kicad/pcbnew/class_board.cpp

1626 lines
45 KiB
C++

/*******************************************/
/* class_board.cpp - BOARD class functions */
/*******************************************/
#include "fctsys.h"
#include "common.h"
#include "pcbnew.h"
#include "class_board_design_settings.h"
#include "colors_selection.h"
/* This is an odd place for this, but cvpcb won't link if it is
* in class_board_item.cpp like I first tried it.
*/
wxPoint BOARD_ITEM::ZeroOffset( 0, 0 );
// Current design settings (used also to read configs):
BOARD_DESIGN_SETTINGS boardDesignSettings;
/*****************/
/* Class BOARD: */
/*****************/
BOARD::BOARD( EDA_ITEM* parent, WinEDA_BasePcbFrame* frame ) :
BOARD_ITEM( (BOARD_ITEM*)parent, TYPE_PCB ),
m_NetClasses( this )
{
m_PcbFrame = frame;
m_Status_Pcb = 0; // Status word: bit 1 = calculate.
SetBoardDesignSettings(&boardDesignSettings);
SetColorsSettings(&g_ColorsSettings);
m_NbNodes = 0; // Number of connected pads.
m_NbNoconnect = 0; // Number of unconnected nets.
m_CurrentZoneContour = NULL; // This ZONE_CONTAINER handle the
// zone contour currently in
// progress
m_NetInfo = new NETINFO_LIST( this ); // handle nets info list (name,
// design constraints ..
m_NetInfo->BuildListOfNets(); // prepare pads and nets lists
// containers.
for( int layer = 0; layer < NB_COPPER_LAYERS; ++layer )
{
m_Layer[layer].m_Name = GetDefaultLayerName( layer );
m_Layer[layer].m_Type = LT_SIGNAL;
}
// Initial parameters for the default NETCLASS come from the global
// preferences
// within g_DesignSettings via the NETCLASS() constructor.
// Should user eventually load a board from a disk file, then these
// defaults
// will get overwritten during load.
m_NetClasses.GetDefault()->SetDescription(
_( "This is the default net class." ) );
m_ViaSizeSelector = 0;
m_TrackWidthSelector = 0;
// Initialize default values.
SetCurrentNetClass( m_NetClasses.GetDefault()->GetName() );
}
BOARD::~BOARD()
{
if( m_PcbFrame->GetScreen() )
m_PcbFrame->GetScreen()->ClearUndoRedoList();
while( m_ZoneDescriptorList.size() )
{
ZONE_CONTAINER* area_to_remove = m_ZoneDescriptorList[0];
Delete( area_to_remove );
}
m_FullRatsnest.clear();
m_LocalRatsnest.clear();
DeleteMARKERs();
DeleteZONEOutlines();
delete m_CurrentZoneContour;
m_CurrentZoneContour = NULL;
delete m_NetInfo;
}
/**
* Function SetCurrentNetClass
* Must be called after a netclass selection (or after a netclass parameter
* change
* Initialize vias and tracks values displayed in combo boxes of the auxiliary
* toolbar and some other parameters (netclass name ....)
* @param aNetClassName = the new netclass name
* @return true if lists of tracks and vias sizes are modified
*/
bool BOARD::SetCurrentNetClass( const wxString& aNetClassName )
{
NETCLASS* netClass = m_NetClasses.Find( aNetClassName );
bool lists_sizes_modified = false;
// if not found (should not happen) use the default
if( netClass == NULL )
netClass = m_NetClasses.GetDefault();
m_CurrentNetClassName = netClass->GetName();
// Initialize others values:
if( m_ViasDimensionsList.size() == 0 )
{
VIA_DIMENSION viadim;
lists_sizes_modified = true;
m_ViasDimensionsList.push_back( viadim );
}
if( m_TrackWidthList.size() == 0 )
{
lists_sizes_modified = true;
m_TrackWidthList.push_back( 0 );
}
/* note the m_ViasDimensionsList[0] and m_TrackWidthList[0] values
* are always the Netclass values
*/
if( m_ViasDimensionsList[0].m_Diameter != netClass->GetViaDiameter() )
lists_sizes_modified = true;
m_ViasDimensionsList[0].m_Diameter = netClass->GetViaDiameter();
if( m_TrackWidthList[0] != netClass->GetTrackWidth() )
lists_sizes_modified = true;
m_TrackWidthList[0] = netClass->GetTrackWidth();
if( m_ViaSizeSelector >= m_ViasDimensionsList.size() )
m_ViaSizeSelector = m_ViasDimensionsList.size();
if( m_TrackWidthSelector >= m_TrackWidthList.size() )
m_TrackWidthSelector = m_TrackWidthList.size();
return lists_sizes_modified;
}
/**
* Function GetBiggestClearanceValue
* @return the biggest clearance value found in NetClasses list
*/
int BOARD::GetBiggestClearanceValue()
{
int clearance = m_NetClasses.GetDefault()->GetClearance();
//Read list of Net Classes
for( NETCLASSES::const_iterator nc = m_NetClasses.begin();
nc != m_NetClasses.end();
nc++ )
{
NETCLASS* netclass = nc->second;
clearance = MAX( clearance, netclass->GetClearance() );
}
return clearance;
}
/**
* Function GetCurrentMicroViaSize
* @return the current micro via size,
* that is the current netclass value
*/
int BOARD::GetCurrentMicroViaSize()
{
NETCLASS* netclass = m_NetClasses.Find( m_CurrentNetClassName );
return netclass->GetuViaDiameter();
}
/**
* Function GetCurrentMicroViaDrill
* @return the current micro via drill,
* that is the current netclass value
*/
int BOARD::GetCurrentMicroViaDrill()
{
NETCLASS* netclass = m_NetClasses.Find( m_CurrentNetClassName );
return netclass->GetuViaDrill();
}
wxString BOARD::GetLayerName( int aLayerIndex ) const
{
if( !IsValidLayerIndex( aLayerIndex ) )
return wxEmptyString;
// copper layer names are stored in the BOARD.
if( IsValidCopperLayerIndex( aLayerIndex ) && IsLayerEnabled( aLayerIndex ) )
{
// default names were set in BOARD::BOARD() but they may be
// over-ridden by BOARD::SetLayerName()
return m_Layer[aLayerIndex].m_Name;
}
return GetDefaultLayerName( aLayerIndex );
}
wxString BOARD::GetDefaultLayerName( int aLayerNumber )
{
const wxChar* txt;
// These are only default layer names. For PCBNEW, the copper names
// may be over-ridden in the BOARD (*.brd) file.
