kicad/pcbnew/graphpcb.cpp

945 lines
26 KiB
C++

/****************************************************/
/* PCB EDITOR: autorouting and "graphics" routines. */
/****************************************************/
#include "fctsys.h"
#include "gr_basic.h"
#include "common.h"
#include "pcbnew.h"
#include "autorout.h"
#include "zones.h"
#include "trigo.h"
#include "cell.h"
int ToMatrixCoordinate( int aPhysicalCoordinate );
void TraceLignePcb( int x0,
int y0,
int x1,
int y1,
int layer,
int color );
void TraceArc( int ux0,
int uy0,
int ux1,
int uy1,
int ArcAngle,
int lg,
int layer,
int color,
int op_logique );
static void DrawSegmentQcq( int ux0,
int uy0,
int ux1,
int uy1,
int lg,
int layer,
int color,
int op_logique );
static void TraceFilledCercle( BOARD* Pcb,
int cx,
int cy,
int rayon,
int masque_layer,
int color,
int op_logique );
static void TraceCercle( int ux0, int uy0, int ux1, int uy1, int lg, int layer,
int color, int op_logique );
/* Macro call to update cell. */
#define OP_CELL( layer, dy, dx ) \
{ \
if( layer < 0 ) \
{ \
WriteCell( dy, dx, BOTTOM, color ); \
if( Nb_Sides ) \
WriteCell( dy, dx, TOP, color ); \
} \
else \
{ \
if( layer == Route_Layer_BOTTOM ) \
WriteCell( dy, dx, BOTTOM, color ); \
if( Nb_Sides ) \
if( layer == Route_Layer_TOP ) \
WriteCell( dy, dx, TOP, color ); \
} \
}
/** Function ToMatrixCoordinate
* compute the coordinate in the routing matrix from the real (board) value
* @param aPhysicalCoordinate = value to convert
* @return the coordinate relative to the matrix
*/
int ToMatrixCoordinate( int aPhysicalCoordinate )
{
return aPhysicalCoordinate / g_GridRoutingSize;
}
/* Initialize a color value, the cells included in the board edge of the
* pad surface by pt_pad, with the margin reserved for isolation and the
* half width of the runway
* Parameters:
* Pt_pad: pointer to the description of the pad
* color: mask write in cells
* margin: add a value to the radius or half the score pad
* op_logique: type of writing in the cell (WRITE, OR)
*/
void Place_1_Pad_Board( BOARD* Pcb,
D_PAD* pt_pad,
int color,
int marge,
int op_logique )
{
int dx, dy;
wxPoint shape_pos = pt_pad->ReturnShapePos();;
dx = pt_pad->m_Size.x / 2; dx += marge;
if( pt_pad->m_PadShape == PAD_CIRCLE )
{
TraceFilledCercle( Pcb, shape_pos.x, shape_pos.y, dx,
pt_pad->m_Masque_Layer, color, op_logique );
return;
}
dy = pt_pad->m_Size.y / 2; dy += marge;
if( pt_pad->m_PadShape == PAD_TRAPEZOID )
{
dx += abs( pt_pad->m_DeltaSize.y ) / 2;
dy += abs( pt_pad->m_DeltaSize.x ) / 2;
}
if( ( pt_pad->m_Orient % 900 ) == 0 ) /* The pad is a rectangle
* horizontally or vertically. */
{
/* Orientation turned 90 deg. */
if( ( pt_pad->m_Orient == 900 ) || ( pt_pad->m_Orient == 2700 ) )
{
EXCHG( dx, dy );
}
TraceFilledRectangle( Pcb, shape_pos.x - dx, shape_pos.y - dy,
shape_pos.x + dx, shape_pos.y + dy,
pt_pad->m_Masque_Layer, color, op_logique );
}
else
{
TraceFilledRectangle( Pcb, shape_pos.x - dx, shape_pos.y - dy,
shape_pos.x + dx, shape_pos.y + dy,
(int) pt_pad->m_Orient,
pt_pad->m_Masque_Layer, color, op_logique );
}
}
/* Initialize a color value, the cells included in the board rea of the
* circle center cx, cy.
