kicad/pcbnew/ratsnest_data.cpp

516 lines
14 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2013-2017 CERN
* @author Maciej Suminski <maciej.suminski@cern.ch>
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file ratsnest_data.cpp
* @brief Class that computes missing connections on a PCB.
*/
#ifdef USE_OPENMP
#include <omp.h>
#endif /* USE_OPENMP */
#ifdef PROFILE
#include <profile.h>
#endif
#include <ratsnest_data.h>
#include <functional>
using namespace std::placeholders;
#include <cassert>
#include <algorithm>
#include <limits>
#include <connectivity_algo.h>
static uint64_t getDistance( const CN_ANCHOR_PTR& aNode1, const CN_ANCHOR_PTR& aNode2 )
{
double dx = ( aNode1->Pos().x - aNode2->Pos().x );
double dy = ( aNode1->Pos().y - aNode2->Pos().y );
return sqrt( dx * dx + dy * dy );
}
static bool sortWeight( const CN_EDGE& aEdge1, const CN_EDGE& aEdge2 )
{
return aEdge1.GetWeight() < aEdge2.GetWeight();
}
static const std::vector<CN_EDGE> kruskalMST( std::list<CN_EDGE>& aEdges,
std::vector<CN_ANCHOR_PTR>& aNodes )
{
unsigned int nodeNumber = aNodes.size();
unsigned int mstExpectedSize = nodeNumber - 1;
unsigned int mstSize = 0;
bool ratsnestLines = false;
//printf("mst nodes : %d edges : %d\n", aNodes.size(), aEdges.size () );
// The output
std::vector<CN_EDGE> mst;
// Set tags for marking cycles
std::unordered_map<CN_ANCHOR_PTR, int> tags;
unsigned int tag = 0;
for( auto& node : aNodes )
{
node->SetTag( tag );
tags[node] = tag++;
}
// Lists of nodes connected together (subtrees) to detect cycles in the graph
std::vector<std::list<int> > cycles( nodeNumber );
for( unsigned int i = 0; i < nodeNumber; ++i )
cycles[i].push_back( i );
// Kruskal algorithm requires edges to be sorted by their weight
aEdges.sort( sortWeight );
while( mstSize < mstExpectedSize && !aEdges.empty() )
{
//printf("mstSize %d %d\n", mstSize, mstExpectedSize);
auto& dt = aEdges.front();
int srcTag = tags[dt.GetSourceNode()];
int trgTag = tags[dt.GetTargetNode()];
// Check if by adding this edge we are going to join two different forests
if( srcTag != trgTag )
{
// Because edges are sorted by their weight, first we always process connected
// items (weight == 0). Once we stumble upon an edge with non-zero weight,
// it means that the rest of the lines are ratsnest.
if( !ratsnestLines && dt.GetWeight() != 0 )
ratsnestLines = true;
// Update tags
if( ratsnestLines )
{
for( auto it = cycles[trgTag].begin(); it != cycles[trgTag].end(); ++it )
{
tags[aNodes[*it]] = srcTag;
}
// Do a copy of edge, but make it RN_EDGE_MST. In contrary to RN_EDGE,
// RN_EDGE_MST saves both source and target node and does not require any other
// edges to exist for getting source/target nodes
CN_EDGE newEdge ( dt.GetSourceNode(), dt.GetTargetNode(), dt.GetWeight() );
assert( newEdge.GetSourceNode()->GetTag() != newEdge.GetTargetNode()->GetTag() );
assert( newEdge.GetWeight() > 0 );
mst.push_back( newEdge );
++mstSize;
}
else
{
// for( it = cycles[trgTag].begin(), itEnd = cycles[trgTag].end(); it != itEnd; ++it )
// for( auto it : cycles[trgTag] )
for( auto it = cycles[trgTag].begin(); it != cycles[trgTag].end(); ++it )
{
tags[aNodes[*it]] = srcTag;
aNodes[*it]->SetTag( srcTag );
}
// Processing a connection, decrease the expected size of the ratsnest MST
--mstExpectedSize;
}
// Move nodes that were marked with old tag to the list marked with the new tag
