kicad/polygon/PolyLine.cpp

1612 lines
36 KiB
C++

// PolyLine.cpp ... implementation of CPolyLine class from FreePCB.
//
// implementation for kicad
//
using namespace std;
#define SetSize reserve // used in conversion from freePCB to kicad.: The code using it must be rewitten
#include <math.h>
#include <vector>
#include "fctsys.h"
#include "PolyLine.h"
#define to_int(x) (int)round((x))
#define pi 3.14159265359
#define DENOM 10 // to use mils for php clipping
//#define DENOM 1 // to use internal units for php clipping
CPolyLine::CPolyLine()
{
m_HatchStyle = 0;
m_sel_box = 0;
utility = 0;
m_gpc_poly = new gpc_polygon;
m_gpc_poly->num_contours = 0;
m_php_poly = new polygon;
}
// destructor, removes display elements
//
CPolyLine::~CPolyLine()
{
Undraw();
FreeGpcPoly();
delete m_gpc_poly;
delete m_php_poly;
}
// Use the General Polygon Clipping Library to clip contours
// If this results in new polygons, return them as std::vector p
// If bRetainArcs == TRUE, try to retain arcs in polys
// Returns number of external contours, or -1 if error
//
int CPolyLine::NormalizeWithGpc( std::vector<CPolyLine*> * pa, bool bRetainArcs )
{
std::vector<CArc> arc_array;
if( bRetainArcs )
MakeGpcPoly( -1, &arc_array );
else
MakeGpcPoly( -1, NULL );
Undraw();
// now, recreate poly
// first, find outside contours and create new CPolyLines if necessary
int n_ext_cont = 0;
for( int ic=0; ic<m_gpc_poly->num_contours; ic++ )
{
if( !(m_gpc_poly->hole)[ic] )
{
if( n_ext_cont == 0 )
{
// first external contour, replace this poly
corner.clear();
side_style.clear();
for( int i=0; i<m_gpc_poly->contour[ic].num_vertices; i++ )
{
int x = to_int(((m_gpc_poly->contour)[ic].vertex)[i].x);
int y = to_int(((m_gpc_poly->contour)[ic].vertex)[i].y);
if( i==0 )
Start( m_layer, m_Width, m_sel_box, x, y, m_HatchStyle );
else
AppendCorner( x, y, STRAIGHT, FALSE );
}
Close();
n_ext_cont++;
}
else if( pa )
{
// next external contour, create new poly
CPolyLine * poly = new CPolyLine;
pa->push_back(poly); // put in array
for( int i=0; i<m_gpc_poly->contour[ic].num_vertices; i++ )
{
int x = to_int(((m_gpc_poly->contour)[ic].vertex)[i].x);
int y = to_int(((m_gpc_poly->contour)[ic].vertex)[i].y);
if( i==0 )
poly->Start( m_layer, m_Width, m_sel_box, x, y, m_HatchStyle );
else
poly->AppendCorner( x, y, STRAIGHT, FALSE );
}
poly->Close( STRAIGHT, FALSE );
n_ext_cont++;
}
}
}
// now add cutouts to the CPolyLine(s)
for( int ic=0; ic<m_gpc_poly->num_contours; ic++ )
{
if( (m_gpc_poly->hole)[ic] )
{
CPolyLine * ext_poly = NULL;
if( n_ext_cont == 1 )
{
ext_poly = this;
}
else
{
// find the polygon that contains this hole
for( int i=0; i<m_gpc_poly->contour[ic].num_vertices; i++ )
{
int x = to_int(((m_gpc_poly->contour)[ic].vertex)[i].x);
int y = to_int(((m_gpc_poly->contour)[ic].vertex)[i].y);
if( TestPointInside( x, y ) )
ext_poly = this;
else
{
for( int ext_ic=0; ext_ic<n_ext_cont-1; ext_ic++ )
{
if( (*pa)[ext_ic]->TestPointInside( x, y ) )
{
ext_poly = (*pa)[ext_ic];
break;
}
}
}
if( ext_poly )
break;
}
}
if( !ext_poly )
wxASSERT(0);
for( int i=0; i<m_gpc_poly->contour[ic].num_vertices; i++ )
{
int x = to_int(((m_gpc_poly->contour)[ic].vertex)[i].x);
int y = to_int(((m_gpc_poly->contour)[ic].vertex)[i].y);
ext_poly->AppendCorner( x, y, STRAIGHT, FALSE );
}
ext_poly->Close( STRAIGHT, FALSE );
}
}
if( bRetainArcs )
RestoreArcs( &arc_array, pa );
FreeGpcPoly();
return n_ext_cont;
}
// make a php_polygon from first contour
int CPolyLine::MakePhpPoly()
{
FreePhpPoly();
polygon test_poly;
int nv = GetContourEnd(0);
for( int iv=0; iv<=nv; iv++ )
{
int x = GetX(iv)/DENOM;
int y = GetY(iv)/DENOM;
m_php_poly->addv( x, y );
}
return 0;
}
void CPolyLine::FreePhpPoly()
{
// delete all vertices
while( m_php_poly->m_cnt > 1 )
{
vertex * fv = m_php_poly->getFirst();
m_php_poly->del( fv->m_nextV );
}
delete m_php_poly->m_first;
m_php_poly->m_first = NULL;
m_php_poly->m_cnt = 0;
}
// Use the php clipping lib to clip this poly against poly
//
void CPolyLine::ClipPhpPolygon( int php_op, CPolyLine * poly )
{
Undraw();
poly->MakePhpPoly();
MakePhpPoly();