* Parameters:
* radius: a value add to the radius or half the score pad
* masque_layer: layer occupied
* color: mask write in cells
* op_logique: type of writing in the cell (WRITE, OR)
*/
void TraceFilledCercle( BOARD* Pcb,
int cx,
int cy,
int rayon,
int masque_layer,
int color,
int op_logique )
{
int row, col;
int ux0, uy0, ux1, uy1;
int row_max, col_max, row_min, col_min;
int trace = 0;
float fdistmin, fdistx, fdisty;
void (* WriteCell)( int, int, int, BoardCell );
int tstwrite = 0;
int distmin;
/* Determine occupied layer. */
/* Single routing layer on bitmap and BOTTOM
* Route_Layer_B = Route_Layer_A */
if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] )
trace = 1; /* Trace on BOTTOM */
if( masque_layer & g_TabOneLayerMask[Route_Layer_TOP] )
if( Nb_Sides )
trace |= 2; /* Trace on TOP */
if( trace == 0 )
return;
switch( op_logique )
{
default:
case WRITE_CELL:
WriteCell = SetCell;
break;
case WRITE_OR_CELL:
WriteCell = OrCell;
break;
case WRITE_XOR_CELL:
WriteCell = XorCell;
break;
case WRITE_AND_CELL:
WriteCell = AndCell;
break;
case WRITE_ADD_CELL:
WriteCell = AddCell;
break;
}
cx -= Pcb->m_BoundaryBox.m_Pos.x;
cy -= Pcb->m_BoundaryBox.m_Pos.y;
distmin = rayon;
/* Calculate the bounding rectangle of the circle. */
ux0 = cx - rayon;
uy0 = cy - rayon;
ux1 = cx + rayon;
uy1 = cy + rayon;
/* Calculate limit coordinates of cells belonging to the rectangle. */
row_max = uy1 / g_GridRoutingSize;
col_max = ux1 / g_GridRoutingSize;
row_min = uy0 / g_GridRoutingSize; // if (uy0 > row_min*g_GridRoutingSize
// ) row_min++;
col_min = ux0 / g_GridRoutingSize; // if (ux0 > col_min*g_GridRoutingSize
// ) col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= (Nrows - 1) )
row_max = Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= (Ncols - 1) )
col_max = Ncols - 1;
/* Calculate coordinate limits of cell belonging to the rectangle. */
if( row_min > row_max )
row_max = row_min;
if( col_min > col_max )
col_max = col_min;
fdistmin = (float) distmin * distmin;
for( row = row_min; row <= row_max; row++ )
{
fdisty = (float) ( cy - ( row * g_GridRoutingSize ) );
fdisty *= fdisty;
for( col = col_min; col <= col_max; col++ )
{
fdistx = (float) ( cx - ( col * g_GridRoutingSize ) );
fdistx *= fdistx;
if( fdistmin <= ( fdistx + fdisty ) )
continue;
if( trace & 1 )
WriteCell( row, col, BOTTOM, color );
if( trace & 2 )
WriteCell( row, col, TOP, color );
tstwrite = 1;
}
}
if( tstwrite )
return;
/* If no cell has been written, it affects the 4 neighboring diagonal
* (Adverse event: pad off grid in the center of the 4 neighboring
* diagonal) */
distmin = g_GridRoutingSize / 2 + 1;
fdistmin = ( (float) distmin * distmin ) * 2; /* Distance to center point
* diagonally */
for( row = row_min; row <= row_max; row++ )
{
fdisty = (float) ( cy - ( row * g_GridRoutingSize ) );
fdisty *= fdisty;
for( col = col_min; col <= col_max; col++ )
{
fdistx = (float) ( cx - ( col * g_GridRoutingSize ) );
fdistx *= fdistx;
if( fdistmin <= ( fdistx + fdisty ) )
continue;
if( trace & 1 )
WriteCell( row, col, BOTTOM, color );
if( trace & 2 )
WriteCell( row, col, TOP, color );
}
}
}
/* Draws a segment of track on the BOARD.
