type
{
type(compare_argument const & arg):
base_type(arg)
{}
#ifdef BOOST_HAS_RVALUE_REFS
type(type && rhs):
base_type(std::move(static_cast<base_type&>(rhs))),
allocator_type(std::move(static_cast<allocator_type&>(rhs)))
{}
type & operator=(type && rhs)
{
base_type::operator=(std::move(static_cast<base_type&>(rhs)));
allocator_type::operator=(std::move(static_cast<allocator_type&>(rhs)));
return *this;
}
type & operator=(type const & rhs)
{
base_type::operator=(static_cast<base_type const &>(rhs));
allocator_type::operator=(static_cast<const allocator_type&>(rhs));
return *this;
}
#endif
};
};
}
/**
* \class pairing_heap
* \brief pairing heap
*
* Pairing heaps are self-adjusting binary heaps. Although design and implementation are rather simple,
* the complexity analysis is yet unsolved. For details, consult:
*
* Pettie, Seth (2005), "Towards a final analysis of pairing heaps",
* Proc. 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 174183
*
* The template parameter T is the type to be managed by the container.
* The user can specify additional options and if no options are provided default options are used.
*
* The container supports the following options:
* - \c boost::heap::compare<>, defaults to \c compare<std::less<T> >
* - \c boost::heap::stable<>, defaults to \c stable<false>
* - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type<boost::uintmax_t>
* - \c boost::heap::allocator<>, defaults to \c allocator<std::allocator<T> >
* - \c boost::heap::constant_time_size<>, defaults to \c constant_time_size<true>
*
*
*/
#ifdef BOOST_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template <typename T,
class A0 = boost::parameter::void_,
class A1 = boost::parameter::void_,
class A2 = boost::parameter::void_,
class A3 = boost::parameter::void_,
class A4 = boost::parameter::void_
>
#endif
class pairing_heap:
private detail::make_pairing_heap_base<T,
typename detail::pairing_heap_signature::bind<A0, A1, A2, A3, A4>::type
>::type
{
typedef typename detail::pairing_heap_signature::bind<A0, A1, A2, A3, A4>::type bound_args;
typedef detail::make_pairing_heap_base<T, bound_args> base_maker;
typedef typename base_maker::type super_t;
typedef typename super_t::internal_type internal_type;
typedef typename super_t::size_holder_type size_holder;
typedef typename base_maker::allocator_argument allocator_argument;
private:
template <typename Heap1, typename Heap2>
friend struct heap_merge_emulate;
#ifndef BOOST_DOXYGEN_INVOKED
struct implementation_defined:
detail::extract_allocator_types<typename base_maker::allocator_argument>
{
typedef T value_type;
typedef typename detail::extract_allocator_types<typename base_maker::allocator_argument>::size_type size_type;
typedef typename detail::extract_allocator_types<typename base_maker::allocator_argument>::reference reference;
typedef typename base_maker::compare_argument value_compare;
typedef typename base_maker::allocator_type allocator_type;
typedef typename allocator_type::pointer node_pointer;
typedef typename allocator_type::const_pointer const_node_pointer;
typedef detail::heap_node_list node_list_type;
typedef typename node_list_type::iterator node_list_iterator;
typedef typename node_list_type::const_iterator node_list_const_iterator;
typedef typename base_maker::node_type node;
typedef detail::value_extractor<value_type, internal_type, super_t> value_extractor;
typedef typename super_t::internal_compare internal_compare;
typedef detail::node_handle<node_pointer, super_t, reference> handle_type;
typedef detail::tree_iterator<node,
const value_type,
allocator_type,
value_extractor,
detail::pointer_to_reference<node>,
false,
false,
value_compare
> iterator;
typedef iterator const_iterator;
typedef detail::tree_iterator<node,
const value_type,
allocator_type,
value_extractor,
detail::pointer_to_reference<node>,
false,
true,
value_compare
> ordered_iterator;
};
typedef typename implementation_defined::node node;
typedef typename implementation_defined::node_pointer node_pointer;
typedef typename implementation_defined::node_list_type node_list_type;
typedef typename implementation_defined::node_list_iterator node_list_iterator;
typedef typename implementation_defined::node_list_const_iterator node_list_const_iterator;
typedef typename implementation_defined::internal_compare internal_compare;
typedef boost::intrusive::list<detail::heap_node_base<true>,
boost::intrusive::constant_time_size<false>
> node_child_list;
#endif
public:
typedef T value_type;
typedef typename implementation_defined::size_type size_type;
typedef typename implementation_defined::difference_type difference_type;
typedef typename implementation_defined::value_compare value_compare;
typedef typename implementation_defined::allocator_type allocator_type;
typedef typename implementation_defined::reference reference;
typedef typename implementation_defined::const_reference const_reference;
typedef typename implementation_defined::pointer pointer;
typedef typename implementation_defined::const_pointer const_pointer;