polygon * p = m_php_poly->boolean( poly->m_php_poly, php_op );
poly->FreePhpPoly();
FreePhpPoly();
if( p )
{
// now screw with the PolyLine
corner.clear();
side_style.clear();
do
{
vertex * v = p->getFirst();
Start( m_layer, m_Width, m_sel_box,
to_int(v->X()*DENOM),
to_int(v->Y()*DENOM),
m_HatchStyle );
do
{
vertex * n = v->Next();
AppendCorner( to_int(v->X()*DENOM), to_int((v->Y()*DENOM )) );
v = n;
}
while( v->id() != p->getFirst()->id() );
Close();
// p = p->NextPoly();
delete p;
p = NULL;
}
while( p );
}
Draw();
}
// make a gpc_polygon for a closed polyline contour
// approximates arcs with multiple straight-line segments
// if icontour = -1, make polygon with all contours,
// combining intersecting contours if possible
// returns data on arcs in arc_array
//
int CPolyLine::MakeGpcPoly( int icontour, std::vector<CArc> * arc_array )
{
if( m_gpc_poly->num_contours )
FreeGpcPoly();
if( !GetClosed() && (icontour == (GetNumContours()-1) || icontour == -1))
return 1; // error
// initialize m_gpc_poly
m_gpc_poly->num_contours = 0;
m_gpc_poly->hole = NULL;
m_gpc_poly->contour = NULL;
int n_arcs = 0;
int first_contour = icontour;
int last_contour = icontour;
if( icontour == -1 )
{
first_contour = 0;
last_contour = GetNumContours() - 1;
}
if( arc_array )
arc_array->SetSize(0);
int iarc = 0;
for( int icont=first_contour; icont<=last_contour; icont++ )
{
// make gpc_polygon for this contour
gpc_polygon * gpc = new gpc_polygon;
gpc->num_contours = 0;
gpc->hole = NULL;
gpc->contour = NULL;
// first, calculate number of vertices in contour
int n_vertices = 0;
int ic_st = GetContourStart(icont);
int ic_end = GetContourEnd(icont);
for( int ic=ic_st; ic<=ic_end; ic++ )
{
int style = side_style[ic];
int x1 = corner[ic].x;
int y1 = corner[ic].y;
int x2, y2;
if( ic < ic_end )
{
x2 = corner[ic+1].x;
y2 = corner[ic+1].y;
}
else
{
x2 = corner[ic_st].x;
y2 = corner[ic_st].y;
}
if( style == STRAIGHT )
n_vertices++;
else
{
// style is ARC_CW or ARC_CCW
int n; // number of steps for arcs
n = (abs(x2-x1)+abs(y2-y1))/(CArc::MAX_STEP);
n = max( n, CArc::MIN_STEPS ); // or at most 5 degrees of arc
n_vertices += n;
n_arcs++;
}
}
// now create gcp_vertex_list for this contour
gpc_vertex_list * g_v_list = new gpc_vertex_list;
g_v_list->vertex = (gpc_vertex*)calloc( sizeof(gpc_vertex), n_vertices );
g_v_list->num_vertices = n_vertices;
int ivtx = 0;
for( int ic=ic_st; ic<=ic_end; ic++ )
{
int style = side_style[ic];
int x1 = corner[ic].x;
int y1 = corner[ic].y;
int x2, y2;
if( ic < ic_end )
{
x2 = corner[ic+1].x;
y2 = corner[ic+1].y;
}
else
{
x2 = corner[ic_st].x;
y2 = corner[ic_st].y;
}
if( style == STRAIGHT )
{
g_v_list->vertex[ivtx].x = x1;
g_v_list->vertex[ivtx].y = y1;
ivtx++;
}
else
{
// style is arc_cw or arc_ccw
int n; // number of steps for arcs
n = (abs(x2-x1)+abs(y2-y1))/(CArc::MAX_STEP);
n = max( n, CArc::MIN_STEPS ); // or at most 5 degrees of arc
double xo, yo, theta1, theta2, a, b;
a = fabs( (double)(x1 - x2) );
b = fabs( (double)(y1 - y2) );
if( style == CPolyLine::ARC_CW )
{
// clockwise arc (ie.quadrant of ellipse)
if( x2 > x1 && y2 > y1 )
{
// first quadrant, draw second quadrant of ellipse
xo = x2;
yo = y1;
theta1 = pi;
theta2 = pi/2.0;
}
else if( x2 < x1 && y2 > y1 )
{
// second quadrant, draw third quadrant of ellipse
xo = x1;
yo = y2;
theta1 = 3.0*pi/2.0;
theta2 = pi;
}
else if( x2 < x1 && y2 < y1 )
{
// third quadrant, draw fourth quadrant of ellipse
xo = x2;
yo = y1;
theta1 = 2.0*pi;
theta2 = 3.0*pi/2.0;
}
else
{
xo = x1; // fourth quadrant, draw first quadrant of ellipse
yo = y2;
theta1 = pi/2.0;
theta2 = 0.0;
}
}
else
{
// counter-clockwise arc
if( x2 > x1 && y2 > y1 )
{
xo = x1; // first quadrant, draw fourth quadrant of ellipse
yo = y2;
theta1 = 3.0*pi/2.0;
theta2 = 2.0*pi;
}
else if( x2 < x1 && y2 > y1 )
{
xo = x2; // second quadrant
yo = y1;
theta1 = 0.0;
theta2 = pi/2.0;
}
else if( x2 < x1 && y2 < y1 )
{
xo = x1; // third quadrant
yo = y2;
theta1 = pi/2.0;
theta2 = pi;
}
else
{
xo = x2; // fourth quadrant
yo = y1;
theta1 = pi;
theta2 = 3.0*pi/2.0;
}
}
// now write steps for arc
if( arc_array )
{