// Use a switch to explicitly show the mapping more clearly
switch( aLayerNumber )
{
case LAYER_N_FRONT: txt = _( "Front" ); break;
case LAYER_N_2: txt = _( "Inner2" ); break;
case LAYER_N_3: txt = _( "Inner3" ); break;
case LAYER_N_4: txt = _( "Inner4" ); break;
case LAYER_N_5: txt = _( "Inner5" ); break;
case LAYER_N_6: txt = _( "Inner6" ); break;
case LAYER_N_7: txt = _( "Inner7" ); break;
case LAYER_N_8: txt = _( "Inner8" ); break;
case LAYER_N_9: txt = _( "Inner9" ); break;
case LAYER_N_10: txt = _( "Inner10" ); break;
case LAYER_N_11: txt = _( "Inner11" ); break;
case LAYER_N_12: txt = _( "Inner12" ); break;
case LAYER_N_13: txt = _( "Inner13" ); break;
case LAYER_N_14: txt = _( "Inner14" ); break;
case LAYER_N_15: txt = _( "Inner15" ); break;
case LAYER_N_BACK: txt = _( "Back" ); break;
case ADHESIVE_N_BACK: txt = _( "Adhes_Back" ); break;
case ADHESIVE_N_FRONT: txt = _( "Adhes_Front" ); break;
case SOLDERPASTE_N_BACK: txt = _( "SoldP_Back" ); break;
case SOLDERPASTE_N_FRONT: txt = _( "SoldP_Front" ); break;
case SILKSCREEN_N_BACK: txt = _( "SilkS_Back" ); break;
case SILKSCREEN_N_FRONT: txt = _( "SilkS_Front" ); break;
case SOLDERMASK_N_BACK: txt = _( "Mask_Back" ); break;
case SOLDERMASK_N_FRONT: txt = _( "Mask_Front" ); break;
case DRAW_N: txt = _( "Drawings" ); break;
case COMMENT_N: txt = _( "Comments" ); break;
case ECO1_N: txt = _( "Eco1" ); break;
case ECO2_N: txt = _( "Eco2" ); break;
case EDGE_N: txt = _( "PCB_Edges" ); break;
default: txt = _( "BAD INDEX" ); break;
}
return wxString( txt );
}
bool BOARD::SetLayerName( int aLayerIndex, const wxString& aLayerName )
{
if( !IsValidCopperLayerIndex( aLayerIndex ) )
return false;
if( aLayerName == wxEmptyString || aLayerName.Len() > 20 )
return false;
// no quote chars in the name allowed
if( aLayerName.Find( wxChar( '"' ) ) != wxNOT_FOUND )
return false;
wxString NameTemp = aLayerName;
// replace any spaces with underscores before we do any comparing
NameTemp.Replace( wxT( " " ), wxT( "_" ) );
if( IsLayerEnabled( aLayerIndex ) )
{
for( int i = 0; i < NB_COPPER_LAYERS; i++ )
{
if( i != aLayerIndex && IsLayerEnabled( i )
&& NameTemp == m_Layer[i].m_Name )
return false;
}
m_Layer[aLayerIndex].m_Name = NameTemp;
return true;
}
return false;
}
LAYER_T BOARD::GetLayerType( int aLayerIndex ) const
{
if( !IsValidCopperLayerIndex( aLayerIndex ) )
return LT_SIGNAL;
//@@IMB: The original test was broken due to the discontinuity
// in the layer sequence.
if( IsLayerEnabled( aLayerIndex ) )
return m_Layer[aLayerIndex].m_Type;
return LT_SIGNAL;
}
bool BOARD::SetLayerType( int aLayerIndex, LAYER_T aLayerType )
{
if( !IsValidCopperLayerIndex( aLayerIndex ) )
return false;
//@@IMB: The original test was broken due to the discontinuity
// in the layer sequence.
if( IsLayerEnabled( aLayerIndex ) )
{
m_Layer[aLayerIndex].m_Type = aLayerType;
return true;
}
return false;
}
const char* LAYER::ShowType( LAYER_T aType )
{
const char* cp;
switch( aType )
{
default:
case LT_SIGNAL:
cp = "signal";
break;
case LT_POWER:
cp = "power";
break;
case LT_MIXED:
cp = "mixed";
break;
case LT_JUMPER:
cp = "jumper";
break;
}
return cp;
}
LAYER_T LAYER::ParseType( const char* aType )
{
if( strcmp( aType, "signal" ) == 0 )
return LT_SIGNAL;
else if( strcmp( aType, "power" ) == 0 )
return LT_POWER;
else if( strcmp( aType, "mixed" ) == 0 )
return LT_MIXED;
else if( strcmp( aType, "jumper" ) == 0 )
return LT_JUMPER;
else
return LAYER_T( -1 );
}
int BOARD::GetCopperLayerCount() const
{
return GetBoardDesignSettings()->GetCopperLayerCount();
}
void BOARD::SetCopperLayerCount( int aCount )
{
GetBoardDesignSettings()->SetCopperLayerCount( aCount );
}
int BOARD::GetEnabledLayers() const
{
return GetBoardDesignSettings()->GetEnabledLayers();
}
int BOARD::GetVisibleLayers() const
{
return GetBoardDesignSettings()->GetVisibleLayers();
}
void BOARD::SetEnabledLayers( int aLayerMask )
{
GetBoardDesignSettings()->SetEnabledLayers( aLayerMask );
}
void BOARD::SetVisibleLayers( int aLayerMask )
{
GetBoardDesignSettings()->SetVisibleLayers( aLayerMask );
}
// these are not tidy, since there are PCB_VISIBLEs that are not stored in the bitmap.
