kicad/pcbnew/convert_drawsegment_list_to...

1320 lines
44 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2015 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 1992-2019 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file convert_drawsegment_list_to_polygon.cpp
* @brief functions to convert a shape built with DRAWSEGMENTS to a polygon.
* expecting the shape describes shape similar to a polygon
*/
#include <trigo.h>
#include <macros.h>
#include <math/vector2d.h>
#include <pcb_shape.h>
#include <class_module.h>
#include <base_units.h>
#include <convert_basic_shapes_to_polygon.h>
#include <geometry/shape_poly_set.h>
#include <geometry/geometry_utils.h>
#include <wx/log.h>
/**
* Flag to enable debug tracing for the board outline creation
*
* Use "KICAD_BOARD_OUTLINE" to enable.
*
* @ingroup trace_env_vars
*/
const wxChar* traceBoardOutline = wxT( "KICAD_BOARD_OUTLINE" );
/**
* Function close_ness
* is a non-exact distance (also called Manhattan distance) used to approximate
* the distance between two points.
* The distance is very in-exact, but can be helpful when used
* to pick between alternative neighboring points.
* @param aLeft is the first point
* @param aRight is the second point
* @return unsigned - a measure of proximity that the caller knows about, in BIU,
* but remember it is only an approximation.
*/
static unsigned close_ness( const wxPoint& aLeft, const wxPoint& aRight )
{
// Don't need an accurate distance calculation, just something
// approximating it, for relative ordering.
return unsigned( std::abs( aLeft.x - aRight.x ) + abs( aLeft.y - aRight.y ) );
}
/**
* Function close_enough
* is a local and tunable method of qualifying the proximity of two points.
*
* @param aLeft is the first point
* @param aRight is the second point
* @param aLimit is a measure of proximity that the caller knows about.
* @return bool - true if the two points are close enough, else false.
*/
inline bool close_enough( const wxPoint& aLeft, const wxPoint& aRight, unsigned aLimit )
{
// We don't use an accurate distance calculation, just something
// approximating it, since aLimit is non-exact anyway except when zero.
return close_ness( aLeft, aRight ) <= aLimit;
}
/**
* Function close_st
* is a local method of qualifying if either the start of end point of a segment is closest to a point.
*
* @param aReference is the reference point
* @param aFirst is the first point
* @param aSecond is the second point
* @return bool - true if the the first point is closest to the reference, otherwise false.
*/
inline bool close_st( const wxPoint& aReference, const wxPoint& aFirst, const wxPoint& aSecond )
{
// We don't use an accurate distance calculation, just something
// approximating to find the closest to the reference.
return close_ness( aReference, aFirst ) <= close_ness( aReference, aSecond );
}
/**
* Searches for a PCB_SHAPE matching a given end point or start point in a list, and
* if found, removes it from the TYPE_COLLECTOR and returns it, else returns NULL.
* @param aPoint The starting or ending point to search for.
* @param aList The list to remove from.
* @param aLimit is the distance from \a aPoint that still constitutes a valid find.
* @return PCB_SHAPE* - The first PCB_SHAPE that has a start or end point matching
* aPoint, otherwise NULL if none.
*/
static PCB_SHAPE* findPoint( const wxPoint& aPoint, std::vector< PCB_SHAPE* >& aList,
unsigned aLimit )
{
unsigned min_d = INT_MAX;
int ndx_min = 0;
// find the point closest to aPoint and perhaps exactly matching aPoint.
for( size_t i = 0; i < aList.size(); ++i )
{
PCB_SHAPE* graphic = aList[i];
unsigned d;
switch( graphic->GetShape() )
{
case S_ARC:
if( aPoint == graphic->GetArcStart() || aPoint == graphic->GetArcEnd() )
{
aList.erase( aList.begin() + i );
return graphic;
}
d = close_ness( aPoint, graphic->GetArcStart() );
if( d < min_d )
{
min_d = d;
ndx_min = i;
}
d = close_ness( aPoint, graphic->GetArcEnd() );
if( d < min_d )
{
min_d = d;
ndx_min = i;
}
break;
default:
if( aPoint == graphic->GetStart() || aPoint == graphic->GetEnd() )
{
aList.erase( aList.begin() + i );
return graphic;
}
d = close_ness( aPoint, graphic->GetStart() );
if( d < min_d )
{
min_d = d;
ndx_min = i;
}
d = close_ness( aPoint, graphic->GetEnd() );
if( d < min_d )
{
min_d = d;
ndx_min = i;
}
}
}
if( min_d <= aLimit )
{
PCB_SHAPE* graphic = aList[ndx_min];
aList.erase( aList.begin() + ndx_min );
return graphic;
}
return NULL;
}
/**
* Function ConvertOutlineToPolygon
* build a polygon (with holes) from a PCB_SHAPE list, which is expected to be
* a outline, therefore a closed main outline with perhaps closed inner outlines.