/// \copydoc boost::heap::priority_queue::iterator
typedef typename implementation_defined::iterator iterator;
typedef typename implementation_defined::const_iterator const_iterator;
typedef typename implementation_defined::ordered_iterator ordered_iterator;
typedef typename implementation_defined::handle_type handle_type;
static const bool constant_time_size = super_t::constant_time_size;
static const bool has_ordered_iterators = true;
static const bool is_mergable = true;
static const bool is_stable = detail::extract_stable<bound_args>::value;
static const bool has_reserve = false;
/// \copydoc boost::heap::priority_queue::priority_queue(value_compare const &)
explicit pairing_heap(value_compare const & cmp = value_compare()):
super_t(cmp), root(NULL)
{}
/// \copydoc boost::heap::priority_queue::priority_queue(priority_queue const &)
pairing_heap(pairing_heap const & rhs):
super_t(rhs), root(NULL)
{
if (rhs.empty())
return;
clone_tree(rhs);
size_holder::set_size(rhs.get_size());
}
#ifdef BOOST_HAS_RVALUE_REFS
/// \copydoc boost::heap::priority_queue::priority_queue(priority_queue &&)
pairing_heap(pairing_heap && rhs):
super_t(std::move(rhs)), root(rhs.root)
{
rhs.root = NULL;
}
/// \copydoc boost::heap::priority_queue::operator=(priority_queue &&)
pairing_heap & operator=(pairing_heap && rhs)
{
super_t::operator=(std::move(rhs));
root = rhs.root;
rhs.root = NULL;
return *this;
}
#endif
/// \copydoc boost::heap::priority_queue::operator=(priority_queue const & rhs)
pairing_heap & operator=(pairing_heap const & rhs)
{
clear();
size_holder::set_size(rhs.get_size());
static_cast<super_t&>(*this) = rhs;
clone_tree(rhs);
return *this;
}
~pairing_heap(void)
{
while (!empty())
pop();
}
/// \copydoc boost::heap::priority_queue::empty
bool empty(void) const
{
return root == NULL;
}
/// \copydoc boost::heap::binomial_heap::size
size_type size(void) const
{
if (constant_time_size)
return size_holder::get_size();
if (root == NULL)
return 0;
else
return detail::count_nodes(root);
}
/// \copydoc boost::heap::priority_queue::max_size
size_type max_size(void) const
{
return allocator_type::max_size();
}
/// \copydoc boost::heap::priority_queue::clear
void clear(void)
{
if (empty())
return;
root->template clear_subtree<allocator_type>(*this);
root->~node();
allocator_type::deallocate(root, 1);
root = NULL;
size_holder::set_size(0);
}
/// \copydoc boost::heap::priority_queue::get_allocator
allocator_type get_allocator(void) const
{
return *this;
}
/// \copydoc boost::heap::priority_queue::swap
void swap(pairing_heap & rhs)
{
super_t::swap(rhs);
std::swap(root, rhs.root);
}
/// \copydoc boost::heap::priority_queue::top
const_reference top(void) const
{
BOOST_ASSERT(!empty());
return super_t::get_value(root->value);
}
/**
* \b Effects: Adds a new element to the priority queue. Returns handle to element
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* */
handle_type push(value_type const & v)
{
size_holder::increment();
node_pointer n = allocator_type::allocate(1);
new(n) node(super_t::make_node(v));
merge_node(n);
return handle_type(n);
}
#if defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_NO_VARIADIC_TEMPLATES)
/**
* \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place. Returns handle to element.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* */
template <class... Args>
handle_type emplace(Args&&... args)
{
size_holder::increment();
node_pointer n = allocator_type::allocate(1);
new(n) node(super_t::make_node(std::forward<T>(args)...));
merge_node(n);
return handle_type(n);
}
#endif
/**
* \b Effects: Removes the top element from the priority queue.
*
* \b Complexity: Logarithmic (amortized).
*
* */
void pop(void)
{
BOOST_ASSERT(!empty());
erase(handle_type(root));
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* */
void update (handle_type handle, const_reference v)
{
handle.node_->value = super_t::make_node(v);
update(handle);
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
* */
void update (handle_type handle)
{
node_pointer n = handle.node_;
n->unlink();
if (!n->children.empty())
n = merge_nodes(n, merge_node_list(n->children));
if (n != root)
merge_node(n);
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* \b Note: The new value is expected to be greater than the current one
* */
void increase (handle_type handle, const_reference v)
{
update(handle, v);
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
* */
void increase (handle_type handle)
{
update(handle);
}
/**
* \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* \b Note: The new value is expected to be less than the current one
* */
void decrease (handle_type handle, const_reference v)
{
update(handle, v);
}
/**
* \b Effects: Updates the heap after the element handled by \c handle has been changed.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
* */
void decrease (handle_type handle)
{
update(handle);
}
/**
* \b Effects: Removes the element handled by \c handle from the priority_queue.