void BOARD::SetVisibleElements( int aMask )
{
/* Call SetElementVisibility for each item,
* to ensure specific calculations that can be needed by some items
* just change the visibility flags could be not sufficient
*/
for( int ii = 0; ii < PCB_VISIBLE(END_PCB_VISIBLE_LIST); ii++ )
{
int item_mask = 1 << ii;
SetElementVisibility( ii, aMask & item_mask );
}
}
// these are not tidy, since there are PCB_VISIBLEs that are not stored in the bitmap.
void BOARD::SetVisibleAlls( )
{
SetVisibleLayers( FULL_LAYERS );
/* Call SetElementVisibility for each item,
* to ensure specific calculations that can be needed by some items
*/
for( int ii = 0; ii < PCB_VISIBLE(END_PCB_VISIBLE_LIST); ii++ )
SetElementVisibility( ii, true );
}
int BOARD::GetVisibleElements() const
{
return GetBoardDesignSettings()->GetVisibleElements();
}
bool BOARD::IsElementVisible( int aPCB_VISIBLE ) const
{
return GetBoardDesignSettings()->IsElementVisible( aPCB_VISIBLE );
}
void BOARD::SetElementVisibility( int aPCB_VISIBLE, bool isEnabled )
{
switch( aPCB_VISIBLE )
{
case RATSNEST_VISIBLE:
GetBoardDesignSettings()->SetElementVisibility( aPCB_VISIBLE, isEnabled );
// we must clear or set the CH_VISIBLE flags to hide/show ratsnet
// because we have a tool to show hide ratsnest relative to a pad or a module
// so the hide/show option is a per item selection
if( IsElementVisible(RATSNEST_VISIBLE) )
{
for( unsigned ii = 0; ii < GetRatsnestsCount(); ii++ )
m_FullRatsnest[ii].m_Status |= CH_VISIBLE;
}
else
{
for( unsigned ii = 0; ii < GetRatsnestsCount(); ii++ )
m_FullRatsnest[ii].m_Status &= ~CH_VISIBLE;
}
break;
default:
GetBoardDesignSettings()->SetElementVisibility( aPCB_VISIBLE, isEnabled );
}
}
int BOARD::GetVisibleElementColor( int aPCB_VISIBLE )
{
int color = -1;
switch( aPCB_VISIBLE )
{
case VIA_THROUGH_VISIBLE:
case VIA_MICROVIA_VISIBLE:
case VIA_BBLIND_VISIBLE:
case MOD_TEXT_FR_VISIBLE:
case MOD_TEXT_BK_VISIBLE:
case MOD_TEXT_INVISIBLE:
case ANCHOR_VISIBLE:
case PAD_FR_VISIBLE:
case PAD_BK_VISIBLE:
case RATSNEST_VISIBLE:
case GRID_VISIBLE:
color = GetColorsSettings()->GetItemColor( aPCB_VISIBLE );
break;
default:
wxLogDebug( wxT( "BOARD::GetVisibleElementColor(): bad arg %d" ), aPCB_VISIBLE );
}
return color;
}
void BOARD::SetVisibleElementColor( int aPCB_VISIBLE, int aColor )
{
switch( aPCB_VISIBLE )
{
case VIA_THROUGH_VISIBLE:
case VIA_MICROVIA_VISIBLE:
case VIA_BBLIND_VISIBLE:
case MOD_TEXT_FR_VISIBLE:
case MOD_TEXT_BK_VISIBLE:
case MOD_TEXT_INVISIBLE:
case ANCHOR_VISIBLE:
case PAD_FR_VISIBLE:
case PAD_BK_VISIBLE:
case GRID_VISIBLE:
case RATSNEST_VISIBLE:
GetColorsSettings()->SetItemColor( aPCB_VISIBLE, aColor );
break;
default:
wxLogDebug( wxT( "BOARD::SetVisibleElementColor(): bad arg %d" ), aPCB_VISIBLE );
}
}
void BOARD::SetLayerColor( int aLayer, int aColor )
{
GetColorsSettings()->SetLayerColor( aLayer, aColor );
}
int BOARD::GetLayerColor( int aLayer )
{
return GetColorsSettings()->GetLayerColor( aLayer );
}
/**
* Function IsModuleLayerVisible
* expects either of the two layers on which a module can reside, and returns
* whether that layer is visible.
* @param layer One of the two allowed layers for modules: LAYER_N_FRONT or LAYER_N_BACK
* @return bool - true if the layer is visible, else false.