* These closed inner outlines are considered as holes in the main outline
* @param aSegList the initial list of drawsegments (only lines, circles and arcs).
* @param aPolygons will contain the complex polygon.
* @param aTolerance is the max distance between points that is still accepted as connected
* (internal units)
* @param aErrorText is a wxString to return error message.
* @param aErrorLocation is the optional position of the error in the outline
*/
bool ConvertOutlineToPolygon( std::vector<PCB_SHAPE*>& aSegList, SHAPE_POLY_SET& aPolygons,
wxString* aErrorText, unsigned int aTolerance,
wxPoint* aErrorLocation )
{
if( aSegList.size() == 0 )
return true;
// Return value
bool polygonComplete = true;
wxString msg;
// Make a working copy of aSegList, because the list is modified during calculations
std::vector<PCB_SHAPE*> segList = aSegList;
PCB_SHAPE* graphic;
wxPoint prevPt;
// Find edge point with minimum x, this should be in the outer polygon
// which will define the perimeter polygon polygon.
wxPoint xmin = wxPoint( INT_MAX, 0 );
int xmini = 0;
for( size_t i = 0; i < segList.size(); i++ )
{
graphic = (PCB_SHAPE*) segList[i];
switch( graphic->GetShape() )
{
case S_RECT:
case S_SEGMENT:
{
if( graphic->GetStart().x < xmin.x )
{
xmin = graphic->GetStart();
xmini = i;
}
if( graphic->GetEnd().x < xmin.x )
{
xmin = graphic->GetEnd();
xmini = i;
}
}
break;
case S_ARC:
{
wxPoint pstart = graphic->GetArcStart();
wxPoint center = graphic->GetCenter();
double angle = -graphic->GetAngle();
double radius = graphic->GetRadius();
int steps = GetArcToSegmentCount( radius, aTolerance, angle / 10.0 );
wxPoint pt;
for( int step = 1; step<=steps; ++step )
{
double rotation = ( angle * step ) / steps;
pt = pstart;
RotatePoint( &pt, center, rotation );
if( pt.x < xmin.x )
{
xmin = pt;
xmini = i;
}
}
}
break;
case S_CIRCLE:
{
wxPoint pt = graphic->GetCenter();
// pt has minimum x point
pt.x -= graphic->GetRadius();
// when the radius <= 0, this is a mal-formed circle. Skip it
if( graphic->GetRadius() > 0 && pt.x < xmin.x )
{
xmin = pt;
xmini = i;
}
}
break;
case S_CURVE:
{
graphic->RebuildBezierToSegmentsPointsList( graphic->GetWidth() );
for( const wxPoint& pt : graphic->GetBezierPoints())
{
if( pt.x < xmin.x )
{
xmin = pt;
xmini = i;
}
}
}
break;
case S_POLYGON:
{
const SHAPE_POLY_SET poly = graphic->GetPolyShape();
MODULE* module = aSegList[0]->GetParentModule();
double orientation = module ? module->GetOrientation() : 0.0;
VECTOR2I offset = module ? module->GetPosition() : VECTOR2I( 0, 0 );
for( auto iter = poly.CIterate(); iter; iter++ )
{
VECTOR2I pt = *iter;
RotatePoint( pt, orientation );
pt += offset;
if( pt.x < xmin.x )
{
xmin.x = pt.x;
xmin.y = pt.y;
xmini = i;
}
}
}
break;
default:
break;
}
}
// Grab the left most point, assume its on the board's perimeter, and see if we
// can put enough graphics together by matching endpoints to formulate a cohesive
// polygon.
graphic = (PCB_SHAPE*) segList[xmini];
// The first PCB_SHAPE is in 'graphic', ok to remove it from 'items'
segList.erase( segList.begin() + xmini );
// Output the outline perimeter as polygon.
if( graphic->GetShape() == S_CIRCLE )
{
TransformCircleToPolygon( aPolygons, graphic->GetCenter(), graphic->GetRadius(), aTolerance );
}
else if( graphic->GetShape() == S_RECT )
{
std::vector<wxPoint> pts = graphic->GetRectCorners();
aPolygons.NewOutline();
for( const wxPoint& pt : pts )
aPolygons.Append( pt );
}
else if( graphic->GetShape() == S_POLYGON )
{
MODULE* module = graphic->GetParentModule(); // NULL for items not in footprints
double orientation = module ? module->GetOrientation() : 0.0;
VECTOR2I offset = module ? module->GetPosition() : VECTOR2I( 0, 0 );
aPolygons.NewOutline();
for( auto it = graphic->GetPolyShape().CIterate( 0 ); it; it++ )
{
auto pt = *it;
RotatePoint( pt, orientation );
pt += offset;
aPolygons.Append( pt );
}
}
else
{
// Polygon start point. Arbitrarily chosen end of the
// segment and build the poly from here.