cycles[srcTag].splice( cycles[srcTag].end(), cycles[trgTag] );
}
// Remove the edge that was just processed
aEdges.erase( aEdges.begin() );
}
// Probably we have discarded some of edges, so reduce the size
mst.resize( mstSize );
return mst;
}
class RN_NET::TRIANGULATOR_STATE
{
private:
std::vector<CN_ANCHOR_PTR> m_allNodes;
std::vector<VECTOR2I> m_prevNodes;
std::vector<std::pair<int, int> > m_prevEdges;
const std::list<hed::EDGE_PTR>& hedTriangulation( std::vector<hed::NODE_PTR>& aNodes )
{
hed::TRIANGULATION triangulator;
triangulator.CreateDelaunay( aNodes.begin(), aNodes.end() );
std::list<hed::EDGE_PTR> edges;
triangulator.GetEdges( edges );
return edges;
}
const std::list<hed::EDGE_PTR>& computeTriangulation( std::vector<hed::NODE_PTR>& aNodes )
{
#if 0
bool refresh = false;
// we assume aNodes are sorted
VECTOR2I prevDelta;
if ( aNodes.size() == m_prevNodes.size() )
{
for ( int i = 0; i < aNodes.size(); i++ )
{
const auto& a = aNodes[i];
const auto& b = m_prevNodes[i];
const auto delta = a->Pos() - b;
if ( i > 0 && delta != prevDelta )
{
refresh = true;
break;
}
prevDelta = delta;
}
}
if( refresh )
{
m_prevNodes.resize( aNodes.size() );
for ( int i = 0; i < aNodes.size(); i++ )
{
m_prevNodes[i] = aNodes[i]->Pos();
}
printf("need triang refresh\n");
auto edges = hedTriangulation( aNodes );
m_prevEdges.resize( edges.size() );
int i = 0;
for ( auto e : edges )
{
m_prevEdges[i].first = e->GetSourceNode()->Id();
m_prevEdges[i].second = e->GetTargetNode()->Id();
}
}
#endif
return hedTriangulation( aNodes );
}
public:
void Clear()
{
m_allNodes.clear();
}
void AddNode( CN_ANCHOR_PTR aNode )
{
m_allNodes.push_back( aNode );
}
const std::list<CN_EDGE> Triangulate()
{
std::list<CN_EDGE> mstEdges;
std::list<hed::EDGE_PTR> triangEdges;
std::vector<hed::NODE_PTR> triNodes;
using ANCHOR_LIST = std::vector<CN_ANCHOR_PTR>;
std::vector<ANCHOR_LIST> anchorChains;
triNodes.reserve( m_allNodes.size() );
anchorChains.reserve( m_allNodes.size() );
std::sort( m_allNodes.begin(), m_allNodes.end(),
[] ( const CN_ANCHOR_PTR& aNode1, const CN_ANCHOR_PTR& aNode2 )
{
if( aNode1->Pos().y < aNode2->Pos().y )
return true;
else if( aNode1->Pos().y == aNode2->Pos().y )
{
return aNode1->Pos().x < aNode2->Pos().x;
}
return false;
}
);
CN_ANCHOR_PTR prev, last;
int id = 0;
for( auto n : m_allNodes )
{
anchorChains.push_back( ANCHOR_LIST() );
}
for( auto n : m_allNodes )
{
if( !prev || prev->Pos() != n->Pos() )
{
auto tn = std::make_shared<hed::NODE> ( n->Pos().x, n->Pos().y );
tn->SetId( id );
triNodes.push_back( tn );
}
id++;
prev = n;
}
int prevId = 0;
for( auto n : triNodes )
{
for( int i = prevId; i < n->Id(); i++ )
anchorChains[prevId].push_back( m_allNodes[ i ] );
prevId = n->Id();
}
for( int i = prevId; i < id; i++ )
anchorChains[prevId].push_back( m_allNodes[ i ] );
if( triNodes.size() == 1 )
{
return mstEdges;
}
else if( triNodes.size() == 2 )
{
auto src = m_allNodes[ triNodes[0]->Id() ];
auto dst = m_allNodes[ triNodes[1]->Id() ];
mstEdges.emplace_back( src, dst, getDistance( src, dst ) );
}
else
{
hed::TRIANGULATION triangulator;
triangulator.CreateDelaunay( triNodes.begin(), triNodes.end() );
// std::list<hed::EDGE_PTR> edges;
triangulator.GetEdges( triangEdges );
for( auto e : triangEdges )
{
auto src = m_allNodes[ e->GetSourceNode()->Id() ];
auto dst = m_allNodes[ e->GetTargetNode()->Id() ];