*/
bool BOARD::IsModuleLayerVisible( int layer )
{
if( layer==LAYER_N_FRONT )
return IsElementVisible( PCB_VISIBLE(MOD_FR_VISIBLE) );
else if( layer==LAYER_N_BACK )
return IsElementVisible( PCB_VISIBLE(MOD_BK_VISIBLE) );
else
return true;
}
wxPoint& BOARD::GetPosition()
{
static wxPoint dummy( 0, 0 );
return dummy; // a reference
}
void BOARD::Add( BOARD_ITEM* aBoardItem, int aControl )
{
if( aBoardItem == NULL )
{
wxFAIL_MSG( wxT( "BOARD::Add() param error: aBoardItem NULL" ) );
return;
}
switch( aBoardItem->Type() )
{
// this one uses a vector
case TYPE_MARKER_PCB:
aBoardItem->SetParent( this );
m_markers.push_back( (MARKER_PCB*) aBoardItem );
break;
// this one uses a vector
case TYPE_ZONE_CONTAINER:
aBoardItem->SetParent( this );
m_ZoneDescriptorList.push_back( (ZONE_CONTAINER*) aBoardItem );
break;
case TYPE_TRACK:
case TYPE_VIA:
{
TRACK* insertAid = ( (TRACK*) aBoardItem )->GetBestInsertPoint( this );
m_Track.Insert( (TRACK*) aBoardItem, insertAid );
}
break;
case TYPE_ZONE:
if( aControl & ADD_APPEND )
m_Zone.PushBack( (SEGZONE*) aBoardItem );
else
m_Zone.PushFront( (SEGZONE*) aBoardItem );
aBoardItem->SetParent( this );
break;
case TYPE_MODULE:
if( aControl & ADD_APPEND )
m_Modules.PushBack( (MODULE*) aBoardItem );
else
m_Modules.PushFront( (MODULE*) aBoardItem );
aBoardItem->SetParent( this );
// Because the list of pads has changed, reset the status
// This indicate the list of pad and nets must be recalculated before
// use
m_Status_Pcb = 0;
break;
case TYPE_DIMENSION:
case TYPE_DRAWSEGMENT:
case TYPE_TEXTE:
case TYPE_EDGE_MODULE:
case TYPE_MIRE:
if( aControl & ADD_APPEND )
m_Drawings.PushBack( aBoardItem );
else
m_Drawings.PushFront( aBoardItem );
aBoardItem->SetParent( this );
break;
// other types may use linked list
default:
{
wxString msg;
msg.Printf(
wxT( "BOARD::Add() needs work: BOARD_ITEM type (%d) not handled" ),
aBoardItem->Type() );
wxFAIL_MSG( msg );
}
break;
}
}
BOARD_ITEM* BOARD::Remove( BOARD_ITEM* aBoardItem )
{
// find these calls and fix them! Don't send me no stinkin' NULL.
wxASSERT( aBoardItem );
switch( aBoardItem->Type() )
{
case TYPE_MARKER_PCB:
// find the item in the vector, then remove it
for( unsigned i = 0; i<m_markers.size(); ++i )
{
if( m_markers[i] == (MARKER_PCB*) aBoardItem )
{
m_markers.erase( m_markers.begin() + i );
break;
}
}
break;
case TYPE_ZONE_CONTAINER: // this one uses a vector
// find the item in the vector, then delete then erase it.
for( unsigned i = 0; i<m_ZoneDescriptorList.size(); ++i )
{
if( m_ZoneDescriptorList[i] == (ZONE_CONTAINER*) aBoardItem )
{
m_ZoneDescriptorList.erase( m_ZoneDescriptorList.begin() + i );
break;
}
}
break;
case TYPE_MODULE:
m_Modules.Remove( (MODULE*) aBoardItem );
break;
case TYPE_TRACK:
case TYPE_VIA:
m_Track.Remove( (TRACK*) aBoardItem );
break;
case TYPE_ZONE:
m_Zone.Remove( (SEGZONE*) aBoardItem );
break;
case TYPE_DIMENSION:
case TYPE_DRAWSEGMENT:
case TYPE_TEXTE:
case TYPE_EDGE_MODULE:
case TYPE_MIRE:
m_Drawings.Remove( aBoardItem );
break;
// other types may use linked list
default:
wxFAIL_MSG( wxT( "BOARD::Remove() needs more ::Type() support" ) );
}
return aBoardItem;
}
void BOARD::DeleteMARKERs()
{
// the vector does not know how to delete the MARKER_PCB, it holds pointers
for( unsigned i = 0; i<m_markers.size(); ++i )
delete m_markers[i];
m_markers.clear();
}
void BOARD::DeleteZONEOutlines()
{
// the vector does not know how to delete the ZONE Outlines, it holds
// pointers
for( unsigned i = 0; i<m_ZoneDescriptorList.size(); ++i )
delete m_ZoneDescriptorList[i];
m_ZoneDescriptorList.clear();
}
/* Calculate the track segment count */
int BOARD::GetNumSegmTrack()
{
return m_Track.GetCount();
}
/* Calculate the zone segment count */
int BOARD::GetNumSegmZone()
{
return m_Zone.GetCount();
}
// return the unconnection count
unsigned BOARD::GetNoconnectCount()
{
return m_NbNoconnect;
}
// return the active pad count ( pads with a netcode > 0 )
unsigned BOARD::GetNodesCount()
{
return m_NbNodes;
}
/**
* Function ComputeBoundaryBox
* Calculate the bounding box of the board
* This box contains pcb edges, pads , vias and tracks
* Update m_PcbBox member
*
* @return 0 for an empty board (no items), else 1
*/
bool BOARD::ComputeBoundaryBox()
{
int rayon, cx, cy, d, xmin, ymin, xmax, ymax;
bool hasItems = FALSE;
EDA_ITEM* PtStruct;
DRAWSEGMENT* ptr;
xmin = ymin = 0x7FFFFFFFl;
xmax = ymax = -0x7FFFFFFFl;
/* Analyze PCB edges*/
PtStruct = m_Drawings;
for( ; PtStruct != NULL; PtStruct = PtStruct->Next() )
{
if( PtStruct->Type() != TYPE_DRAWSEGMENT )
continue;
ptr = (DRAWSEGMENT*) PtStruct;