wxPoint startPt = graphic->GetShape() == S_ARC ? graphic->GetArcEnd()
: graphic->GetEnd();
prevPt = startPt;
aPolygons.NewOutline();
aPolygons.Append( prevPt );
// Do not append the other end point yet of this 'graphic', this first
// 'graphic' might be an arc or a curve.
for(;;)
{
switch( graphic->GetShape() )
{
case S_SEGMENT:
{
wxPoint nextPt;
// Use the line segment end point furthest away from prevPt as we assume
// the other end to be ON prevPt or very close to it.
if( close_st( prevPt, graphic->GetStart(), graphic->GetEnd() ) )
nextPt = graphic->GetEnd();
else
nextPt = graphic->GetStart();
aPolygons.Append( nextPt );
prevPt = nextPt;
}
break;
case S_ARC:
// We do not support arcs in polygons, so approximate an arc with a series of
// short lines and put those line segments into the !same! PATH.
{
wxPoint pstart = graphic->GetArcStart();
wxPoint pend = graphic->GetArcEnd();
wxPoint pcenter = graphic->GetCenter();
double angle = -graphic->GetAngle();
double radius = graphic->GetRadius();
int steps = GetArcToSegmentCount( radius, aTolerance, angle / 10.0 );
if( !close_enough( prevPt, pstart, aTolerance ) )
{
wxASSERT( close_enough( prevPt, graphic->GetArcEnd(), aTolerance ) );
angle = -angle;
std::swap( pstart, pend );
}
wxPoint nextPt;
for( int step = 1; step<=steps; ++step )
{
double rotation = ( angle * step ) / steps;
nextPt = pstart;
RotatePoint( &nextPt, pcenter, rotation );
aPolygons.Append( nextPt );
}
prevPt = nextPt;
}
break;
case S_CURVE:
// We do not support Bezier curves in polygons, so approximate with a series
// of short lines and put those line segments into the !same! PATH.
{
wxPoint nextPt;
bool reverse = false;
// Use the end point furthest away from
// prevPt as we assume the other end to be ON prevPt or
// very close to it.
if( close_st( prevPt, graphic->GetStart(), graphic->GetEnd() ) )
nextPt = graphic->GetEnd();
else
{
nextPt = graphic->GetStart();
reverse = true;
}
if( reverse )
{
for( int jj = graphic->GetBezierPoints().size()-1; jj >= 0; jj-- )
aPolygons.Append( graphic->GetBezierPoints()[jj] );
}
else
{
for( size_t jj = 0; jj < graphic->GetBezierPoints().size(); jj++ )
aPolygons.Append( graphic->GetBezierPoints()[jj] );
}
prevPt = nextPt;
}
break;
default:
if( aErrorText )
{
msg.Printf( "Unsupported PCB_SHAPE type %s.",
BOARD_ITEM::ShowShape( graphic->GetShape() ) );
*aErrorText << msg << "\n";
}
if( aErrorLocation )
*aErrorLocation = graphic->GetPosition();
return false;
}
// Get next closest segment.
graphic = findPoint( prevPt, segList, aTolerance );
// If there are no more close segments, check if the board
// outline polygon can be closed.
if( !graphic )
{
if( close_enough( startPt, prevPt, aTolerance ) )
{
// Close the polygon back to start point
// aPolygons.Append( startPt ); // not needed
}
else
{
if( aErrorText )
{
msg.Printf( _( "Unable to find edge with an endpoint of (%s, %s)." ),
StringFromValue( EDA_UNITS::MILLIMETRES, prevPt.x ),
StringFromValue( EDA_UNITS::MILLIMETRES, prevPt.y ) );
*aErrorText << msg << "\n";
}
if( aErrorLocation )
*aErrorLocation = prevPt;
polygonComplete = false;
break;
}
break;
}
}
}
int holeNum = -1;
while( segList.size() )
{
// emit a signal layers keepout for every interior polygon left...