mstEdges.emplace_back( src, dst, getDistance( src, dst ) );
}
}
for( unsigned int i = 0; i < anchorChains.size(); i++ )
{
auto& chain = anchorChains[i];
if( chain.size() < 2 )
continue;
std::sort( chain.begin(), chain.end(),
[] ( const CN_ANCHOR_PTR& a, const CN_ANCHOR_PTR& b ) {
return a->GetCluster().get() < b->GetCluster().get();
} );
for( unsigned int j = 1; j < chain.size(); j++ )
{
const auto& prevNode = chain[j - 1];
const auto& curNode = chain[j];
int weight = prevNode->GetCluster() != curNode->GetCluster() ? 1 : 0;
mstEdges.push_back( CN_EDGE ( prevNode, curNode, weight ) );
}
}
return mstEdges;
}
};
RN_NET::RN_NET() : m_dirty( true )
{
m_triangulator.reset( new TRIANGULATOR_STATE );
}
void RN_NET::compute()
{
// Special cases do not need complicated algorithms (actually, it does not work well with
// the Delaunay triangulator)
//printf("compute nodes : %d\n", m_nodes.size() );
if( m_nodes.size() <= 2 )
{
m_rnEdges.clear();
// Check if the only possible connection exists
if( m_boardEdges.size() == 0 && m_nodes.size() == 2 )
{
auto last = ++m_nodes.begin();
// There can be only one possible connection, but it is missing
CN_EDGE edge (*m_nodes.begin(), *last );
edge.GetSourceNode()->SetTag( 0 );
edge.GetTargetNode()->SetTag( 1 );
m_rnEdges.push_back( edge );
}
else
{
// Set tags to m_nodes as connected
for( auto node : m_nodes )
node->SetTag( 0 );
}
return;
}
m_triangulator->Clear();
for( auto n : m_nodes )
{
m_triangulator->AddNode( n );
}
#ifdef PROFILE
PROF_COUNTER cnt("triangulate");
#endif
auto triangEdges = m_triangulator->Triangulate();
#ifdef PROFILE
cnt.Show();
#endif
for( const auto& e : m_boardEdges )
triangEdges.push_back( e );
// Get the minimal spanning tree
#ifdef PROFILE
PROF_COUNTER cnt2("mst");
#endif
m_rnEdges = kruskalMST( triangEdges, m_nodes );
#ifdef PROFILE
cnt2.Show();
#endif
}
void RN_NET::Update()
{
compute();
m_dirty = false;
}
void RN_NET::Clear()
{
m_rnEdges.clear();
m_boardEdges.clear();
m_nodes.clear();
m_dirty = true;
}
void RN_NET::AddCluster( CN_CLUSTER_PTR aCluster )
{
CN_ANCHOR_PTR firstAnchor;
for( auto item : *aCluster )
{
bool isZone = dynamic_cast<CN_ZONE*>(item) != nullptr;
auto& anchors = item->Anchors();
unsigned int nAnchors = isZone ? 1 : anchors.size();
if( nAnchors > anchors.size() )
nAnchors = anchors.size();
//printf("item %p anchors : %d\n", item, anchors.size() );
//printf("add item %p anchors : %d net : %d\n", item, item->Anchors().size(), item->Parent()->GetNetCode() );
for( unsigned int i = 0; i < nAnchors; i++ )
{
// printf("add anchor %p\n", anchors[i].get() );
anchors[i]->SetCluster( aCluster );
m_nodes.push_back(anchors[i]);
if( firstAnchor )
{
if( firstAnchor != anchors[i] )
{
m_boardEdges.emplace_back( firstAnchor, anchors[i], 0 );
}
}
else
{
firstAnchor = anchors[i];
}
}
}
}
bool RN_NET::NearestBicoloredPair( const RN_NET& aOtherNet, CN_ANCHOR_PTR& aNode1,
CN_ANCHOR_PTR& aNode2 ) const
{
bool rv = false;
VECTOR2I::extended_type distMax = VECTOR2I::ECOORD_MAX;
for( auto nodeA : m_nodes )
{
for( auto nodeB : aOtherNet.m_nodes )
{
if( !nodeA->GetNoLine() )
{
auto squaredDist = (nodeA->Pos() - nodeB->Pos() ).SquaredEuclideanNorm();
if( squaredDist < distMax )
{
rv = true;
distMax = squaredDist;
aNode1 = nodeA;
aNode2 = nodeB;
}
}
}
}
return rv;
}
void RN_NET::SetVisible( bool aEnabled )
{
for( auto& edge : m_rnEdges )
edge.SetVisible( aEnabled );
}