d = (ptr->m_Width / 2) + 1;
if( ptr->m_Shape == S_CIRCLE )
{
cx = ptr->m_Start.x; cy = ptr->m_Start.y;
rayon = (int) hypot( (double) ( ptr->m_End.x - cx ),
(double) ( ptr->m_End.y - cy ) );
rayon += d;
xmin = MIN( xmin, cx - rayon );
ymin = MIN( ymin, cy - rayon );
xmax = MAX( xmax, cx + rayon );
ymax = MAX( ymax, cy + rayon );
hasItems = TRUE;
}
else
{
cx = MIN( ptr->m_Start.x, ptr->m_End.x );
cy = MIN( ptr->m_Start.y, ptr->m_End.y );
xmin = MIN( xmin, cx - d );
ymin = MIN( ymin, cy - d );
cx = MAX( ptr->m_Start.x, ptr->m_End.x );
cy = MAX( ptr->m_Start.y, ptr->m_End.y );
xmax = MAX( xmax, cx + d );
ymax = MAX( ymax, cy + d );
hasItems = TRUE;
}
}
/* Analyze footprints */
for( MODULE* module = m_Modules; module; module = module->Next() )
{
hasItems = TRUE;
EDA_Rect box = module->GetBoundingBox();
xmin = MIN( xmin, box.GetX() );
ymin = MIN( ymin, box.GetY() );
xmax = MAX( xmax, box.GetRight() );
ymax = MAX( ymax, box.GetBottom() );
}
/* Analize track and zones */
for( TRACK* track = m_Track; track; track = track->Next() )
{
d = ( track->m_Width / 2 ) + 1;
cx = MIN( track->m_Start.x, track->m_End.x );
cy = MIN( track->m_Start.y, track->m_End.y );
xmin = MIN( xmin, cx - d );
ymin = MIN( ymin, cy - d );
cx = MAX( track->m_Start.x, track->m_End.x );
cy = MAX( track->m_Start.y, track->m_End.y );
xmax = MAX( xmax, cx + d );
ymax = MAX( ymax, cy + d );
hasItems = TRUE;
}
for( TRACK* track = m_Zone; track; track = track->Next() )
{
d = ( track->m_Width / 2 ) + 1;
cx = MIN( track->m_Start.x, track->m_End.x );
cy = MIN( track->m_Start.y, track->m_End.y );
xmin = MIN( xmin, cx - d );
ymin = MIN( ymin, cy - d );
cx = MAX( track->m_Start.x, track->m_End.x );
cy = MAX( track->m_Start.y, track->m_End.y );
xmax = MAX( xmax, cx + d );
ymax = MAX( ymax, cy + d );
hasItems = TRUE;
}
if( !hasItems && m_PcbFrame )
{
if( m_PcbFrame->m_Draw_Sheet_Ref )
{
xmin = ymin = 0;
xmax = m_PcbFrame->GetScreen()->ReturnPageSize().x;
ymax = m_PcbFrame->GetScreen()->ReturnPageSize().y;
}
else
{
xmin = -m_PcbFrame->GetScreen()->ReturnPageSize().x / 2;
ymin = -m_PcbFrame->GetScreen()->ReturnPageSize().y / 2;
xmax = m_PcbFrame->GetScreen()->ReturnPageSize().x / 2;
ymax = m_PcbFrame->GetScreen()->ReturnPageSize().y / 2;
}
}
m_BoundaryBox.SetX( xmin );
m_BoundaryBox.SetY( ymin );
m_BoundaryBox.SetWidth( xmax - xmin );
m_BoundaryBox.SetHeight( ymax - ymin );
return hasItems;
}
// virtual, see pcbstruct.h
/* Display board statistics: pads, nets, connections.. count
*/
void BOARD::DisplayInfo( WinEDA_DrawFrame* frame )
{
wxString txt;
frame->ClearMsgPanel();
int viasCount = 0;
int trackSegmentsCount = 0;
for( BOARD_ITEM* item = m_Track; item; item = item->Next() )
{
if( item->Type() == TYPE_VIA )
viasCount++;
else
trackSegmentsCount++;
}
txt.Printf( wxT( "%d" ), GetPadsCount() );
frame->AppendMsgPanel( _( "Pads" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), viasCount );
frame->AppendMsgPanel( _( "Vias" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), trackSegmentsCount );
frame->AppendMsgPanel( _( "trackSegm" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), GetNodesCount() );
frame->AppendMsgPanel( _( "Nodes" ), txt, DARKCYAN );
txt.Printf( wxT( "%d" ), m_NetInfo->GetCount() );
frame->AppendMsgPanel( _( "Nets" ), txt, RED );
/* These parameters are known only if the full ratsnest is available,
* so, display them only if this is the case
*/
if( (m_Status_Pcb & NET_CODES_OK) )
{
txt.Printf( wxT( "%d" ), GetRatsnestsCount() );
frame->AppendMsgPanel( _( "Links" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), GetRatsnestsCount() - GetNoconnectCount() );
frame->AppendMsgPanel( _( "Connect" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), GetNoconnectCount() );
frame->AppendMsgPanel( _( "Unconnected" ), txt, BLUE );
}
}
// virtual, see pcbstruct.h
SEARCH_RESULT BOARD::Visit( INSPECTOR* inspector, const void* testData,
const KICAD_T scanTypes[] )
{
KICAD_T stype;
SEARCH_RESULT result = SEARCH_CONTINUE;
const KICAD_T* p = scanTypes;
bool done = false;
#if 0 && defined(DEBUG)
std::cout << GetClass().mb_str() << ' ';
#endif
while( !done )
{
stype = *p;
switch( stype )
{
case TYPE_PCB:
result = inspector->Inspect( this, testData ); // inspect me
// skip over any types handled in the above call.
++p;
break;
/* Instances of the requested KICAD_T live in a list, either one
* that I manage, or that my modules manage. If it's a type managed
* by class MODULE, then simply pass it on to each module's
* MODULE::Visit() function by way of the
* IterateForward( m_Modules, ... ) call.