*/
void TraceSegmentPcb( BOARD* Pcb,
TRACK* pt_segm,
int color,
int marge,
int op_logique )
{
int demi_pas, demi_largeur;
int ux0, uy0, ux1, uy1;
demi_pas = g_GridRoutingSize / 2;
demi_largeur = ( pt_segm->m_Width / 2 ) + marge;
/* Calculate the bounding rectangle of the segment (if H, V or Via) */
ux0 = pt_segm->m_Start.x - Pcb->m_BoundaryBox.m_Pos.x;
uy0 = pt_segm->m_Start.y - Pcb->m_BoundaryBox.m_Pos.y;
ux1 = pt_segm->m_End.x - Pcb->m_BoundaryBox.m_Pos.x;
uy1 = pt_segm->m_End.y - Pcb->m_BoundaryBox.m_Pos.y;
/* Test if VIA (filled circle was drawn) */
if( pt_segm->Type() == TYPE_VIA )
{
int mask_layer = 0;
if( pt_segm->IsOnLayer( Route_Layer_BOTTOM ) )
mask_layer = 1 << Route_Layer_BOTTOM;
if( pt_segm->IsOnLayer( Route_Layer_TOP ) )
{
if( mask_layer == 0 )
mask_layer = 1 << Route_Layer_TOP;
else
mask_layer = -1;
}
if( color == VIA_IMPOSSIBLE )
mask_layer = -1;
if( mask_layer )
TraceFilledCercle( Pcb, pt_segm->m_Start.x, pt_segm->m_Start.y,
demi_largeur, mask_layer, color, op_logique );
return;
}
int layer = pt_segm->GetLayer();
if( color == VIA_IMPOSSIBLE )
layer = -1;
/* The segment is here a straight line or a circle or an arc.: */
if( pt_segm->m_Shape == S_CIRCLE )
{
TraceCercle( ux0, uy0, ux1, uy1, demi_largeur, layer, color,
op_logique );
return;
}
if( pt_segm->m_Shape == S_ARC )
{
TraceArc( ux0, uy0, ux1, uy1, pt_segm->m_Param, demi_largeur, layer,
color, op_logique );
return;
}
/* The segment is here a line segment. */
if( ( ux0 != ux1 ) && ( uy0 != uy1 ) ) // Segment tilts.
{
DrawSegmentQcq( ux0, uy0, ux1, uy1, demi_largeur, layer, color,
op_logique );
return;
}
// The segment is horizontal or vertical.
// DrawHVSegment(ux0,uy0,ux1,uy1,demi_largeur,layer,color,op_logique);
// F4EXB 051018-01
DrawSegmentQcq( ux0, uy0, ux1, uy1, demi_largeur, layer, color,
op_logique ); // F4EXB 051018-01
return; // F4EXB 051018-01
}
/* Draws a line, if layer = -1 on all layers
*/
void TraceLignePcb( int x0,
int y0,
int x1,
int y1,
int layer,
int color,
int op_logique )
{
int dx, dy, lim;
int cumul, inc, il, delta;
void (* WriteCell)( int, int, int, BoardCell );
switch( op_logique )
{
default:
case WRITE_CELL:
WriteCell = SetCell; break;
case WRITE_OR_CELL:
WriteCell = OrCell; break;
case WRITE_XOR_CELL:
WriteCell = XorCell; break;
case WRITE_AND_CELL:
WriteCell = AndCell; break;
case WRITE_ADD_CELL:
WriteCell = AddCell; break;
}
if( x0 == x1 ) // Vertical.
{
if( y1 < y0 )
EXCHG( y0, y1 );
dy = y0 / g_GridRoutingSize;
lim = y1 / g_GridRoutingSize;
dx = x0 / g_GridRoutingSize;
/* Clipping limits of board. */
if( ( dx < 0 ) || ( dx >= Ncols ) )
return;
if( dy < 0 )
dy = 0;
if( lim >= Nrows )
lim = Nrows - 1;
for( ; dy <= lim; dy++ )
{
OP_CELL( layer, dy, dx );
}
return;
}
if( y0 == y1 ) // Horizontal
{
if( x1 < x0 )
EXCHG( x0, x1 );
dx = x0 / g_GridRoutingSize;
lim = x1 / g_GridRoutingSize;
dy = y0 / g_GridRoutingSize;
/* Clipping limits of board. */
if( ( dy < 0 ) || ( dy >= Nrows ) )
return;
if( dx < 0 )
dx = 0;
if( lim >= Ncols )
lim = Ncols - 1;
for( ; dx <= lim; dx++ )
{
OP_CELL( layer, dy, dx );
}
return;
}
/* Here is some perspective: using the algorithm LUCAS. */
if( abs( x1 - x0 ) >= abs( y1 - y0 ) ) /* segment slightly inclined/ */
{
if( x1 < x0 )
{
EXCHG( x1, x0 ); EXCHG( y1, y0 );
}
dx = x0 / g_GridRoutingSize;
lim = x1 / g_GridRoutingSize;
dy = y0 / g_GridRoutingSize;
inc = 1; if( y1 < y0 )
inc = -1;
il = lim - dx; cumul = il / 2;
delta = abs( y1 - y0 ) / g_GridRoutingSize;
for( ; dx <= lim; )
{
if( ( dx >= 0 ) && ( dy >= 0 )
&& ( dx < Ncols ) && ( dy < Nrows ) )
{
OP_CELL( layer, dy, dx );
}
dx++;
cumul += delta;
if( cumul > il )
{
cumul -= il;
dy += inc;
}
}
}
else
{
if( y1 < y0 )
{
EXCHG( x1, x0 );
EXCHG( y1, y0 );
}
dy = y0 / g_GridRoutingSize;
lim = y1 / g_GridRoutingSize;
dx = x0 / g_GridRoutingSize;
inc = 1;
if( x1 < x0 )
inc = -1;
il = lim - dy; cumul = il / 2;
delta = abs( x1 - x0 ) / g_GridRoutingSize;
for( ; dy <= lim; )
{
if( ( dx >= 0 ) && ( dy >= 0 )
&& ( dx < Ncols ) && ( dy < Nrows ) )
{
OP_CELL( layer, dy, dx );
}
dy++;
cumul += delta;
if( cumul > il )
{
cumul -= il;
dx += inc;
}
}
}
}
/* Overloaded functions.