arc_array->SetSize(iarc+1);
(*arc_array)[iarc].style = style;
(*arc_array)[iarc].n_steps = n;
(*arc_array)[iarc].xi = x1;
(*arc_array)[iarc].yi = y1;
(*arc_array)[iarc].xf = x2;
(*arc_array)[iarc].yf = y2;
iarc++;
}
for( int is=0; is<n; is++ )
{
double theta = theta1 + ((theta2-theta1)*(double)is)/n;
double x = xo + a*cos(theta);
double y = yo + b*sin(theta);
if( is == 0 )
{
x = x1;
y = y1;
}
g_v_list->vertex[ivtx].x = x;
g_v_list->vertex[ivtx].y = y;
ivtx++;
}
}
}
if( n_vertices != ivtx )
wxASSERT(0);
// add vertex_list to gpc
gpc_add_contour( gpc, g_v_list, 0 );
// now clip m_gpc_poly with gpc, put new poly into result
gpc_polygon * result = new gpc_polygon;
if( icontour == -1 && icont != 0 )
gpc_polygon_clip( GPC_DIFF, m_gpc_poly, gpc, result ); // hole
else
gpc_polygon_clip( GPC_UNION, m_gpc_poly, gpc, result ); // outside
// now copy result to m_gpc_poly
gpc_free_polygon( m_gpc_poly );
delete m_gpc_poly;
m_gpc_poly = result;
gpc_free_polygon( gpc );
delete gpc;
free( g_v_list->vertex );
free( g_v_list );
}
return 0;
}
int CPolyLine::FreeGpcPoly()
{
if( m_gpc_poly->num_contours )
{
delete m_gpc_poly->contour->vertex;
delete m_gpc_poly->contour;
delete m_gpc_poly->hole;
}
m_gpc_poly->num_contours = 0;
return 0;
}
// Restore arcs to a polygon where they were replaced with steps
// If pa != NULL, also use polygons in pa array
//
int CPolyLine::RestoreArcs( std::vector<CArc> * arc_array, std::vector<CPolyLine*> * pa )
{
// get poly info
int n_polys = 1;
if( pa )
n_polys += pa->size();
CPolyLine * poly;
// undraw polys and clear utility flag for all corners
for( int ip=0; ip<n_polys; ip++ )
{
if( ip == 0 )
poly = this;
else
poly = (*pa)[ip-1];
poly->Undraw();
for( int ic=0; ic<poly->GetNumCorners(); ic++ )
poly->SetUtility( ic, 0 ); // clear utility flag
}
// find arcs and replace them
bool bFound;
int arc_start = 0;
int arc_end = 0;
for( unsigned iarc=0; iarc<arc_array->size(); iarc++ )
{
int arc_xi = (*arc_array)[iarc].xi;
int arc_yi = (*arc_array)[iarc].yi;
int arc_xf = (*arc_array)[iarc].xf;
int arc_yf = (*arc_array)[iarc].yf;
int n_steps = (*arc_array)[iarc].n_steps;
int style = (*arc_array)[iarc].style;
bFound = FALSE;
// loop through polys
for( int ip=0; ip<n_polys; ip++ )
{
if( ip == 0 )
poly = this;
else
poly = (*pa)[ip-1];
for( int icont=0; icont<poly->GetNumContours(); icont++ )
{
int ic_start = poly->GetContourStart(icont);
int ic_end = poly->GetContourEnd(icont);
if( (ic_end-ic_start) > n_steps )
{
for( int ic=ic_start; ic<=ic_end; ic++ )
{
int ic_next = ic+1;
if( ic_next > ic_end )
ic_next = ic_start;
int xi = poly->GetX(ic);
int yi = poly->GetY(ic);
if( xi == arc_xi && yi == arc_yi )
{
// test for forward arc
int ic2 = ic + n_steps;
if( ic2 > ic_end )
ic2 = ic2 - ic_end + ic_start - 1;
int xf = poly->GetX(ic2);
int yf = poly->GetY(ic2);
if( xf == arc_xf && yf == arc_yf )
{
// arc from ic to ic2
bFound = TRUE;
arc_start = ic;
arc_end = ic2;
}
else
{
// try reverse arc
ic2 = ic - n_steps;
if( ic2 < ic_start )
ic2 = ic2 - ic_start + ic_end + 1;
xf = poly->GetX(ic2);
yf = poly->GetY(ic2);
if( xf == arc_xf && yf == arc_yf )
{
// arc from ic2 to ic
bFound = TRUE;
arc_start = ic2;
arc_end = ic;
style = 3 - style;
}
}
if( bFound )
{
poly->side_style[arc_start] = style;
// mark corners for deletion from arc_start+1 to arc_end-1
for( int i=arc_start+1; i!=arc_end; )
{
if( i > ic_end )
i = ic_start;
poly->SetUtility( i, 1 );
if( i == ic_end )
i = ic_start;
else
i++;
}
break;
}
}
if( bFound )
break;
}
}
if( bFound )
break;
}
}
if( bFound )
(*arc_array)[iarc].bFound = TRUE;
}
// now delete all marked corners
for( int ip=0; ip<n_polys; ip++ )
{
if( ip == 0 )
poly = this;
else
poly = (*pa)[ip-1];
for( int ic=poly->GetNumCorners()-1; ic>=0; ic-- )
{
if( poly->GetUtility(ic) )
poly->DeleteCorner( ic, FALSE );
}
}
return 0;
}
// initialize new polyline
// set layer, width, selection box size, starting point, id and pointer
//
// if sel_box = 0, don't create selection elements at all
//
// if polyline is board outline, enter with:
// id.type = ID_BOARD
// id.st = ID_BOARD_OUTLINE
// id.i = 0