*/
case TYPE_MODULE:
case TYPE_PAD:
case TYPE_TEXTE_MODULE:
case TYPE_EDGE_MODULE:
// this calls MODULE::Visit() on each module.
result = IterateForward( m_Modules, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; )
{
switch( stype = *++p )
{
case TYPE_MODULE:
case TYPE_PAD:
case TYPE_TEXTE_MODULE:
case TYPE_EDGE_MODULE:
continue;
default:
;
}
break;
}
break;
case TYPE_DRAWSEGMENT:
case TYPE_TEXTE:
case TYPE_DIMENSION:
case TYPE_MIRE:
result = IterateForward( m_Drawings, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; )
{
switch( stype = *++p )
{
case TYPE_DRAWSEGMENT:
case TYPE_TEXTE:
case TYPE_DIMENSION:
case TYPE_MIRE:
continue;
default:
;
}
break;
}
;
break;
#if 0 // both these are on same list, so we must scan it twice in order
// to get VIA priority, using new #else code below.
// But we are not using separate lists for TRACKs and SEGVIAs, because
// items are ordered (sorted) in the linked
// list by netcode AND by physical distance:
// when created, if a track or via is connected to an existing track or
// via, it is put in linked list after this existing track or via
// So usually, connected tracks or vias are grouped in this list
// So the algorithm (used in rastnest computations) which computes the
// track connectivity is faster (more than 100 time regarding to
// a non ordered list) because when it searches for a connexion, first
// it tests the near (near in term of linked list) 50 items
// from the current item (track or via) in test.
// Usually, because of this sort, a connected item (if exists) is
// found.
// If not found (and only in this case) an exhaustive (and time
// consuming) search is made, but this case is statistically rare.
case TYPE_VIA:
case TYPE_TRACK:
result = IterateForward( m_Track, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; )
{
switch( stype = *++p )
{
case TYPE_VIA:
case TYPE_TRACK:
continue;
default:
;
}
break;
}
break;
#else
case TYPE_VIA:
result = IterateForward( m_Track, inspector, testData, p );
++p;
break;
case TYPE_TRACK:
result = IterateForward( m_Track, inspector, testData, p );
++p;
break;
#endif
case TYPE_MARKER_PCB:
// MARKER_PCBS are in the m_markers std::vector
for( unsigned i = 0; i<m_markers.size(); ++i )
{
result = m_markers[i]->Visit( inspector, testData, p );
if( result == SEARCH_QUIT )
break;
}
++p;
break;
case TYPE_ZONE_CONTAINER:
// TYPE_ZONE_CONTAINER are in the m_ZoneDescriptorList std::vector
for( unsigned i = 0; i< m_ZoneDescriptorList.size(); ++i )
{
result = m_ZoneDescriptorList[i]->Visit( inspector,
testData,
p );
if( result == SEARCH_QUIT )
break;
}
++p;
break;
case TYPE_ZONE:
result = IterateForward( m_Zone, inspector, testData, p );
++p;
break;
default: // catch EOT or ANY OTHER type here and return.
done = true;
break;
}
if( result == SEARCH_QUIT )
break;
}
return result;
}
/* now using PcbGeneralLocateAndDisplay(), but this remains a useful example
* of how the INSPECTOR can be used in a lightweight way.
* // see pcbstruct.h
* BOARD_ITEM* BOARD::FindPadOrModule( const wxPoint& refPos, int layer )
* {
* class PadOrModule : public INSPECTOR
* {
* public:
* BOARD_ITEM* found;
* int layer;
* int layer_mask;
*
* PadOrModule( int alayer ) :
* found(0), layer(alayer), layer_mask( g_TabOneLayerMask[alayer] )
* {}
*
* SEARCH_RESULT Inspect( EDA_ITEM* testItem, const void* testData
* )
* {
* BOARD_ITEM* item = (BOARD_ITEM*) testItem;
* const wxPoint& refPos = *(const wxPoint*) testData;
*
* if( item->Type() == TYPE_PAD )
* {
* D_PAD* pad = (D_PAD*) item;
* if( pad->HitTest( refPos ) )
* {
* if( layer_mask & pad->m_Masque_Layer )
* {
* found = item;
* return SEARCH_QUIT;
* }
* else if( !found )
* {
* MODULE* parent = (MODULE*) pad->m_Parent;
* if( IsModuleLayerVisible( parent->GetLayer() ) )
* found = item;
* }
* }
* }
*
* else if( item->Type() == TYPE_MODULE )
* {
* MODULE* module = (MODULE*) item;
*
* // consider only visible modules
* if( IsModuleLayerVisible( module->GetLayer() ) )
* {
* if( module->HitTest( refPos ) )
* {
* if( layer == module->GetLayer() )
* {
* found = item;
* return SEARCH_QUIT;
* }
*
* // layer mismatch, save in case we don't find a
* // future layer match hit.
* if( !found )
* found = item;
* }
* }
* }
* return SEARCH_CONTINUE;
* }
* };
*
* PadOrModule inspector( layer );
*
* // search only for PADs first, then MODULES, and preferably a layer match
* static const KICAD_T scanTypes[] = { TYPE_PAD, TYPE_MODULE, EOT };
*
* // visit this BOARD with the above inspector
* Visit( &inspector, &refPos, scanTypes );
*
* return inspector.found;
* }
*/
/**
* Function FindNet
* searches for a net with the given netcode.
* @param aNetcode The netcode to search for.
* @return NETINFO_ITEM* - the net or NULL if not found.
*/
NETINFO_ITEM* BOARD::FindNet( int aNetcode ) const
{
// the first valid netcode is 1 and the last is m_NetInfo->GetCount()-1.
// zero is reserved for "no connection" and is not used.
// NULL is returned for non valid netcodes
NETINFO_ITEM* net = m_NetInfo->GetNetItem( aNetcode );
#if defined(DEBUG)
if( net ) // item can be NULL if anetcode is not valid
{
if( aNetcode != net->GetNet() )
{
printf( "FindNet() anetcode %d != GetNet() %d (net: %s)\n",
aNetcode, net->GetNet(), CONV_TO_UTF8( net->GetNetname() ) );
}
}
#endif
return net;
}
/**
* Function FindNet overlaid
* searches for a net with the given name.
