kicad/libs/kimath/include/geometry/direction45.h

353 lines
9.1 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013-2015 CERN
* Copyright (C) 2017-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.or/licenses/>.
*/
#ifndef DIRECTION45_H
#define DIRECTION45_H
#include <geometry/seg.h>
#include <geometry/shape_line_chain.h>
#include <math/vector2d.h>
// believe or not, X11 headers have a F****ING macro called Opposite...
#undef Opposite
/**
* Represent route directions & corner angles in a 45-degree metric.
*/
class DIRECTION_45
{
public:
/**
* Available directions, there are 8 of them, as on a rectilinear map (north = up) +
* an extra undefined direction, reserved for traces that don't respect 45-degree routing
* regime.
*
* @note North represents "up" to the user looking at the application, which is the negative-y
* direction in the world coordinate space!
*/
enum Directions : int
{
N = 0,
NE = 1,
E = 2,
SE = 3,
S = 4,
SW = 5,
W = 6,
NW = 7,
LAST = 8,
UNDEFINED = -1
};
/**
* Corner modes.
* A corner can either be 45° or 90° and can be fillet/rounded or mitered
*/
enum CORNER_MODE
{
MITERED_45 = 0, ///< H/V/45 with mitered corners (default)
ROUNDED_45 = 1, ///< H/V/45 with filleted corners
MITERED_90 = 2, ///< H/V only (90-degree corners)
ROUNDED_90 = 3, ///< H/V with filleted corners
};
/**
* Represent kind of angle formed by vectors heading in two DIRECTION_45s.
*/
enum AngleType
{
ANG_OBTUSE = 0x01,
ANG_RIGHT = 0x02,
ANG_ACUTE = 0x04,
ANG_STRAIGHT = 0x08,
ANG_HALF_FULL = 0x10,
ANG_UNDEFINED = 0x20
};
DIRECTION_45( Directions aDir = UNDEFINED ) : m_dir( aDir ), m_90deg( false ) {}
/**
* @param aVec vector in world space, whose direction will be translated into a DIRECTION_45.
*/
DIRECTION_45( const VECTOR2I &aVec, bool a90 = false ) :
m_90deg( a90 )
{
VECTOR2I vec( aVec );
vec.y = -vec.y;
construct_( vec );
}
/**
* @param aSeg segment, whose direction will be translated into a DIRECTION_45.
*/
DIRECTION_45( const SEG& aSeg, bool a90 = false ) :
m_90deg( a90 )
{
VECTOR2I vec( aSeg.B - aSeg.A );
vec.y = -vec.y;
construct_( vec );
}
/**
* Create a DIRECTION_45 from the endpoints of a given arc.
*
* @param aArc will be translated into the closest DIRECTION_45
*/
DIRECTION_45( const SHAPE_ARC& aArc, bool a90 = false ) :
m_90deg( a90 )
{
VECTOR2I vec( aArc.GetP1() - aArc.GetP0() );
vec.y = -vec.y;
construct_( vec );
}
/**
* Format the direction in a human readable word.
*
* @return name of the direction
*/
const std::string Format() const
{
switch( m_dir )
{
case N:
return "north";
case NE:
return "north-east";
case E:
return "east";
case SE:
return "south-east";
case S:
return "south";
case SW:
return "south-west";
case W:
return "west";
case NW:
return "north-west";
case UNDEFINED:
return "undefined";
default:
return "<Error>";
}
}
/**
* Return a direction opposite (180 degree) to (this).
*
* @return opposite direction
*/
DIRECTION_45 Opposite() const
{
const Directions OppositeMap[] = { S, SW, W, NW, N, NE, E, SE, UNDEFINED };
return OppositeMap[m_dir];
}
/**
* Return the type of angle between directions (this) and \a aOther.
*
* @param aOther direction to compare angle with
*/
AngleType Angle( const DIRECTION_45& aOther ) const
{
if( m_dir == UNDEFINED || aOther.m_dir == UNDEFINED )
return ANG_UNDEFINED;
int d = std::abs( m_dir - aOther.m_dir );
if( d == 1 || d == 7 )
return ANG_OBTUSE;
else if( d == 2 || d == 6 )
return ANG_RIGHT;
else if( d == 3 || d == 5 )
return ANG_ACUTE;
else if( d == 4 )
return ANG_HALF_FULL;
else
return ANG_STRAIGHT;
}
/**
* @return true, when (this) forms an obtuse angle with \a aOther.