// ptr = NULL
//
// if polyline is copper area, enter with:
// id.type = ID_NET;
// id.st = ID_AREA
// id.i = index to area
// ptr = pointer to net
//
void CPolyLine::Start( int layer, int w, int sel_box, int x, int y,
int hatch )
{
m_layer = layer;
m_Width = w;
m_sel_box = sel_box;
m_HatchStyle = hatch;
CPolyPt poly_pt( x, y );
poly_pt.end_contour = FALSE;
corner.push_back(poly_pt);
side_style.push_back(0);
}
// add a corner to unclosed polyline
//
void CPolyLine::AppendCorner( int x, int y, int style, bool bDraw )
{
Undraw();
CPolyPt poly_pt( x, y );
poly_pt.end_contour = FALSE;
// add entries for new corner and side
corner.push_back(poly_pt);
side_style.push_back(style);
if( corner.size() > 0 && !corner[corner.size()-1].end_contour )
side_style[corner.size()-1] = style;
int dl_type;
if( style == CPolyLine::STRAIGHT )
dl_type = DL_LINE;
else if( style == CPolyLine::ARC_CW )
dl_type = DL_ARC_CW;
else if( style == CPolyLine::ARC_CCW )
dl_type = DL_ARC_CCW;
else
wxASSERT(0);
if( bDraw )
Draw();
}
// close last polyline contour
//
void CPolyLine::Close( int style, bool bDraw )
{
if( GetClosed() )
wxASSERT(0);
Undraw();
side_style[corner.size()-1] = style;
corner[corner.size()-1].end_contour = TRUE;
if( bDraw )
Draw();
}
// move corner of polyline
//
void CPolyLine::MoveCorner( int ic, int x, int y )
{
Undraw();
corner[ic].x = x;
corner[ic].y = y;
Draw();
}
// delete corner and adjust arrays
//
void CPolyLine::DeleteCorner( int ic, bool bDraw )
{
Undraw();
int icont = GetContour( ic );
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
bool bClosed = icont < GetNumContours()-1 || GetClosed();
if( !bClosed )
{
// open contour, must be last contour
corner.erase( corner.begin() + ic );
if( ic != istart )
side_style.erase( side_style.begin() + ic-1 );
}
else
{
// closed contour
corner.erase( corner.begin() + ic );
side_style.erase( side_style.begin() + ic );
if( ic == iend )
corner[ic-1].end_contour = TRUE;
}
if( bClosed && GetContourSize(icont) < 3 )
{
// delete the entire contour
RemoveContour( icont );
}
if( bDraw )
Draw();
}
/******************************************/
void CPolyLine::RemoveContour( int icont )
/******************************************/
/**
* Function RemoveContour
* @param icont = contour number to remove
* remove a contour only if there is more than 1 contour
*/
{
Undraw();
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
if( icont == 0 && GetNumContours() == 1 )
{
// remove the only contour
wxASSERT(0);
}
else if( icont == GetNumContours()-1 )
{
// remove last contour
corner.erase( corner.begin() + istart, corner.end() );
side_style.erase( side_style.begin() + istart, side_style.end() );
}
else
{
// remove closed contour
for( int ic=iend; ic>=istart; ic-- )
{
corner.erase( corner.begin() + ic );
side_style.erase( side_style.begin() + ic );
}
}
Draw();
}
/******************************************/
void CPolyLine::RemoveAllContours( void )
/******************************************/
/**
* function RemoveAllContours
* removes all corners from the lists.
* Others params are not chnaged
*/
{
corner.clear( );
side_style.clear( );
}
/** Function InsertCorner
* insert a new corner between two existing corners
* @param ic = index for the insertion point: the corner is inserted AFTER ic
* @param x, y = coordinates corner to insert
*/
void CPolyLine::InsertCorner( int ic, int x, int y )
{
Undraw();
if ( (unsigned)(ic) >= corner.size() )
{
corner.push_back( CPolyPt(x,y) );
side_style.push_back( STRAIGHT );
}
else
{
corner.insert( corner.begin() + ic + 1, CPolyPt(x,y) );
side_style.insert( side_style.begin() + ic + 1, STRAIGHT );
}
if( (unsigned)(ic+1) < corner.size() )
{
if( corner[ic].end_contour )
{
corner[ic+1].end_contour = TRUE;
corner[ic].end_contour = FALSE;
}
}
Draw();
}
// undraw polyline by removing all graphic elements from display list
//
void CPolyLine::Undraw()
{
m_HatchLines.clear();
bDrawn = FALSE;
}
// draw polyline by adding all graphics to display list
// if side style is ARC_CW or ARC_CCW but endpoints are not angled,
// convert to STRAIGHT
//
void CPolyLine::Draw( )