* @param aNetname A Netname to search for.
* @return NETINFO_ITEM* - the net or NULL if not found.
*/
NETINFO_ITEM* BOARD::FindNet( const wxString& aNetname ) const
{
// the first valid netcode is 1.
// zero is reserved for "no connection" and is not used.
if( aNetname.IsEmpty() )
return NULL;
int ncount = m_NetInfo->GetCount();
// Search for a netname = aNetname
#if 0
// Use a sequential search: easy to understand, but slow
for( int ii = 1; ii < ncount; ii++ )
{
NETINFO_ITEM* item = m_NetInfo->GetNetItem( ii );
if( item && item->GetNetname() == aNetname )
{
return item;
}
}
#else
// Use a fast binary search,
// this is possible because Nets are alphabetically ordered in list
// see NETINFO_LIST::BuildListOfNets() and
// NETINFO_LIST::Build_Pads_Full_List()
int imax = ncount - 1;
int index = imax;
while( ncount > 0 )
{
int ii = ncount;
ncount >>= 1;
if( (ii & 1) && ( ii > 1 ) )
ncount++;
NETINFO_ITEM* item = m_NetInfo->GetNetItem( index );
if( item == NULL )
return NULL;
int icmp = item->GetNetname().Cmp( aNetname );
if( icmp == 0 ) // found !
{
return item;
}
if( icmp < 0 ) // must search after item
{
index += ncount;
if( index > imax )
index = imax;
continue;
}
if( icmp > 0 ) // must search before item
{
index -= ncount;
if( index < 1 )
index = 1;
continue;
}
}
#endif
return NULL;
}
MODULE* BOARD::FindModuleByReference( const wxString& aReference ) const
{
struct FindModule : public INSPECTOR
{
MODULE* found;
FindModule() : found( 0 ) {}
// implement interface INSPECTOR
SEARCH_RESULT Inspect( EDA_ITEM* item, const void* data )
{
MODULE* module = (MODULE*) item;
const wxString& ref = *(const wxString*) data;
if( ref == module->GetReference() )
{
found = module;
return SEARCH_QUIT;
}
return SEARCH_CONTINUE;
}
} inspector;
// search only for MODULES
static const KICAD_T scanTypes[] = { TYPE_MODULE, EOT };
// visit this BOARD with the above inspector
BOARD* nonconstMe = (BOARD*) this;
nonconstMe->Visit( &inspector, &aReference, scanTypes );
return inspector.found;
}
// Sort nets by decreasing pad count
static bool s_SortByNodes( const NETINFO_ITEM* a, const NETINFO_ITEM* b )
{
return b->GetNodesCount() < a->GetNodesCount();
}
/**
* Function ReturnSortedNetnamesList
* @param aNames An array string to fill with net names.
* @param aSortbyPadsCount : true = sort by active pads count, false = no sort
* (i.e. leave the sort by net names)
* @return int - net names count.
*/
int BOARD::ReturnSortedNetnamesList( wxArrayString& aNames,
bool aSortbyPadsCount )
{
if( m_NetInfo->GetCount() == 0 )
return 0;
// Build the list
std::vector <NETINFO_ITEM*> netBuffer;
netBuffer.reserve( m_NetInfo->GetCount() );
for( unsigned ii = 1; ii < m_NetInfo->GetCount(); ii++ )
{
if( m_NetInfo->GetNetItem( ii )->GetNet() > 0 )
netBuffer.push_back( m_NetInfo->GetNetItem( ii ) );
}
// sort the list
if( aSortbyPadsCount )
sort( netBuffer.begin(), netBuffer.end(), s_SortByNodes );
for( unsigned ii = 0; ii < netBuffer.size(); ii++ )
aNames.Add( netBuffer[ii]->GetNetname() );
return netBuffer.size();
}
bool BOARD::Save( FILE* aFile ) const
{
bool rc = false;
BOARD_ITEM* item;
// save the nets
for( unsigned ii = 0; ii < m_NetInfo->GetCount(); ii++ )
if( !m_NetInfo->GetNetItem( ii )->Save( aFile ) )
goto out;
// Saved nets do not include netclass names, so save netclasses after nets.
m_NetClasses.Save( aFile );
// save the modules
for( item = m_Modules; item; item = item->Next() )
if( !item->Save( aFile ) )
goto out;
for( item = m_Drawings; item; item = item->Next() )
{
switch( item->Type() )
{
case TYPE_TEXTE:
case TYPE_DRAWSEGMENT:
case TYPE_MIRE:
case TYPE_DIMENSION:
if( !item->Save( aFile ) )
goto out;
break;
default:
// future: throw exception here
#if defined(DEBUG)
printf( "BOARD::Save() ignoring m_Drawings type %d\n",
item->Type() );
#endif
break;
}
}
// do not save MARKER_PCBs, they can be regenerated easily
// save the tracks & vias
fprintf( aFile, "$TRACK\n" );
for( item = m_Track; item; item = item->Next() )
if( !item->Save( aFile ) )
goto out;
fprintf( aFile, "$EndTRACK\n" );
// save the zones
fprintf( aFile, "$ZONE\n" );
for( item = m_Zone; item; item = item->Next() )
if( !item->Save( aFile ) )
goto out;
fprintf( aFile, "$EndZONE\n" );
// save the zone edges
for( unsigned ii = 0; ii < m_ZoneDescriptorList.size(); ii++ )
{
ZONE_CONTAINER* edge_zone = m_ZoneDescriptorList[ii];
edge_zone->Save( aFile );
}
if( fprintf( aFile, "$EndBOARD\n" ) != sizeof("$EndBOARD\n") - 1 )
goto out;
rc = true; // wrote all OK
out:
return rc;
}
/*
* Function RedrawAreasOutlines
* Redraw all areas outlines on layer aLayer ( redraw all if aLayer < 0 )
*/
void BOARD::RedrawAreasOutlines( WinEDA_DrawPanel* panel,
wxDC* aDC,
int aDrawMode,
int aLayer )
{
if( !aDC )
return;
for( int ii = 0; ii < GetAreaCount(); ii++ )
{
ZONE_CONTAINER* edge_zone = GetArea( ii );
if( (aLayer < 0) || ( aLayer == edge_zone->GetLayer() ) )
edge_zone->Draw( panel, aDC, aDrawMode );
}
}
/**
* Function RedrawFilledAreas
* Redraw all areas outlines on layer aLayer ( redraw all if aLayer < 0 )
*/
void BOARD::RedrawFilledAreas( WinEDA_DrawPanel* panel,
wxDC* aDC,
int aDrawMode,
int aLayer )
{
if( !aDC )
return;
for( int ii = 0; ii < GetAreaCount(); ii++ )
{
ZONE_CONTAINER* edge_zone = GetArea( ii );
if( (aLayer < 0) || ( aLayer == edge_zone->GetLayer() ) )
edge_zone->DrawFilledArea( panel, aDC, aDrawMode );
}
}
/**
* Function HitTestForAnyFilledArea
* tests if the given wxPoint is within the bounds of a filled area of this
* zone.