*
* Uses the color value of all cells included in the board coordinate of
* the rectangle ux0, uy0 (top left corner)
* A UX1, UY1 (bottom right corner)
* The rectangle is horizontal (or vertical)
* Contact PCBs.
*/
void TraceFilledRectangle( BOARD* Pcb, int ux0, int uy0, int ux1, int uy1,
int masque_layer, int color, int op_logique )
{
int row, col;
int row_min, row_max, col_min, col_max;
int trace = 0;
void (* WriteCell)( int, int, int, BoardCell );
if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] )
trace = 1; /* Trace on BOTTOM */
if( ( masque_layer & g_TabOneLayerMask[Route_Layer_TOP] ) && Nb_Sides )
trace |= 2; /* Trace on TOP */
if( trace == 0 )
return;
switch( op_logique )
{
default:
case WRITE_CELL:
WriteCell = SetCell;
break;
case WRITE_OR_CELL:
WriteCell = OrCell;
break;
case WRITE_XOR_CELL:
WriteCell = XorCell;
break;
case WRITE_AND_CELL:
WriteCell = AndCell;
break;
case WRITE_ADD_CELL:
WriteCell = AddCell;
break;
}
ux0 -= Pcb->m_BoundaryBox.m_Pos.x;
uy0 -= Pcb->m_BoundaryBox.m_Pos.y;
ux1 -= Pcb->m_BoundaryBox.m_Pos.x;
uy1 -= Pcb->m_BoundaryBox.m_Pos.y;
/* Calculating limits coord cells belonging to the rectangle. */
row_max = uy1 / g_GridRoutingSize;
col_max = ux1 / g_GridRoutingSize;
row_min = uy0 / g_GridRoutingSize;
if( uy0 > row_min * g_GridRoutingSize )
row_min++;
col_min = ux0 / g_GridRoutingSize;
if( ux0 > col_min * g_GridRoutingSize )
col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= ( Nrows - 1 ) )
row_max = Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= ( Ncols - 1 ) )
col_max = Ncols - 1;
for( row = row_min; row <= row_max; row++ )
{
for( col = col_min; col <= col_max; col++ )
{
if( trace & 1 )
WriteCell( row, col, BOTTOM, color );
if( trace & 2 )
WriteCell( row, col, TOP, color );
}
}
}
/* Overloaded functions.
*
* Uses the color value of all cells included in the board coordinate of the
* rectangle ux0, uy0 (top right corner)
* a UX1, UY1 (lower left corner)
* the rectangle is the value of turning angle (in degrees 0.1)
* contact PCBs.