int hole = aPolygons.NewHole();
holeNum++;
graphic = (PCB_SHAPE*) segList[0];
segList.erase( segList.begin() );
// Both circles and polygons on the edge cuts layer are closed items that
// do not connect to other elements, so we process them independently
if( graphic->GetShape() == S_POLYGON )
{
MODULE* module = graphic->GetParentModule(); // NULL for items not in footprints
double orientation = module ? module->GetOrientation() : 0.0;
VECTOR2I offset = module ? module->GetPosition() : VECTOR2I( 0, 0 );
for( auto it = graphic->GetPolyShape().CIterate(); it; it++ )
{
auto val = *it;
RotatePoint( val, orientation );
val += offset;
aPolygons.Append( val, -1, hole );
}
}
else if( graphic->GetShape() == S_CIRCLE )
{
// make a circle by segments;
wxPoint center = graphic->GetCenter();
double angle = 3600.0;
wxPoint start = center;
int radius = graphic->GetRadius();
int steps = GetArcToSegmentCount( radius, aTolerance, 360.0 );
wxPoint nextPt;
start.x += radius;
for( int step = 0; step < steps; ++step )
{
double rotation = ( angle * step ) / steps;
nextPt = start;
RotatePoint( &nextPt.x, &nextPt.y, center.x, center.y, rotation );
aPolygons.Append( nextPt, -1, hole );
}
}
else if( graphic->GetShape() == S_RECT )
{
std::vector<wxPoint> pts = graphic->GetRectCorners();
for( const wxPoint& pt : pts )
aPolygons.Append( pt, -1, hole );
}
else
{
// Polygon start point. Arbitrarily chosen end of the
// segment and build the poly from here.
wxPoint startPt( graphic->GetEnd() );
prevPt = graphic->GetEnd();
aPolygons.Append( prevPt, -1, hole );
// do not append the other end point yet, this first 'graphic' might be an arc
for(;;)
{
switch( graphic->GetShape() )
{
case S_SEGMENT:
{
wxPoint nextPt;
// Use the line segment end point furthest away from
// prevPt as we assume the other end to be ON prevPt or
// very close to it.
if( close_st( prevPt, graphic->GetStart(), graphic->GetEnd() ) )
nextPt = graphic->GetEnd();
else
nextPt = graphic->GetStart();
prevPt = nextPt;
aPolygons.Append( prevPt, -1, hole );
}
break;
case S_ARC:
// Freerouter does not yet understand arcs, so approximate
// an arc with a series of short lines and put those
// line segments into the !same! PATH.
{
wxPoint pstart = graphic->GetArcStart();
wxPoint pend = graphic->GetArcEnd();
wxPoint pcenter = graphic->GetCenter();
double angle = -graphic->GetAngle();
int radius = graphic->GetRadius();
int steps = GetArcToSegmentCount( radius, aTolerance, angle / 10.0 );
if( !close_enough( prevPt, pstart, aTolerance ) )
{
wxASSERT( close_enough( prevPt, graphic->GetArcEnd(), aTolerance ) );
angle = -angle;
std::swap( pstart, pend );
}
wxPoint nextPt;
for( int step = 1; step <= steps; ++step )
{
double rotation = ( angle * step ) / steps;
nextPt = pstart;
RotatePoint( &nextPt, pcenter, rotation );
aPolygons.Append( nextPt, -1, hole );
}
prevPt = nextPt;
}
break;
case S_CURVE:
// We do not support Bezier curves in polygons, so approximate
// with a series of short lines and put those
// line segments into the !same! PATH.
{
wxPoint nextPt;
bool reverse = false;
// Use the end point furthest away from
// prevPt as we assume the other end to be ON prevPt or
// very close to it.
if( close_st( prevPt, graphic->GetStart(), graphic->GetEnd() ) )
nextPt = graphic->GetEnd();
else
{
nextPt = graphic->GetStart();
reverse = true;
}
if( reverse )
{
for( int jj = graphic->GetBezierPoints().size()-1; jj >= 0; jj-- )
aPolygons.Append( graphic->GetBezierPoints()[jj], -1, hole );
}
else
{
for( const wxPoint& pt : graphic->GetBezierPoints())
aPolygons.Append( pt, -1, hole );
}
prevPt = nextPt;
}
break;
default:
if( aErrorText )
{
msg.Printf( "Unsupported PCB_SHAPE type %s.",
BOARD_ITEM::ShowShape( graphic->GetShape() ) );
*aErrorText << msg << "\n";
}
if( aErrorLocation )
*aErrorLocation = graphic->GetPosition();
return false;
}
// Get next closest segment.
graphic = findPoint( prevPt, segList, aTolerance );
// If there are no more close segments, check if polygon
// can be closed.
if( !graphic )
{
if( close_enough( startPt, prevPt, aTolerance ) )
{
// Close the polygon back to start point
// aPolygons.Append( startPt, -1, hole ); // not needed
}
else
{
if( aErrorText )
{
msg.Printf( _( "Unable to find edge with an endpoint of (%s, %s)." ),
StringFromValue( EDA_UNITS::MILLIMETRES, prevPt.x ),
StringFromValue( EDA_UNITS::MILLIMETRES, prevPt.y ) );
*aErrorText << msg << "\n";
}
if( aErrorLocation )
*aErrorLocation = prevPt;
aPolygons.Hole( 0, holeNum ).SetClosed( false );
polygonComplete = false;
}
break;
}
}
}
}
// All of the silliness that follows is to work around the segment iterator
// while checking for collisions.