* the test is made on zones on layer from aStartLayer to aEndLayer
* Note: if a zone has its flag BUSY (in .m_State) is set, it is ignored.
* @param aRefPos A wxPoint to test
* @param aStartLayer the first layer to test
* @param aEndLayer the last layer (-1 to ignore it) to test
* @return ZONE_CONTAINER* return a pointer to the ZONE_CONTAINER found, else
* NULL
*/
ZONE_CONTAINER* BOARD::HitTestForAnyFilledArea( const wxPoint& aRefPos,
int aStartLayer,
int aEndLayer )
{
if( aEndLayer < 0 )
aEndLayer = aStartLayer;
if( aEndLayer < aStartLayer )
EXCHG( aEndLayer, aStartLayer );
for( unsigned ia = 0; ia < m_ZoneDescriptorList.size(); ia++ )
{
ZONE_CONTAINER* area = m_ZoneDescriptorList[ia];
int layer = area->GetLayer();
if( (layer < aStartLayer) || (layer > aEndLayer) )
continue;
if( area->GetState( BUSY ) ) // In locate functions we must skip
// tagged items with BUSY flag set.
continue;
if( area->HitTestFilledArea( aRefPos ) )
return area;
}
return NULL;
}
/**
* Function SetAreasNetCodesFromNetNames
* Set the .m_NetCode member of all copper areas, according to the area Net
* Name
* The SetNetCodesFromNetNames is an equivalent to net name, for fast
* comparisons.
* However the Netcode is an arbitrary equivalence, it must be set after each
* netlist read
* or net change
* Must be called after pad netcodes are calculated
* @return : error count
* For non copper areas, netcode is set to 0
*/
int BOARD::SetAreasNetCodesFromNetNames( void )
{
int error_count = 0;
for( int ii = 0; ii < GetAreaCount(); ii++ )
{
if( !GetArea( ii )->IsOnCopperLayer() )
{
GetArea( ii )->SetNet( 0 );
continue;
}
if( GetArea( ii )->GetNet() != 0 ) // i.e. if this zone is
// connected to a net
{
const NETINFO_ITEM* net = FindNet( GetArea( ii )->m_Netname );
if( net )
{
GetArea( ii )->SetNet( net->GetNet() );
}
else
{
error_count++;
GetArea( ii )->SetNet( -1 ); // keep Net Name and set
// m_NetCode to -1 : error flag
}
}
}
return error_count;
}
#if defined(DEBUG)
/**
* Function Show
* is used to output the object tree, currently for debugging only.
* @param nestLevel An aid to prettier tree indenting, and is the level
* of nesting of this object within the overall tree.
* @param os The ostream& to output to.
*/
void BOARD::Show( int nestLevel, std::ostream& os )
{
BOARD_ITEM* p;
// for now, make it look like XML:
NestedSpace( nestLevel,
os ) << '<' << GetClass().Lower().mb_str() << ">\n";
// specialization of the output:
NestedSpace( nestLevel + 1, os ) << "<modules>\n";
p = m_Modules;
for( ; p; p = p->Next() )
p->Show( nestLevel + 2, os );
NestedSpace( nestLevel + 1, os ) << "</modules>\n";
NestedSpace( nestLevel + 1, os ) << "<pdrawings>\n";
p = m_Drawings;
for( ; p; p = p->Next() )
p->Show( nestLevel + 2, os );
NestedSpace( nestLevel + 1, os ) << "</pdrawings>\n";
NestedSpace( nestLevel + 1, os ) << "<tracks>\n";
p = m_Track;
for( ; p; p = p->Next() )
p->Show( nestLevel + 2, os );
NestedSpace( nestLevel + 1, os ) << "</tracks>\n";
NestedSpace( nestLevel + 1, os ) << "<zones>\n";
p = m_Zone;
for( ; p; p = p->Next() )
p->Show( nestLevel + 2, os );
NestedSpace( nestLevel + 1, os ) << "</zones>\n";
/*
* NestedSpace( nestLevel+1, os ) << "<zone_container>\n";
* for( ZONE_CONTAINERS::iterator i=m_ZoneDescriptorList.begin();
* i!=m_ZoneDescriptorList.end(); ++i )
* (*i)->Show( nestLevel+2, os );
* NestedSpace( nestLevel+1, os ) << "</zone_container>\n";
*/
p = (BOARD_ITEM*) m_Son;
for( ; p; p = p->Next() )
{
p->Show( nestLevel + 1, os );
}
NestedSpace( nestLevel, os ) << "</" << GetClass().Lower().mb_str()
<< ">\n";
}
#endif