{
// first, undraw if necessary
if( bDrawn )
Undraw();
Hatch();
bDrawn = TRUE;
}
int CPolyLine::GetX( int ic )
{
return corner[ic].x;
}
int CPolyLine::GetY( int ic )
{
return corner[ic].y;
}
int CPolyLine::GetEndContour( int ic )
{
return corner[ic].end_contour;
}
CRect CPolyLine::GetBounds()
{
CRect r = GetCornerBounds();
r.left -= m_Width/2;
r.right += m_Width/2;
r.bottom -= m_Width/2;
r.top += m_Width/2;
return r;
}
CRect CPolyLine::GetCornerBounds()
{
CRect r;
r.left = r.bottom = INT_MAX;
r.right = r.top = INT_MIN;
for( unsigned i=0; i<corner.size(); i++ )
{
r.left = min( r.left, corner[i].x );
r.right = max( r.right, corner[i].x );
r.bottom = min( r.bottom, corner[i].y );
r.top = max( r.top, corner[i].y );
}
return r;
}
CRect CPolyLine::GetCornerBounds( int icont )
{
CRect r;
r.left = r.bottom = INT_MAX;
r.right = r.top = INT_MIN;
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
for( int i=istart; i<=iend; i++ )
{
r.left = min( r.left, corner[i].x );
r.right = max( r.right, corner[i].x );
r.bottom = min( r.bottom, corner[i].y );
r.top = max( r.top, corner[i].y );
}
return r;
}
int CPolyLine::GetNumCorners()
{
return corner.size();
}
int CPolyLine::GetNumSides()
{
if( GetClosed() )
return corner.size();
else
return corner.size()-1;
}
int CPolyLine::GetNumContours()
{
int ncont = 0;
if( !corner.size() )
return 0;
for( unsigned ic=0; ic<corner.size(); ic++ )
if( corner[ic].end_contour )
ncont++;
if( !corner[corner.size()-1].end_contour )
ncont++;
return ncont;
}
int CPolyLine::GetContour( int ic )
{
int ncont = 0;
for( int i=0; i<ic; i++ )
{
if( corner[i].end_contour )
ncont++;
}
return ncont;
}
int CPolyLine::GetContourStart( int icont )
{
if( icont == 0 )
return 0;
int ncont = 0;
for( unsigned i=0; i<corner.size(); i++ )
{
if( corner[i].end_contour )
{
ncont++;
if( ncont == icont )
return i+1;
}
}
wxASSERT(0);
return 0;
}
int CPolyLine::GetContourEnd( int icont )
{
if( icont < 0 )
return 0;
if( icont == GetNumContours()-1 )
return corner.size()-1;
int ncont = 0;
for( unsigned i=0; i<corner.size(); i++ )
{
if( corner[i].end_contour )
{
if( ncont == icont )
return i;
ncont++;
}
}
wxASSERT(0);
return 0;
}
int CPolyLine::GetContourSize( int icont )
{
return GetContourEnd(icont) - GetContourStart(icont) + 1;
}
void CPolyLine::SetSideStyle( int is, int style )
{
Undraw();
CPoint p1, p2;
if( is == (int)(corner.size()-1) )
{
p1.x = corner[corner.size()-1].x;
p1.y = corner[corner.size()-1].y;
p2.x = corner[0].x;
p2.y = corner[0].y;
}
else
{
p1.x = corner[is].x;
p1.y = corner[is].y;
p2.x = corner[is+1].x;
p2.y = corner[is+1].y;
}
if( p1.x == p2.x || p1.y == p2.y )
side_style[is] = STRAIGHT;
else
side_style[is] = style;
Draw();
}
int CPolyLine::GetSideStyle( int is )
{
return side_style[is];
}
int CPolyLine::GetClosed()
{
if( corner.size() == 0 )
return 0;
else
return corner[corner.size()-1].end_contour;
}
// draw hatch lines
//
void CPolyLine::Hatch()
{
m_HatchLines.clear();
if( m_HatchStyle == NO_HATCH )
{
return;
}
int layer = m_layer;
// if( /*m_dlist && */GetClosed() )
{
enum {
MAXPTS = 100,
};
int xx[MAXPTS], yy[MAXPTS];
// define range for hatch lines
int min_x = corner[0].x;
int max_x = corner[0].x;
int min_y = corner[0].y;
int max_y = corner[0].y;
for( unsigned ic = 1; ic < corner.size(); ic++ )
{
if( corner[ic].x < min_x )
min_x = corner[ic].x;
if( corner[ic].x > max_x )
max_x = corner[ic].x;
if( corner[ic].y < min_y )
min_y = corner[ic].y;
if( corner[ic].y > max_y )
max_y = corner[ic].y;
}
int slope_flag = (layer & 1) ? 1 : -1; // 1 or -1
double slope = 0.707106*slope_flag;
int spacing;
if( m_HatchStyle == DIAGONAL_EDGE )
spacing = 10*PCBU_PER_MIL;
else
spacing = 50*PCBU_PER_MIL;
int max_a, min_a;
if( slope_flag == 1 )
{
max_a = (int)(max_y - slope*min_x);
min_a = (int)(min_y - slope*max_x);
}
else
{
max_a = (int)(max_y - slope*max_x);
min_a = (int)(min_y - slope*min_x);
}
min_a = (min_a/spacing)*spacing;
int offset = 0;
if( layer < (LAY_TOP_COPPER+2) )
offset = 0;
else if( layer < (LAY_TOP_COPPER+4) )
offset = spacing/2;
else if( layer < (LAY_TOP_COPPER+6) )
offset = spacing/4;