*/
bool IsObtuse( const DIRECTION_45& aOther ) const
{
return Angle( aOther ) == ANG_OBTUSE;
}
/**
* Returns true if the direction is diagonal (e.g. North-West, South-East, etc).
*
* @return true, when diagonal.
*/
bool IsDiagonal() const
{
return ( m_dir % 2 ) == 1;
}
bool IsDefined() const
{
return m_dir != UNDEFINED;
}
/**
* Build a 2-segment line chain between points aP0 and aP1 and following 45-degree routing
* regime. If aStartDiagonal is true, the trace starts with a diagonal segment.
*
* @param aP0 starting point
* @param aP1 ending point
* @param aStartDiagonal whether the first segment has to be diagonal
* @param aMode How the corner is made. If it is a 90° corner, aStartDiagonal means
* start with the shorter direction first / use arc before the straight segment.
* @return the trace
*/
const SHAPE_LINE_CHAIN BuildInitialTrace( const VECTOR2I& aP0, const VECTOR2I& aP1,
bool aStartDiagonal = false,
CORNER_MODE aMode = CORNER_MODE::MITERED_45 ) const;
bool operator==( const DIRECTION_45& aOther ) const
{
return aOther.m_dir == m_dir;
}
bool operator!=( const DIRECTION_45& aOther ) const
{
return aOther.m_dir != m_dir;
}
/**
* Return the direction on the right side of this (i.e. turns right by 45 or 90 deg).
*/
const DIRECTION_45 Right() const
{
DIRECTION_45 r;
if ( m_dir != UNDEFINED )
{
if( m_90deg )
r.m_dir = static_cast<Directions>( ( m_dir + 2 ) % LAST );
else
r.m_dir = static_cast<Directions>( ( m_dir + 1 ) % LAST );
}
return r;
}
/**
* Return the direction on the left side of this (i.e. turns left by 45 or 90 deg).
*/
const DIRECTION_45 Left() const
{
DIRECTION_45 l;
if ( m_dir != UNDEFINED )
{
if( m_90deg )
l.m_dir = static_cast<Directions>( ( m_dir + LAST - 2 ) % LAST );
else
l.m_dir = static_cast<Directions>( ( m_dir + LAST - 1 ) % LAST );
}
return l;
}
/**
* @return a unit vector in world coordinate system corresponding to our direction.
*/
const VECTOR2I ToVector() const
{
switch( m_dir )
{
case N: return VECTOR2I( 0, -1 );
case S: return VECTOR2I( 0, 1 );
case E: return VECTOR2I( 1, 0 );
case W: return VECTOR2I( -1, 0 );
case NE: return VECTOR2I( 1, -1 );
case NW: return VECTOR2I( -1, -1 );
case SE: return VECTOR2I( 1, 1 );
case SW: return VECTOR2I( -1, 1 );
default:
return VECTOR2I( 0, 0 );
}
}
int Mask() const
{
return 1 << ( (int) m_dir );
}
private:
/**
* Calculate the direction from a vector. If the vector's angle is not a multiple of 45
* degrees, the direction is rounded to the nearest octant.
*
* @param aVec our vector
*/
void construct_( const VECTOR2I& aVec )
{
m_dir = UNDEFINED;
if( aVec.x == 0 && aVec.y == 0 )
return;
double mag = 360.0 - ( 180.0 / M_PI * atan2( (double) aVec.y, (double) aVec.x ) ) + 90.0;
if( mag >= 360.0 )
mag -= 360.0;
if( mag < 0.0 )
mag += 360.0;
int dir = ( mag + 22.5 ) / 45.0;
if( dir >= LAST )
dir -= LAST;
if( dir < 0 )
dir += LAST;
m_dir = (Directions) dir;
return;
}
///< our actual direction
Directions m_dir;
///< Are we routing on 45 or 90 degree increments
bool m_90deg;
};
#endif // DIRECTION45_H