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
* */
void erase(handle_type handle)
{
node_pointer n = handle.node_;
if (n != root) {
n->unlink();
if (!n->children.empty())
merge_node(merge_node_list(n->children));
} else {
if (!n->children.empty())
root = merge_node_list(n->children);
else
root = NULL;
}
size_holder::decrement();
n->~node();
allocator_type::deallocate(n, 1);
}
/// \copydoc boost::heap::priority_queue::begin
iterator begin(void) const
{
return iterator(root, super_t::value_comp());
}
/// \copydoc boost::heap::priority_queue::end
iterator end(void) const
{
return iterator();
}
/// \copydoc boost::heap::fibonacci_heap::ordered_begin
ordered_iterator ordered_begin(void) const
{
return ordered_iterator(root, super_t::value_comp());
}
/// \copydoc boost::heap::fibonacci_heap::ordered_begin
ordered_iterator ordered_end(void) const
{
return ordered_iterator(NULL, super_t::value_comp());
}
/// \copydoc boost::heap::d_ary_heap_mutable::s_handle_from_iterator
static handle_type s_handle_from_iterator(iterator const & it)
{
return super_t::s_handle_from_iterator(&*it);
}
/**
* \b Effects: Merge all elements from rhs into this
*
* \cond
* \b Complexity: \f$2^2log(log(N))\f$ (amortized).
* \endcond
*
* \b Complexity: 2**2*log(log(N)) (amortized).
*
* */
void merge(pairing_heap & rhs)
{
if (rhs.empty())
return;
merge_node(rhs.root);
size_holder::add(rhs.get_size());
rhs.set_size(0);
rhs.root = NULL;
super_t::set_stability_count(std::max(super_t::get_stability_count(),
rhs.get_stability_count()));
rhs.set_stability_count(0);
}
/// \copydoc boost::heap::priority_queue::value_comp
value_compare const & value_comp(void) const
{
return super_t::value_comp();
}
/// \copydoc boost::heap::priority_queue::operator<(HeapType const & rhs) const
template <typename HeapType>
bool operator<(HeapType const & rhs) const
{
return detail::heap_compare(*this, rhs);
}
/// \copydoc boost::heap::priority_queue::operator>(HeapType const & rhs) const
template <typename HeapType>
bool operator>(HeapType const & rhs) const
{
return detail::heap_compare(rhs, *this);
}
/// \copydoc boost::heap::priority_queue::operator>=(HeapType const & rhs) const
template <typename HeapType>
bool operator>=(HeapType const & rhs) const
{
return !operator<(rhs);
}
/// \copydoc boost::heap::priority_queue::operator<=(HeapType const & rhs) const
template <typename HeapType>
bool operator<=(HeapType const & rhs) const
{
return !operator>(rhs);
}
/// \copydoc boost::heap::priority_queue::operator==(HeapType const & rhs) const
template <typename HeapType>
bool operator==(HeapType const & rhs) const
{
return detail::heap_equality(*this, rhs);
}
/// \copydoc boost::heap::priority_queue::operator!=(HeapType const & rhs) const
template <typename HeapType>
bool operator!=(HeapType const & rhs) const
{
return !(*this == rhs);
}
private:
#if !defined(BOOST_DOXYGEN_INVOKED)
void clone_tree(pairing_heap const & rhs)
{
BOOST_HEAP_ASSERT(root == NULL);
if (rhs.empty())
return;
root = allocator_type::allocate(1);
new(root) node(static_cast<node const &>(*rhs.root), static_cast<allocator_type&>(*this));
}
void merge_node(node_pointer other)
{
BOOST_HEAP_ASSERT(other);
if (root != NULL)
root = merge_nodes(root, other);
else
root = other;
}
node_pointer merge_node_list(node_child_list & children)
{
assert(!children.empty());
node_pointer merged = merge_first_pair(children);
if (children.empty())
return merged;
node_child_list node_list;
node_list.push_back(*merged);
do {
node_pointer next_merged = merge_first_pair(children);
node_list.push_back(*next_merged);
} while (!children.empty());
return merge_node_list(node_list);
}
node_pointer merge_first_pair(node_child_list & children)
{
assert(!children.empty());
node_pointer first_child = static_cast<node_pointer>(&children.front());
children.pop_front();
if (children.empty())
return first_child;
node_pointer second_child = static_cast<node_pointer>(&children.front());
children.pop_front();
return merge_nodes(first_child, second_child);
}
node_pointer merge_nodes(node_pointer node1, node_pointer node2)
{
if (super_t::operator()(node1->value, node2->value))
std::swap(node1, node2);
node2->unlink();
node1->children.push_front(*node2);
return node1;
}
node_pointer root;
#endif
};
} /* namespace heap */
} /* namespace boost */
#undef BOOST_HEAP_ASSERT
#endif /* BOOST_HEAP_PAIRING_HEAP_HPP */