else if( layer < (LAY_TOP_COPPER+8) )
offset = 3*spacing/4;
else if( layer < (LAY_TOP_COPPER+10) )
offset = 1*spacing/8;
else if( layer < (LAY_TOP_COPPER+12) )
offset = 3*spacing/8;
else if( layer < (LAY_TOP_COPPER+14) )
offset = 5*spacing/8;
else if( layer < (LAY_TOP_COPPER+16) )
offset = 7*spacing/8;
else
wxASSERT(0);
min_a += offset;
// now calculate and draw hatch lines
int nc = corner.size();
// loop through hatch lines
for( int a=min_a; a<max_a; a+=spacing )
{
// get intersection points for this hatch line
int nloops = 0;
int npts;
// make this a loop in case my homebrew hatching algorithm screws up
do
{
npts = 0;
int i_start_contour = 0;
for( int ic=0; ic<nc; ic++ )
{
double x, y, x2, y2;
int ok;
if( corner[ic].end_contour )
{
ok = FindLineSegmentIntersection( a, slope,
corner[ic].x, corner[ic].y,
corner[i_start_contour].x, corner[i_start_contour].y,
side_style[ic],
&x, &y, &x2, &y2 );
i_start_contour = ic + 1;
}
else
{
ok = FindLineSegmentIntersection( a, slope,
corner[ic].x, corner[ic].y,
corner[ic+1].x, corner[ic+1].y,
side_style[ic],
&x, &y, &x2, &y2 );
}
if( ok )
{
xx[npts] = (int)x;
yy[npts] = (int)y;
npts++;
wxASSERT( npts<MAXPTS ); // overflow
}
if( ok == 2 )
{
xx[npts] = (int)x2;
yy[npts] = (int)y2;
npts++;
wxASSERT( npts<MAXPTS ); // overflow
}
}
nloops++;
a += PCBU_PER_MIL/100;
} while( npts%2 != 0 && nloops < 3 );
wxASSERT( npts%2==0 ); // odd number of intersection points, error
// sort points in order of descending x (if more than 2)
if( npts>2 )
{
for( int istart=0; istart<(npts-1); istart++ )
{
int max_x = INT_MIN;
int imax = INT_MIN;
for( int i=istart; i<npts; i++ )
{
if( xx[i] > max_x )
{
max_x = xx[i];
imax = i;
}
}
int temp = xx[istart];
xx[istart] = xx[imax];
xx[imax] = temp;
temp = yy[istart];
yy[istart] = yy[imax];
yy[imax] = temp;
}
}
// draw lines
for( int ip=0; ip<npts; ip+=2 )
{
double dx = xx[ip+1] - xx[ip];
if( m_HatchStyle == DIAGONAL_FULL || fabs(dx) < 40*NM_PER_MIL )
{
m_HatchLines.push_back(CSegment(xx[ip], yy[ip], xx[ip+1], yy[ip+1]) );
}
else
{
double dy = yy[ip+1] - yy[ip];
double slope = dy/dx;
if( dx > 0 )
dx = 20*NM_PER_MIL;
else
dx = -20*NM_PER_MIL;
double x1 = xx[ip] + dx;
double x2 = xx[ip+1] - dx;
double y1 = yy[ip] + dx*slope;
double y2 = yy[ip+1] - dx*slope;
m_HatchLines.push_back(CSegment(xx[ip], yy[ip], to_int(x1), to_int(y1)) );
m_HatchLines.push_back(CSegment(xx[ip+1], yy[ip+1], to_int(x2), to_int(y2)) );
}
}
} // end for
}
}
// test to see if a point is inside polyline
//
bool CPolyLine::TestPointInside( int x, int y )
{
enum { MAXPTS = 100 };
if( !GetClosed() )
wxASSERT(0);
// define line passing through (x,y), with slope = 2/3;
// get intersection points
double xx[MAXPTS], yy[MAXPTS];
double slope = (double)2.0/3.0;
double a = y - slope*x;
int nloops = 0;
int npts;
// make this a loop so if my homebrew algorithm screws up, we try it again
do
{
// now find all intersection points of line with polyline sides
npts = 0;
for( int icont=0; icont<GetNumContours(); icont++ )
{
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
for( int ic=istart; ic<=iend; ic++ )
{
double x, y, x2, y2;
int ok;
if( ic == istart )
ok = FindLineSegmentIntersection( a, slope,
corner[iend].x, corner[iend].y,
corner[istart].x, corner[istart].y,
side_style[corner.size()-1],
&x, &y, &x2, &y2 );
else
ok = FindLineSegmentIntersection( a, slope,
corner[ic-1].x, corner[ic-1].y,
corner[ic].x, corner[ic].y,
side_style[ic-1],
&x, &y, &x2, &y2 );
if( ok )
{
xx[npts] = (int)x;
yy[npts] = (int)y;
npts++;
wxASSERT( npts<MAXPTS ); // overflow
}
if( ok == 2 )
{
xx[npts] = (int)x2;
yy[npts] = (int)y2;
npts++;
wxASSERT( npts<MAXPTS ); // overflow
}
}
}
nloops++;
a += PCBU_PER_MIL/100;
} while( npts%2 != 0 && nloops < 3 );
wxASSERT( npts%2==0 ); // odd number of intersection points, error
// count intersection points to right of (x,y), if odd (x,y) is inside polyline
int ncount = 0;
for( int ip=0; ip<npts; ip++ )
{
if( xx[ip] == x && yy[ip] == y )
return FALSE; // (x,y) is on a side, call it outside
else if( xx[ip] > x )
ncount++;
}
if( ncount%2 )
return TRUE;
else