// TODO: Implement proper segment and point iterators that follow std
for( auto seg1 = aPolygons.IterateSegmentsWithHoles(); seg1; seg1++ )
{
auto seg2 = seg1;
for( ++seg2; seg2; seg2++ )
{
// Check for exact overlapping segments. This is not viewed
// as an intersection below
if( *seg1 == *seg2 ||
( ( *seg1 ).A == ( *seg2 ).B && ( *seg1 ).B == ( *seg2 ).A ) )
{
if( aErrorLocation )
{
aErrorLocation->x = ( *seg1 ).A.x;
aErrorLocation->y = ( *seg1 ).A.y;
}
return false;
}
if( boost::optional<VECTOR2I> pt = seg1.Get().Intersect( seg2.Get(), true ) )
{
if( aErrorLocation )
{
aErrorLocation->x = pt->x;
aErrorLocation->y = pt->y;
}
return false;
}
}
}
return polygonComplete;
}
#include <class_board.h>
#include <collectors.h>
/* This function is used to extract a board outlines (3D view, automatic zones build ...)
* Any closed outline inside the main outline is a hole
* All contours should be closed, i.e. valid closed polygon vertices
*/
bool BuildBoardPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines, wxString* aErrorText,
unsigned int aTolerance, wxPoint* aErrorLocation )
{
PCB_TYPE_COLLECTOR items;
bool success = false;
// Get all the DRAWSEGMENTS and module graphics into 'items',
// then keep only those on layer == Edge_Cuts.
static const KICAD_T scan_graphics[] = { PCB_SHAPE_T, PCB_FP_SHAPE_T, EOT };
items.Collect( aBoard, scan_graphics );
// Make a working copy of aSegList, because the list is modified during calculations
std::vector<PCB_SHAPE*> segList;
for( int ii = 0; ii < items.GetCount(); ii++ )
{
if( items[ii]->GetLayer() == Edge_Cuts )
segList.push_back( static_cast<PCB_SHAPE*>( items[ii] ) );
}
if( segList.size() )
{
success = ConvertOutlineToPolygon( segList, aOutlines, aErrorText, aTolerance,
aErrorLocation );
}
else if( aErrorText )
{
*aErrorText = _( "No edges found on Edge.Cuts layer." );
}
if( !success || !aOutlines.OutlineCount() )
{
// Couldn't create a valid polygon outline. Use the board edge cuts bounding box to
// create a rectangular outline, or, failing that, the bounding box of the items on
// the board.
EDA_RECT bbbox = aBoard->GetBoardEdgesBoundingBox();
// If null area, uses the global bounding box.
if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) )
bbbox = aBoard->ComputeBoundingBox();
// Ensure non null area. If happen, gives a minimal size.
if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) )
bbbox.Inflate( Millimeter2iu( 1.0 ) );
aOutlines.RemoveAllContours();
aOutlines.NewOutline();
wxPoint corner;
aOutlines.Append( bbbox.GetOrigin() );
corner.x = bbbox.GetOrigin().x;
corner.y = bbbox.GetEnd().y;
aOutlines.Append( corner );
aOutlines.Append( bbbox.GetEnd() );
corner.x = bbbox.GetEnd().x;
corner.y = bbbox.GetOrigin().y;
aOutlines.Append( corner );
}
return success;
}
/**
* Get the complete bounding box of the board (including all items).
*
* The vertex numbers and segment numbers of the rectangle returned.