*/
void TraceFilledRectangle( BOARD* Pcb, int ux0, int uy0, int ux1, int uy1,
int angle, int masque_layer, int color,
int op_logique )
{
int row, col;
int cx, cy; /* Center of rectangle */
int rayon; /* Radius of the circle */
int row_min, row_max, col_min, col_max;
int rotrow, rotcol;
int trace = 0;
void (* WriteCell)( int, int, int, BoardCell );
if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] )
trace = 1; /* Trace on BOTTOM */
if( masque_layer & g_TabOneLayerMask[Route_Layer_TOP] )
if( Nb_Sides )
trace |= 2; /* Trace on TOP */
if( trace == 0 )
return;
switch( op_logique )
{
default:
case WRITE_CELL:
WriteCell = SetCell;
break;
case WRITE_OR_CELL:
WriteCell = OrCell;
break;
case WRITE_XOR_CELL:
WriteCell = XorCell;
break;
case WRITE_AND_CELL:
WriteCell = AndCell;
break;
case WRITE_ADD_CELL:
WriteCell = AddCell;
break;
}
ux0 -= Pcb->m_BoundaryBox.m_Pos.x;
uy0 -= Pcb->m_BoundaryBox.m_Pos.y;
ux1 -= Pcb->m_BoundaryBox.m_Pos.x;
uy1 -= Pcb->m_BoundaryBox.m_Pos.y;
cx = (ux0 + ux1) / 2;
cy = (uy0 + uy1) / 2;
rayon = (int) sqrt( (double) ( cx - ux0 ) * ( cx - ux0 )
+ (double) ( cy - uy0 ) * ( cy - uy0 ) );
/* Calculating coordinate limits belonging to the rectangle. */
row_max = ( cy + rayon ) / g_GridRoutingSize;
col_max = ( cx + rayon ) / g_GridRoutingSize;
row_min = ( cy - rayon ) / g_GridRoutingSize;
if( uy0 > row_min * g_GridRoutingSize )
row_min++;
col_min = ( cx - rayon ) / g_GridRoutingSize;
if( ux0 > col_min * g_GridRoutingSize )
col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= ( Nrows - 1 ) )
row_max = Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= ( Ncols - 1 ) )
col_max = Ncols - 1;
for( row = row_min; row <= row_max; row++ )
{
for( col = col_min; col <= col_max; col++ )
{
rotrow = row * g_GridRoutingSize;
rotcol = col * g_GridRoutingSize;
RotatePoint( &rotcol, &rotrow, cx, cy, -angle );
if( rotrow <= uy0 )
continue;
if( rotrow >= uy1 )
continue;
if( rotcol <= ux0 )
continue;
if( rotcol >= ux1 )
continue;
if( trace & 1 )
WriteCell( row, col, BOTTOM, color );
if( trace & 2 )
WriteCell( row, col, TOP, color );
}
}
}
/* Fills all cells BOARD contained in the segment
* half-width lg, org ux, ux end y0, y1 is set to color.
* coordinates in PCB units (0.1 million) relating to the origin
* pt_pcb-> m_PcbBox.m_Xmin, Y's board.
*/
void DrawSegmentQcq( int ux0, int uy0, int ux1, int uy1, int lg, int layer,
int color, int op_logique )
{
int row, col;
int inc;
int row_max, col_max, row_min, col_min;
int demi_pas;
void (* WriteCell)( int, int, int, BoardCell );
int angle;
int cx, cy, dx, dy;
switch( op_logique )
{
default:
case WRITE_CELL:
WriteCell = SetCell;
break;
case WRITE_OR_CELL:
WriteCell = OrCell;
break;
case WRITE_XOR_CELL:
WriteCell = XorCell;
break;
case WRITE_AND_CELL:
WriteCell = AndCell;
break;
case WRITE_ADD_CELL:
WriteCell = AddCell;
break;
}
/* Make coordinate ux1 tj > ux0 to simplify calculations */
if( ux1 < ux0 )
{
EXCHG( ux1, ux0 );
EXCHG( uy1, uy0 );
}
/* Calculating the incrementing the Y axis */
inc = 1;
if( uy1 < uy0 )
inc = -1;
demi_pas = g_GridRoutingSize / 2;
col_min = ( ux0 - lg ) / g_GridRoutingSize;
if( col_min < 0 )
col_min = 0;
col_max = ( ux1 + lg + demi_pas ) / g_GridRoutingSize;
if( col_max > ( Ncols - 1 ) )
col_max = Ncols - 1;
if( inc > 0 )
{
row_min = ( uy0 - lg ) / g_GridRoutingSize;
row_max = ( uy1 + lg + demi_pas ) / g_GridRoutingSize;
}
else
{
row_min = ( uy1 - lg ) / g_GridRoutingSize;
row_max = ( uy0 + lg + demi_pas ) / g_GridRoutingSize;
}
if( row_min < 0 )
row_min = 0;
if( row_min > ( Nrows - 1 ) )
row_min = Nrows - 1;
if( row_max < 0 )
row_max = 0;
if( row_max > ( Nrows - 1 ) )
row_max = Nrows - 1;
dx = ux1 - ux0;
dy = uy1 - uy0;
if( dx )
angle = (int) ( atan2( (double) dy, (double) dx ) * 1800 / M_PI );
else
{
angle = 900;
if( dy < 0 )
angle = -900;
}
RotatePoint( &dx, &dy, angle ); /* dx = length, dy = 0 */
for( col = col_min; col <= col_max; col++ )
{
int cxr;
cxr = ( col * g_GridRoutingSize ) - ux0;
for( row = row_min; row <= row_max; row++ )
{
cy = (row * g_GridRoutingSize) - uy0;
cx = cxr;
RotatePoint( &cx, &cy, angle );
if( abs( cy ) > lg )
continue; /* The point is too far on the Y axis. */
/* This point a test is close to the segment: the position
* along the X axis must be tested.