return FALSE;
}
// test to see if a point is inside polyline contour
//
bool CPolyLine::TestPointInsideContour( int icont, int x, int y )
{
if( icont >= GetNumContours() )
return FALSE;
enum { MAXPTS = 100 };
if( !GetClosed() )
wxASSERT(0);
// define line passing through (x,y), with slope = 2/3;
// get intersection points
double xx[MAXPTS], yy[MAXPTS];
double slope = (double)2.0/3.0;
double a = y - slope*x;
int nloops = 0;
int npts;
// make this a loop so if my homebrew algorithm screws up, we try it again
do
{
// now find all intersection points of line with polyline sides
npts = 0;
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
for( int ic=istart; ic<=iend; ic++ )
{
double x, y, x2, y2;
int ok;
if( ic == istart )
ok = FindLineSegmentIntersection( a, slope,
corner[iend].x, corner[iend].y,
corner[istart].x, corner[istart].y,
side_style[corner.size()-1],
&x, &y, &x2, &y2 );
else
ok = FindLineSegmentIntersection( a, slope,
corner[ic-1].x, corner[ic-1].y,
corner[ic].x, corner[ic].y,
side_style[ic-1],
&x, &y, &x2, &y2 );
if( ok )
{
xx[npts] = (int)x;
yy[npts] = (int)y;
npts++;
wxASSERT( npts<MAXPTS ); // overflow
}
if( ok == 2 )
{
xx[npts] = (int)x2;
yy[npts] = (int)y2;
npts++;
wxASSERT( npts<MAXPTS ); // overflow
}
}
nloops++;
a += PCBU_PER_MIL/100;
} while( npts%2 != 0 && nloops < 3 );
wxASSERT( npts%2==0 ); // odd number of intersection points, error
// count intersection points to right of (x,y), if odd (x,y) is inside polyline
int ncount = 0;
for( int ip=0; ip<npts; ip++ )
{
if( xx[ip] == x && yy[ip] == y )
return FALSE; // (x,y) is on a side, call it outside
else if( xx[ip] > x )
ncount++;
}
if( ncount%2 )
return TRUE;
else
return FALSE;
}
// Test for intersection of sides
//
int CPolyLine::TestIntersection( CPolyLine * poly )
{
if( !GetClosed() )
wxASSERT(0);
if( !poly->GetClosed() )
wxASSERT(0);
for( int ic=0; ic<GetNumContours(); ic++ )
{
int istart = GetContourStart(ic);
int iend = GetContourEnd(ic);
for( int is=istart; is<=iend; is++ )
{
int xf, yf;
if( is < GetContourEnd(ic) )
{
xf = GetX(is+1);
yf = GetY(is+1);
}
else
{
xf = GetX(istart);
yf = GetY(istart);
}
for( int ic2=0; ic2<poly->GetNumContours(); ic2++ )
{
int istart2 = poly->GetContourStart(ic2);
int iend2 = poly->GetContourEnd(ic2);
for( int is2=istart2; is2<=iend2; is2++ )
{
int xf2, yf2;
if( is2 < poly->GetContourEnd(ic2) )
{
xf2 = poly->GetX(is2+1);
yf2 = poly->GetY(is2+1);
}
else
{
xf2 = poly->GetX(istart2);
yf2 = poly->GetY(istart2);
}
// test for intersection between side and side2
}
}
}
}
return 0;
}
// copy data from another poly, but don't draw it
//
void CPolyLine::Copy( CPolyLine * src )
{
Undraw();
// copy corners
for( unsigned ii=0; ii < src->corner.size(); ii++ )
corner.push_back(src->corner[ii]);
// copy side styles
for( unsigned ii=0; ii < src->side_style.size(); ii++ )
side_style.push_back(src->side_style[ii]);
// don't copy the Gpc_poly, just clear the old one
FreeGpcPoly();
}
/*******************************************/
bool CPolyLine::IsCutoutContour( int icont )
/*******************************************/
/*
* return true if the corner icont is inside the outline (i.e it is a hole)
*/
{
int ncont = GetContour( icont );
if ( ncont == 0 ) // the first contour is the main outline, not an hole
return false;
return true;
}
void CPolyLine::MoveOrigin( int x_off, int y_off )
{
Undraw();
for( int ic=0; ic < GetNumCorners(); ic++ )
{
SetX( ic, GetX(ic) + x_off );
SetY( ic, GetY(ic) + y_off );
}
Draw();
}
// Set various parameters:
// the calling function should Undraw() before calling them,
// and Draw() after
//
void CPolyLine::SetX( int ic, int x ) { corner[ic].x = x; }
void CPolyLine::SetY( int ic, int y ) { corner[ic].y = y; }
void CPolyLine::SetEndContour( int ic, bool end_contour )
{
corner[ic].end_contour = end_contour;
}
// Create CPolyLine for a pad
//
CPolyLine * CPolyLine::MakePolylineForPad( int type, int x, int y, int w, int l, int r, int angle )
{
CPolyLine * poly = new CPolyLine;
int dx = l/2;
int dy = w/2;
if( angle%180 == 90 )
{
dx = w/2;
dy = l/2;
}
if( type == PAD_ROUND )
{