* 1
* *---------------*
* |1 2|
* 0| |2
* |0 3|
* *---------------*
* 3
*/
void buildBoardBoundingBoxPoly( const BOARD* aBoard, SHAPE_POLY_SET& aOutline )
{
EDA_RECT bbbox = aBoard->GetBoundingBox();
SHAPE_LINE_CHAIN chain;
// If null area, uses the global bounding box.
if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) )
bbbox = aBoard->ComputeBoundingBox();
// Ensure non null area. If happen, gives a minimal size.
if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) )
bbbox.Inflate( Millimeter2iu( 1.0 ) );
// Inflate slightly (by 1/10th the size of the box)
bbbox.Inflate( bbbox.GetWidth() / 10, bbbox.GetHeight() / 10 );
chain.Append( bbbox.GetOrigin() );
chain.Append( bbbox.GetOrigin().x, bbbox.GetEnd().y );
chain.Append( bbbox.GetEnd() );
chain.Append( bbbox.GetEnd().x, bbbox.GetOrigin().y );
chain.SetClosed( true );
aOutline.RemoveAllContours();
aOutline.AddOutline( chain );
}
bool isCopperOutside( const MODULE* aMod, SHAPE_POLY_SET& aShape )
{
bool padOutside = false;
for( D_PAD* pad : aMod->Pads() )
{
SHAPE_POLY_SET poly = aShape;
poly.BooleanIntersection( *pad->GetEffectivePolygon(), SHAPE_POLY_SET::PM_FAST );
if( poly.OutlineCount() == 0 )
{
wxPoint padPos = pad->GetPosition();
wxLogTrace( traceBoardOutline, "Tested pad (%d, %d): outside", padPos.x, padPos.y );
padOutside = true;
break;
}
wxPoint padPos = pad->GetPosition();
wxLogTrace( traceBoardOutline, "Tested pad (%d, %d): not outside", padPos.x, padPos.y );
}
return padOutside;
}
VECTOR2I projectPointOnSegment( const VECTOR2I& aEndPoint, const SHAPE_POLY_SET& aOutline,
int aOutlineNum = 0 )
{
int minDistance = -1;
VECTOR2I projPoint;
for( auto it = aOutline.CIterateSegments( aOutlineNum ); it; it++ )
{
auto seg = it.Get();
int dis = seg.Distance( aEndPoint );
if( minDistance < 0 || ( dis < minDistance ) )
{
minDistance = dis;
projPoint = seg.NearestPoint( aEndPoint );
}
}
return projPoint;
}
int findEndSegments( SHAPE_LINE_CHAIN& aChain, SEG& aStartSeg, SEG& aEndSeg )
{
int foundSegs = 0;
for( int i = 0; i < aChain.SegmentCount(); i++ )
{
SEG seg = aChain.Segment( i );
bool foundA = false;
bool foundB = false;
for( int j = 0; j < aChain.SegmentCount(); j++ )
{
// Don't test the segment against itself
if( i == j )
continue;
SEG testSeg = aChain.Segment( j );
if( testSeg.Contains( seg.A ) )
foundA = true;
if( testSeg.Contains( seg.B ) )
foundB = true;
}
// This segment isn't a start or end
if( foundA && foundB )
continue;
if( foundSegs == 0 )
{
// The first segment we encounter is the "start" segment
wxLogTrace( traceBoardOutline, "Found start segment: (%d, %d)-(%d, %d)",
seg.A.x, seg.A.y, seg.B.x, seg.B.y );
aStartSeg = seg;
foundSegs++;
}
else
{
// Once we find both start and end, we can stop
wxLogTrace( traceBoardOutline, "Found end segment: (%d, %d)-(%d, %d)",
seg.A.x, seg.A.y, seg.B.x, seg.B.y );
aEndSeg = seg;
foundSegs++;
break;
}
}
return foundSegs;
}
/**
* This function is used to extract a board outline for a footprint view.
*
* Notes:
* * Incomplete outlines will be closed by joining the end of the outline
* onto the bounding box (by simply projecting the end points) and then take the
* area that contains the copper.
* * If all copper lies inside a closed outline, than that outline will be treated
* as an external board outline.
* * If copper is located outside a closed outline, then that outline will be treated
* as a hole, and the outer edge will be formed using the bounding box.
*/
bool BuildFootprintPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines,
wxString* aErrorText, unsigned int aTolerance,
wxPoint* aErrorLocation )
{
PCB_TYPE_COLLECTOR items;
SHAPE_POLY_SET outlines;
// Get all the DRAWSEGMENTS and module graphics into 'items',
// then keep only those on layer == Edge_Cuts.