*/
if( ( cx >= 0 ) && ( cx <= dx ) )
{
OP_CELL( layer, row, col );
continue;
}
/* Examination of extremities are rounded. */
if( ( cx < 0 ) && ( cx >= -lg ) )
{
if( ( ( cx * cx ) + ( cy * cy ) ) <= ( lg * lg ) )
OP_CELL( layer, row, col );
continue;
}
if( ( cx > dx ) && ( cx <= ( dx + lg ) ) )
{
if( ( ( ( cx - dx ) * ( cx - dx ) ) + ( cy * cy ) )
<= ( lg * lg ) )
OP_CELL( layer, row, col );
continue;
}
}
}
}
/* Fills all cells BOARD contained in the circle
* half-width lg center ux, ux through y0, y1 is set to color.
* coord in PCB units (0.1 million) relating to the origin
* pt_pcb-> m_PcbBox.m_Xmin, Y's board.
*/
void TraceCercle( int ux0, int uy0, int ux1, int uy1, int lg, int layer,
int color, int op_logique )
{
int rayon, nb_segm;
int x0, y0, // Starting point of the current segment trace.
x1, y1; // End point.
int ii;
int angle;
rayon = (int) hypot( (double) (ux1 - ux0), (double) (uy1 - uy0) );
x0 = x1 = rayon;
y0 = y1 = 0;
if( lg < 1 )
lg = 1;
nb_segm = ( 2 * rayon ) / lg;
if( nb_segm < 5 )
nb_segm = 5;
if( nb_segm > 100 )
nb_segm = 100;
for( ii = 1; ii < nb_segm; ii++ )
{
angle = (3600 * ii) / nb_segm;
x1 = (int) ( rayon * fcosinus[angle] );
y1 = (int) ( rayon * fsinus[angle] );
DrawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg,
layer, color, op_logique );
x0 = x1;
y0 = y1;
}
DrawSegmentQcq( x1 + ux0, y1 + uy0, ux0 + rayon, uy0, lg, layer,
color, op_logique );
}
/* Fills all cells BOARD contained in the arc of "L" angle
* half-width lg ux center, starting in ux y0, y1 is set to color.
* coord in PCB units (0.1 million) relating to the origin
* Pt_pcb->m_PcbBox.m_Xmin, Y's board.
*/
void TraceArc( int ux0, int uy0, int ux1, int uy1, int ArcAngle, int lg,
int layer, int color, int op_logique )
{
int rayon, nb_segm;
int x0, y0, // Starting point of the current segment trace
x1, y1; // End point
int ii;
int angle, StAngle;
rayon = (int) hypot( (double) (ux1 - ux0), (double) (uy1 - uy0) );
x0 = ux1 - ux0;
y0 = uy1 - uy0;
StAngle = ArcTangente( uy1 - uy0, ux1 - ux0 );
if( lg < 1 )
lg = 1;
nb_segm = ( 2 * rayon ) / lg;
nb_segm = ( nb_segm * abs( ArcAngle ) ) / 3600;
if( nb_segm < 5 )
nb_segm = 5;
if( nb_segm > 100 )
nb_segm = 100;
for( ii = 1; ii <= nb_segm; ii++ )
{
angle = ( ArcAngle * ii ) / nb_segm;
angle += StAngle;
while( angle >= 3600 )
angle -= 3600;
while( angle < 0 )
angle += 3600;
x1 = (int) ( rayon * fcosinus[angle] );
y1 = (int) ( rayon * fsinus[angle] );
DrawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer,
color, op_logique );
x0 = x1;
y0 = y1;
}
// DrawSegmentQcq(x1+ux0,y1+uy0, ux0+rayon, uy0,lg,layer, color,
// op_logique);
}