poly->Start( 0, 0, 0, x-dx, y, 0 );
poly->AppendCorner( x, y+dy, ARC_CW, 0 );
poly->AppendCorner( x+dx, y, ARC_CW, 0 );
poly->AppendCorner( x, y-dy, ARC_CW, 0 );
poly->Close( ARC_CW );
}
return poly;
}
// Add cutout for a pad
// Convert arcs to multiple straight lines
// Do NOT draw or undraw
//
void CPolyLine::AddContourForPadClearance( int type, int x, int y, int w,
int l, int r, int angle, int fill_clearance,
int hole_w, int hole_clearance, bool bThermal, int spoke_w )
{
int dx = l/2;
int dy = w/2;
if( angle%180 == 90 )
{
dx = w/2;
dy = l/2;
}
int x_clearance = max( fill_clearance, hole_clearance+hole_w/2-dx);
int y_clearance = max( fill_clearance, hole_clearance+hole_w/2-dy);
dx += x_clearance;
dy += y_clearance;
if( !bThermal )
{
// normal clearance
if( type == PAD_ROUND || (type == PAD_NONE && hole_w > 0) )
{
AppendCorner( x-dx, y, ARC_CW, 0 );
AppendCorner( x, y+dy, ARC_CW, 0 );
AppendCorner( x+dx, y, ARC_CW, 0 );
AppendCorner( x, y-dy, ARC_CW, 0 );
Close( ARC_CW );
}
else if( type == PAD_SQUARE || type == PAD_RECT
|| type == PAD_RRECT || type == PAD_OVAL )
{
AppendCorner( x-dx, y-dy, STRAIGHT, 0 );
AppendCorner( x+dx, y-dy, STRAIGHT, 0 );
AppendCorner( x+dx, y+dy, STRAIGHT, 0 );
AppendCorner( x-dx, y+dy, STRAIGHT, 0 );
Close( STRAIGHT );
}
}
else
{
// thermal relief
if( type == PAD_ROUND || (type == PAD_NONE && hole_w > 0) )
{
// draw 4 "wedges"
double r = max(w/2 + fill_clearance, hole_w/2 + hole_clearance);
double start_angle = asin( spoke_w/(2.0*r) );
double th1, th2, corner_x, corner_y;
for( int i=0; i<4; i++ )
{
if( i == 0 )
{
corner_x = spoke_w/2;
corner_y = spoke_w/2;
th1 = start_angle;
th2 = pi/2.0 - start_angle;
}
else if( i == 1 )
{
corner_x = -spoke_w/2;
corner_y = spoke_w/2;
th1 = pi/2.0 + start_angle;
th2 = pi - start_angle;
}
else if( i == 2 )
{
corner_x = -spoke_w/2;
corner_y = -spoke_w/2;
th1 = -pi + start_angle;
th2 = -pi/2.0 - start_angle;
}
else if( i == 3 )
{
corner_x = spoke_w/2;
corner_y = -spoke_w/2;
th1 = -pi/2.0 + start_angle;
th2 = -start_angle;
}
AppendCorner( to_int(x+corner_x), to_int(y+corner_y), STRAIGHT, 0 );
AppendCorner( to_int(x+r*cos(th1)), to_int(y+r*sin(th1)), STRAIGHT, 0 );
AppendCorner( to_int(x+r*cos(th2)), to_int(y+r*sin(th2)), ARC_CCW, 0 );
Close( STRAIGHT );
}
}
else if( type == PAD_SQUARE || type == PAD_RECT
|| type == PAD_RRECT || type == PAD_OVAL )
{
// draw 4 rectangles
int xL = x - dx;
int xR = x - spoke_w/2;
int yB = y - dy;
int yT = y - spoke_w/2;
AppendCorner( xL, yB, STRAIGHT, 0 );
AppendCorner( xR, yB, STRAIGHT, 0 );
AppendCorner( xR, yT, STRAIGHT, 0 );
AppendCorner( xL, yT, STRAIGHT, 0 );
Close( STRAIGHT );
xL = x + spoke_w/2;
xR = x + dx;
AppendCorner( xL, yB, STRAIGHT, 0 );
AppendCorner( xR, yB, STRAIGHT, 0 );
AppendCorner( xR, yT, STRAIGHT, 0 );
AppendCorner( xL, yT, STRAIGHT, 0 );
Close( STRAIGHT );
xL = x - dx;
xR = x - spoke_w/2;
yB = y + spoke_w/2;
yT = y + dy;
AppendCorner( xL, yB, STRAIGHT, 0 );
AppendCorner( xR, yB, STRAIGHT, 0 );
AppendCorner( xR, yT, STRAIGHT, 0 );
AppendCorner( xL, yT, STRAIGHT, 0 );
Close( STRAIGHT );
xL = x + spoke_w/2;
xR = x + dx;
AppendCorner( xL, yB, STRAIGHT, 0 );
AppendCorner( xR, yB, STRAIGHT, 0 );
AppendCorner( xR, yT, STRAIGHT, 0 );
AppendCorner( xL, yT, STRAIGHT, 0 );
Close( STRAIGHT );
}
}
return;
}
void CPolyLine::AppendArc( int xi, int yi, int xf, int yf, int xc, int yc, int num )
{
// get radius
double r = sqrt( (double)(xi-xc)*(xi-xc) + (double)(yi-yc)*(yi-yc) );
// get angles of start and finish
double th_i = atan2( (double)yi-yc, (double)xi-xc );
double th_f = atan2( (double)yf-yc, (double)xf-xc );
double th_d = (th_f - th_i)/(num-1);
double theta = th_i;
// generate arc
for( int ic=0; ic<num; ic++ )
{
int x = to_int(xc + r*cos(theta));
int y = to_int(yc + r*sin(theta));
AppendCorner( x, y, STRAIGHT, 0 );
theta += th_d;
}
Close( STRAIGHT );
}
void CPolyLine::ClipGpcPolygon( gpc_op op, CPolyLine * clip_poly )
{
gpc_polygon * result = new gpc_polygon;
gpc_polygon_clip( op, m_gpc_poly, clip_poly->GetGpcPoly(), result );
gpc_free_polygon( m_gpc_poly );
delete m_gpc_poly;
m_gpc_poly = result;
}