static const KICAD_T scan_graphics[] = { PCB_SHAPE_T, PCB_FP_SHAPE_T, EOT };
items.Collect( aBoard, scan_graphics );
// Make a working copy of aSegList, because the list is modified during calculations
std::vector<PCB_SHAPE*> segList;
for( int ii = 0; ii < items.GetCount(); ii++ )
{
if( items[ii]->GetLayer() == Edge_Cuts )
segList.push_back( static_cast<PCB_SHAPE*>( items[ii] ) );
}
bool success = ConvertOutlineToPolygon( segList, outlines, aErrorText, aTolerance, aErrorLocation );
MODULE* boardMod = aBoard->GetFirstModule();
// No module loaded
if( !boardMod )
{
wxLogTrace( traceBoardOutline, "No module found on board" );
if( aErrorText )
*aErrorText = _( "No footprint loaded" );
return false;
}
// A closed outline was found
if( success )
{
wxLogTrace( traceBoardOutline, "Closed outline found" );
// If copper is outside a closed polygon, treat it as a hole
if( isCopperOutside( boardMod, outlines ) )
{
wxLogTrace( traceBoardOutline, "Treating outline as a hole" );
buildBoardBoundingBoxPoly( aBoard, aOutlines );
// Copy all outlines from the conversion as holes into the new outline
for( int i = 0; i < outlines.OutlineCount(); i++ )
{
SHAPE_LINE_CHAIN& out = outlines.Outline( i );
if( out.IsClosed() )
aOutlines.AddHole( out, -1 );
for( int j = 0; j < outlines.HoleCount( i ); j++ )
{
SHAPE_LINE_CHAIN& hole = outlines.Hole( i, j );
if( hole.IsClosed() )
aOutlines.AddHole( hole, -1 );
}
}
}
// If all copper is inside, then the computed outline is the board outline
else
{
wxLogTrace( traceBoardOutline, "Treating outline as board edge" );
aOutlines = outlines;
}
return true;
}
// No board outlines were found, so use the bounding box
else if( outlines.OutlineCount() == 0 )
{
wxLogTrace( traceBoardOutline, "Using footprint bounding box" );
buildBoardBoundingBoxPoly( aBoard, aOutlines );
return true;
}
// There is an outline present, but it is not closed
else
{
wxLogTrace( traceBoardOutline, "Trying to build outline" );
std::vector<SHAPE_LINE_CHAIN> closedChains;
std::vector<SHAPE_LINE_CHAIN> openChains;
// The ConvertOutlineToPolygon function returns only one main
// outline and the rest as holes, so we promote the holes and process them
openChains.push_back( outlines.Outline( 0 ) );
for( int j = 0; j < outlines.HoleCount( 0 ); j++ )
{
SHAPE_LINE_CHAIN hole = outlines.Hole( 0, j );
if( hole.IsClosed() )
{
wxLogTrace( traceBoardOutline, "Found closed hole" );
closedChains.push_back( hole );
}
else
{
wxLogTrace( traceBoardOutline, "Found open hole" );
openChains.push_back( hole );
}
}
SHAPE_POLY_SET bbox;
buildBoardBoundingBoxPoly( aBoard, bbox );
// Treat the open polys as the board edge
SHAPE_LINE_CHAIN chain = openChains[0];
SHAPE_LINE_CHAIN rect = bbox.Outline( 0 );
// We know the outline chain is open, so set to non-closed to get better segment count
chain.SetClosed( false );
SEG startSeg;
SEG endSeg;
// The two possible board outlines
SHAPE_LINE_CHAIN upper;
SHAPE_LINE_CHAIN lower;
findEndSegments( chain, startSeg, endSeg );
if( chain.SegmentCount() == 0 )
{
// Something is wrong, bail out with the overall module bounding box
wxLogTrace( traceBoardOutline, "No line segments in provided outline" );
aOutlines = bbox;
return true;
}
else if( chain.SegmentCount() == 1 )
{
// This case means there is only 1 line segment making up the edge cuts of the footprint,
// so we just need to use it to cut the bounding box in half.
wxLogTrace( traceBoardOutline, "Only 1 line segment in provided outline" );
startSeg = chain.Segment( 0 );
// Intersect with all the sides of the rectangle
OPT_VECTOR2I inter0 = startSeg.IntersectLines( rect.Segment( 0 ) );
OPT_VECTOR2I inter1 = startSeg.IntersectLines( rect.Segment( 1 ) );
OPT_VECTOR2I inter2 = startSeg.IntersectLines( rect.Segment( 2 ) );
OPT_VECTOR2I inter3 = startSeg.IntersectLines( rect.Segment( 3 ) );
if( inter0 && inter2 && !inter1 && !inter3 )
{
// Intersects the vertical rectangle sides only
wxLogTrace( traceBoardOutline, "Segment intersects only vertical bbox sides" );
// The upper half
upper.Append( *inter0 );
upper.Append( rect.GetPoint( 1 ) );
upper.Append( rect.GetPoint( 2 ) );
upper.Append( *inter2 );
upper.SetClosed( true );
// The lower half
lower.Append( *inter0 );
lower.Append( rect.GetPoint( 0 ) );
lower.Append( rect.GetPoint( 3 ) );
lower.Append( *inter2 );
lower.SetClosed( true );
}
else if( inter1 && inter3 && !inter0 && !inter2 )
{
// Intersects the horizontal rectangle sides only
wxLogTrace( traceBoardOutline, "Segment intersects only horizontal bbox sides" );
// The left half
upper.Append( *inter1 );
upper.Append( rect.GetPoint( 1 ) );
upper.Append( rect.GetPoint( 0 ) );
upper.Append( *inter3 );
upper.SetClosed( true );
// The right half
lower.Append( *inter1 );
lower.Append( rect.GetPoint( 2 ) );
lower.Append( rect.GetPoint( 3 ) );
lower.Append( *inter3 );
lower.SetClosed( true );
}
else
{
// Angled line segment that cuts across a corner
wxLogTrace( traceBoardOutline, "Segment intersects two perpendicular bbox sides" );
// Figure out which actual lines are intersected, since IntersectLines assumes an infinite line
bool hit0 = rect.Segment( 0 ).Contains( *inter0 );
bool hit1 = rect.Segment( 1 ).Contains( *inter1 );
bool hit2 = rect.Segment( 2 ).Contains( *inter2 );
bool hit3 = rect.Segment( 3 ).Contains( *inter3 );
if( hit0 && hit1 )
{
// Cut across the upper left corner
wxLogTrace( traceBoardOutline, "Segment cuts upper left corner" );
// The upper half
upper.Append( *inter0 );
upper.Append( rect.GetPoint( 1 ) );
upper.Append( *inter1 );
upper.SetClosed( true );
// The lower half
lower.Append( *inter0 );
lower.Append( rect.GetPoint( 0 ) );
lower.Append( rect.GetPoint( 3 ) );
lower.Append( rect.GetPoint( 2 ) );
lower.Append( *inter1 );
lower.SetClosed( true );
}
else if( hit1 && hit2 )
{
// Cut across the upper right corner
wxLogTrace( traceBoardOutline, "Segment cuts upper right corner" );
// The upper half
upper.Append( *inter1 );
upper.Append( rect.GetPoint( 2 ) );
upper.Append( *inter2 );
upper.SetClosed( true );
// The lower half
lower.Append( *inter1 );
lower.Append( rect.GetPoint( 1 ) );
lower.Append( rect.GetPoint( 0 ) );
lower.Append( rect.GetPoint( 3 ) );
lower.Append( *inter2 );
lower.SetClosed( true );
}
else if( hit2 && hit3 )
{
// Cut across the lower right corner
wxLogTrace( traceBoardOutline, "Segment cuts lower right corner" );
// The upper half
upper.Append( *inter2 );
upper.Append( rect.GetPoint( 2 ) );
upper.Append( rect.GetPoint( 1 ) );
upper.Append( rect.GetPoint( 0 ) );
upper.Append( *inter3 );
upper.SetClosed( true );
// The bottom half
lower.Append( *inter2 );
lower.Append( rect.GetPoint( 3 ) );
lower.Append( *inter3 );
lower.SetClosed( true );
}
else
{
// Cut across the lower left corner
wxLogTrace( traceBoardOutline, "Segment cuts upper left corner" );
// The upper half
upper.Append( *inter0 );
upper.Append( rect.GetPoint( 1 ) );
upper.Append( rect.GetPoint( 2 ) );
upper.Append( rect.GetPoint( 3 ) );
upper.Append( *inter3 );
upper.SetClosed( true );
// The bottom half
lower.Append( *inter0 );
lower.Append( rect.GetPoint( 0 ) );
lower.Append( *inter3 );
lower.SetClosed( true );
}
}
}
else
{
// More than 1 segment
wxLogTrace( traceBoardOutline, "Multiple segments in outline" );
// Just a temporary thing
aOutlines = bbox;
return true;
}
// Figure out which is the correct outline
SHAPE_POLY_SET poly1;
SHAPE_POLY_SET poly2;
poly1.NewOutline();
poly1.Append( upper );
poly2.NewOutline();
poly2.Append( lower );
if( isCopperOutside( boardMod, poly1 ) )
{
wxLogTrace( traceBoardOutline, "Using lower shape" );
aOutlines = poly2;
}
else
{
wxLogTrace( traceBoardOutline, "Using upper shape" );
aOutlines = poly1;
}
// Add all closed polys as holes to the main outline
for( SHAPE_LINE_CHAIN& closedChain : closedChains )
{
wxLogTrace( traceBoardOutline, "Adding hole to main outline" );
aOutlines.AddHole( closedChain, -1 );
}
return true;
}
// We really shouldn't reach this point
return false;
}